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Surface spin waves in a Heisenberg ferrimagnet with a single-ion anisotropy
(uniaxial anti nonuniaxial)
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Surface spin waves on the (001) surface layer of a semi-infinite CsC1-type (bcc) Heisenberg ferrimagnet
with a single-ion anisotropy, uniaxial and nonuniaxial, are investigated by use of Green s-function tech-
niques. It is found that the spectrum of the surface spin waves is related to the strength of the anisotro-

py, and that only the optical branches can exist in the presence of anisotropy on the surface or in the
bulk. In the uniaxial anisotropy case, there is a critical value of the surface-anisotropy parameter, below
which the optical branches of the surface spin waves cannot be excited. For the nonuniaxial anisotropy
case, it is found that surface spin waves cannot be excited in the vicinity of the Brillouin-zone boundary,
if the surface anisotropy is weak enough. The effect of surface-exchange interactions on the surface
spin-wave spectrum has also been discussed.

I. INTRODUCTION

In recent years, many experiments have shown the ex-
istence of anisotropy fields in magnetic systems, and these
fields are found to play an important role in determining
the magnetic properties of such materials. These experi-
mental investigations give an impetus to theoretical stud-
ies on this subject. The effects of single-ion uniaxial an-
isotropy on the magnetic properties of ferromagnets and
antiferromag nets have been extensively studied
though the nonuniaxial anisotropy more widely exists in
magnetic materials, only the ferromagnet with single-ion
nonuniaxial anisotropy has been treated by a few au-
thors.

So far as we know, few investigations have been report-
ed on the ferrimagnet with single-ion uniaxial and
nonuniaxial anisotropy and, particularly, on the effects of
anisotropy on surface magnetism in the ferrimagnet.
Experiments have demonstrated the possible existence of
a very strong anisotropy field at the surface, so that much
attention has been drawn to the effect of surface anisotro-
py recently. ' The aim of this paper is to investigate
the surface spin-wave (SSW) spectrum on the (001) sur-
face of a semi-infinite CsC1-type (bcc) Heisenberg ferri-
magnet with a single-ion uniaxial and nonuniaxial anisot-
ropy by use of Green's-function techniques, which are
convenient to treat systems that lack full translational
symmetry and provide us with information about the sur-
face magnons.

The paper is organized as follows: We first discuss the
case of single-ion uniaxial anisotropy in a semi-infinite
ferrimagnet in Sec. II. Section III is devoted to the ferri-
magnet with single-ion nonuniaxial anisotropy, and some
concluding remarks and discussions are presented in Sec.
IV.

II. SINGLE-ION UNIAXIAL ANISOTROPY

A. Theory

We consider a semi-infinite CsC1-type (bcc) two-
sublattice Heisenberg ferrimagnet with a single-ion uni-
axial anisotropy and with the first two atomic layers
defined as belonging to sublattices 3 and 8, respectively.
The Hamiltonian of the system may be given as

H= —g J;,S; S —gD;(S ) (1)
(ij) i

where Ji represents the exchange interaction between
nearest-neighbor spins, the amplitude of spin S, is denot-
ed by S, (or Sb) when site i belongs to sublattice A (or B),
and D, is the single-ion anisotropy parameter, which
measures the strength of anisotropy at site i. We take
D; =D„on the surface plane, and otherwise D; =D, (or
Db) if site i belongs to sublattice A (or B). The surface is
assumed parallel to the (001) plane.

We define a retarded Green's function of the form
((St+,S ) ), denoted as Gt (co). ' ' In terms of the
Hamiltonian (1) of the system, the equations of motion
may be written as

((S,+;S ) ) =([S,+, S ])+(([S,+,H];S ) ) . (2)

The explicit form of the Green's function Gt (co) is ob-
tained as

2Dt (St') + g Jt, t+s(St'+s )

+(St') g Jt t+sGt+s ~( )c=o2(St')5tm,
6
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where G& (co) are the Fourier transform of the Green's
functions and we have employed a random-phase-
approximation (RPA) decoupling. 5 denoted the relative
position vector between two nearest neighbors, and gs
represents the sum over such nearest neighbors.

We now utilize the properties of translational invari-
ance in the planes which are parallel to the surface and
introduce the two-dimensional Fourier transformation of

the Green's function G(K~~, E), where the wave vector
K~~=(K, K~) is a two-dimensional wave vector parallel
to the surface. It is easy to show that the Careen's func-
tions satisfy the matrix equation

(co —i)@=I, (4)

where F, 6, and I are infinite-dimensional square ma-
trices. I denotes a unit matrix, and F is given by

F,'

0

0 0

0

Fb —K~ 0
—E) F,

where

F.' =2D.,M&+4JM, ,

K) =MM),

Fb =2DbM~ +8JM),
J( ~=MME,

F, =2D, M)+SJM

A, =4 cos(K„ao/2)cos(K~ao/2),

M, , Mz stand for the magnetization of sublattices A, B,
respectively, and ao is the lattice constant of each sublat-
tice.

Introducing the two transfer functions' '

and substituting T, and Tz into Eq. (4), we obtain'

6, , =(co F,'+K, T~)—
where

T~ = —[(co F,)—
+[(co F,)—

4K, K~(co F, )/(—co Fi, )]'i ] /(2K—, ) .—

In a similar manner, we can obtain the Green's functions
in the other successive layers. Because each layer
Green's function has the same singularity, ' we can easily
find the SSW spectrum equation,

co —F,'+K) Tq =0,
and the two solutions are

co~ = [Fi, +F,' K i K~ /( F, —F,' ) ] /2—

+[(Fb F,') +2K—iK~(2F, F,' Fb)/(F—, —F,')—
+[K,K~/(F, F,')] }' —/2 . (10)

Thus we can obtain the SSW spectrum of the system
from the above equation.

B. Results

We show in Fig. 1 the SSW spectrum for some selected
values of anisotropy strength in the cases S, )Sb and
S, & Sb. From Fig. 1 we can easily find that the spectrum
of the SSW is very sensitive to the strength of the anisot-
ropy. For simplicity, we have assumed that the anisotro-
py parameter of the surface is the same as that of the
bulk. In the absence of anisotropy both on the surface
and in the bulk, only one of the two branches, acoustic
and optical, of SSW can be excited in the case J &0. The
acoustic branch can be found for S, & Sb, while the opti-
cal branch can be found for S, & Sb, as shown by curve a
in Fig. 1. In the presence of surface and bulk anisotropy,
only the optical branches can be excited. The frequency
of the SSW increases with the increase of the strength of
the anisotropy. We also give the negative-energy curves
of the SSW, but they cannot be excited. '

In order to examine the influence of the surface anisot-
ropy D„on the SSW spectrum, we plot in Fig. 2 the
dispersion curves of the SSW with different D„(D, and
Db are assumed to be same) in the case S, )Sb. We find
that the frequency of the SSW spectrum increases with
the surface anisotropy, and the larger the anisotropy in
the bulk, the larger the frequency of the SSW, while in
the case S, & Sb a similar result is also obtained.

As mentioned above, only the optical branch can be ex-
cited in the presence of anisotropy on the surface or in
the bulk. But when the surface anisotropy D„becomes
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Aco+2DiS, rl+ g J(~Sb Gi (co)= —QS, Sb g J(~F~' (co)+2S, il' FiGi (co) —™
J

2m.

fico 2D~S 'ci g J»Sb Gi'~(~)=V S Sb g J,,F~~(cu) 2—S g F&G&m(~) o

J J

fico+2Di'Sbq'+ g JgS, F( (co)= Q—SgSb g J,iG~(u)+2Sbil' F~'Fi~(co),

fico —2Di'Sbrl' —g JiiS, Fi'm(co)=QS, Sb g JiiGi~(co) —2Sbi) ' FiFi~(co) .

(13)

We assume the anisotropy parameters D, =D, and
F, =F, if site i is in the surface layer; otherwise, D; =D,
F, =F, D'=D', and F'=F' for all layers. We also as-
sume J; =J, except J; =J, if both spins are in the surface
layer.

By use of the two-dimensional Fourier transform on a
square lattice, the set of coupled equations (13) of
motion can be rewritten in terms of the matrix represen-
tations as

(QI+ A )G(K~~, co) =BG'(K~~, ~)—CF'(K~~, a') —AI

0
0

0 1 o ~ ~

Q 1 Q o ~ ~

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 0 0
J/J 0 1 0

(nI+ A ')F(K~~, co) =B'F'(
K~~, co) —CG'(K~~, co),

(AI —A')F'(Ki~ ~) —B'F(Kii ~)+CG(K

with

0 0 0S

0 d 0 02

0 0 d 0
0 0 0

f 0 0 0

0 f
0 0
0 0

0 0 o o o

0
0 f

(~I—A)G(K~, , )= —BG(K„, )+CF(K„, ),
(14)

where

8 =4JS,Sb,
0=Ace/8',

d, =(2DS, +4JSb)/W,

d = (2DS, + 8JSb ) / W,

d, = (2D'Sb + 8JSb ) / W,

d2 = [2DS, +4(J+J, )Si, ]/ W,

d3 = [2D'S„+4(J+J, )S, ]/W,

f, =2S, rl' F/W,

f=2S, rj'i F/W,
f'=2Sbg'~ F'/W,

A, = 1/(2ir W),

yz =cos(K, ao/2)cos(K ao/2),

0

0

0 0 0 d)

0 0 0 o ~ ~

Q 0 ~ ~ ~

3

0 d 0
1

K~~
= (K„,K~) is a two-dimensional wave vector parallel to

the surface, and ao is a lattice constant.
In the case of the ferromagnet with nonuniaxial anisot-

ropy, the Green's functions Fi (co) and Fi (co) cancel,
from the first two equations of Eq. (14). This result is
consistent with that of other authors.

From the four coupled equations of Eq. (14), carrying
out some algebraic manipulation, we obtain

0
8'= 0

0

0 0
f' 0
0 f'
0 0

Q ~ ~ ~

0 o ~ ~

0 0 ~ ~

G(KII'co A, [SlI + A +CMC
—(B —CNC )( —QI + A —CPC )

X(B—CNC)]-'I,
with
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M = [(nI A—)+8'(nI+ A ')-'8 ]

N=[(QI A—')+8'(OI+ A') '8'] '8'(AI+ A')

L =[(QI+ A')+B'(AI —A') '8']

The surface spin-wave spectrum can be obtained from
the poles of G(K~~, co) by the equation

det[AI+ A +CMC
—(8 CN—C )( AI +—A CPC )—'(8 —CNC ) ] =0 .

(17)

2.0

1.0

B. Results O. G 0. 5

(K
It is the multiplications of the tridiagonal matrix C

that make it hard to calculate Eq. (17) analytically, so
that we have to solve Eq. (17) numerically. We take the
number of layers as 10, where the result can be regarded
approximately as that of a semi-infinite system. '

In Fig. 4 we present the surface spin-wave spectrum for
some selected values of anisotropy parameters in the case
J=J, (for simplicity, all the parameters of the anisotropy
are assumed to be the same). It is clear that, in the pres-
ence of anisotropy, only optical branches can be excited.
The frequency of the SSW will become soft in the vicinity
of the center of the Brillouin zone, especially in the case
of strong anisotropy. If the anisotropy strength is weak
enough, there exists a narrow region in the vicinity of the
Brillouin-zone boundary where the SSW cannot be excit-
ed, while it can appear in the boundary of the Brillouin
zone (curves a and b). If the anisotropy strength is very
strong, the above phenomenon disappears (curves c and
d). We have found that under certain conditions there is
a critical value of the anisotropy parameter, below which
there is a narrow region in the vicinity of the Brillouin-
zone boundary, where the SSW cannot be excited. The
critical value of the anisotropy is 1.0J in the case J=J, .

FIG. 5. SSW spectrum with J=J„S,=1.5, and Sb=1.0:
D =D, =D'=F=F'=0. 5J, F, =2.0J (curve a); D =D,
=D'=F=F'=2. 0J, F, =0.5J (curve b).

The SSW spectra in the case F,WF, F' (here we assume
anisotropy parameters to be the same except F, ) are plot-
ted in Fig. 5 with J=J, . We find that the spectra have
similar behavior in the case F, =F,F' (in Fig. 4), except
the frequencies are shifted.

In order to examine the effect of the surface-exchange
interaction J, on the SSW spectrum, we examine the
cases J, /J (1.0, J, /J=1. 0, and J, /J) 1.0 in Figs. 6
and 7. We find that an increase in J, causes a corre-
sponding increase in the frequency of the SSW spectrum.
For weak surface-exchange interactions, the frequency of
the SSW becomes soft in the vicinity of the center of the
Brillouin zone. Comparing Fig. 7 with Fig. 6, we find
that the weaker the surface nonuniaxial-anisotropy term,
the larger the change of frequency of the SSW in the Bril-
louin zone.

2.0

1.0
1.0 ~

0.0
0.5

YK

1.0
0.0 0.5

YK

1.0

FIG. 4. Dispersion curves of the SSW with J=J„S,=1.5,
and Sb = 1.0: The different curves correspond to
D =D, =D'=F=F, =F'=0.2J (curve a), D =D, =D'=F
=F,=F'=0.5J (curve b), D=D, =D'=F=F, =F'=1.0J
(curve c), and D =D, =D'=F=F, =F'=2.0J (curve d).

FIG. 6. SSW spectrum with different J„S,= 1.5, and

Sb =1.0. D=D, =D'=F=F, =F'=2.0J, J, /J=0. 5 (curve a);
D =D, =D'=F =F,=F'=2.0J, J, /J = 1.0 (curve b); and

D =D, =D'=F =F, =F'=2.0J, J, /J =1.5 (curve c).
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FIG. 7. SSW spectrum with different J„S,= 1.5, and
S =1.0: D =D, =D'=F=F'=2. 0J, F, =4.0J, J, /J=0. 5

(curve a); D =D, =D'=F=F'=2 OJ, F, =4 OJ, J, /J=1. 0
(curve b); and D=D, =D'=F=F'=2. 0J, F, =4.0J, J, /J=1. 5
(curve c).

FIG. 8. SSW spectrum with F=F' =0.0, S, = 1.5, and
Sb =1.0: D=D, =D =1.0J, F, =2.0J, J=J, (curve a);
D =D, =D'=1.0J, F, =2.0J, J,=1.5J (curve b).

There are systems in which the anisotropy may be
nonuniaxial at the surface, while being uniaxial in the
bulk, and so we plot this case in Fig. 8. We find that the
width of the region where the SSW will disappear in the
vicinity of the Brillouin zone changes with the surface-
exchange interaction J, .

IV. CONCLUSIONS

By aid of the Green's-function method, we have exam-
ined the surface spin-wave spectrum of a semi-infinite
CsCl-type (bcc) ferrimagnet with a single-ion uniaxial and
a nonuniaxial anisotropy. We find that the spectrum of
the SSW is related to the strength of the anisotropy and,
in addition, that only the optical branches of the SSW
can be excited in the presence of anisotropy. This can be
understood from the fact that the single-ion uniaxial or
nonuniaxial anisotropy is favorable to the relative motion
of spins for ferrimagnetic two-sublattice structures.

In the uniaxial-anisotropy case, there is a critical value
D,', of the surface-anisotropy parameter when D„ is tak-
en as a negative value. Below D,'„ the optical branch will
not be excited. This probably is caused by the very
strong anisotropy, which is great enough so that the ex-

change interaction is too weak relatively to excite surface
spin waves.

In the nonuniaxial-anisotropy case, we find that the
frequency of the SSW will become soft in the vicinity of
the center of the Brillouin zone. If the anisotropy at the
surface is weak enough, the disappearance of the SSW in
a narrow region in the vicinity of the Brillouin-zone
boundary may be an interesting phenomenon, which can
be expected to be tested by experiments. Under certain
conditions, there also exists a critical value of the anisot-
ropy parameter, below which the SSW will not exist in
the vicinity of the Brillouin-zone boundary. We have
also found that the width of the region of the SSW disap-
pearance changes with the surface-exchange interaction.
We believe the method we have used can be applied to
the treatment of NaCl-type (fcc) ferrimagnets and super-
lattice structures with single-ion uniaxial or nonuniaxial
anisotropy.
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