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We use a pseudofermion representation to study the formation and magnetic-field dependence of
split-off energy levels in a spin-2XY chain with a small concentration of magnetic impurities. Of partic-

ular interest are split-off states whose energy at a certain magnetic field crosses the zero level corre-
sponding to the chemical potential of pseudofermions. If this condition is satisfied, then at sufficiently
low temperature the magnetic-field dependence of the chain susceptibility is significantly altered by even

a small number of impurities.

I. INTRODUCTION

The purpose of this work is to investigate the magneti-
zation curve of an isotropic spin- —, XY chain with a small
concentration of identical magnetic impurities. We show
that formation of split-off energy levels outside of the
pseudofermion energy band may lead to a drastic, and at
least in principle, observable modification of the
magnetic-field dependence of the macroscopic suscepti-
bility.

The spin- —, XY chain is often invoked as the simplest
case of an essentially quantum one-dimensional antifer-
romagnet. ' Its principal advantage in theoretical studies
is an exact pseudofermion representation established by
way of a Wigner-Jordan transformation. For an ideal
chain, this allows an exact computation of thermodynam-
ic properties and magnetic susceptibility, ' and great-
ly assists in the investigations of correlation functions
and nonequilibrium effects.

Subsequent investigations have shown that an exact
solution is also possible for a spin- —, XY chain with a ran-
dom distribution of identical nonmagnetic impurities
which break the infinite chain into a set of finite chains
with free ends. ' In particular, it was found that
finite-size effects change the low-temperature behavior of
the specific heat from linear to exponential' '" and are
responsible for a nonmonotonic magnetic-field depen-
dence of magnetic susceptibility. ' Mathematically, the
presence of nonmagnetic impurities is equivalent to a
discrete distribution of coupling constant which either
vanishes completely or takes the value corresponding to
the ideal chain. An opposite case of the spin- —,

' XY chain
with a random but smooth distribution of coupling con-
stants has been solved in Ref. 14.

In this work we return to the case of the spin- —,
' XY

chain with identical impurities. Unlike the treatments
given in Refs. 9—13, we consider magnetic impurities. In
order to trace the consequences of the impurity-induced
localized states, we limit our analysis to the case of small
impurity concentrations. The resulting magnetization
curves are significantly different from those obtained in
Refs. 9 and 12.

The paper proceeds as follows. In Sec. II we derive
conditions for the formation of split-off states in an XY
chain with a single impurity of a reasonably general type.
Section III contains an analytical approximation for the
contribution of split-off states to magnetic susceptibility.
The results of numerical computations of susceptibility
are presented in Sec. IV.

II. SPLIT-OFF STATES

Ho =J Q (Sl S"~ ) +S~SJ+ ) ) + h g S'
J J

(2)

denotes the Hamiltonian of the ideal chain, and the per-
turbation

V= b,J g (S,"So+SfS~())+Jb,hS(') .
j=+1

In these expressions, J is the coupling constant, S- and S.
denote the components of spin at site j, h = —gp&B is the
normalized magnetic field, g is the Lande factor, pz is
Bohr's magneton, and B is the magnetic field. The im-
purity is located at site j=0, its exchange interaction
with two nearest neighbors is characterized by a new cou-
pling constant J'=J+AJ, and Ah = —hgp~BJ or
b h =(h /J)(bg /g), where hg denotes the change of g fac-
tor at the impurity site. In what follows we assume J & 0
since the sign of J can be changed by a unitary transfor-
mation.

The pseudofermion representation is introduced by a
Wigner-Jordan transformation'

j—1

C =( —2)~ ' + S' S (4)
m=1

and

j—1

C+=( —2)1 'S+ + S'
m=1

The Hamiltonian of the isotropic spin- —, XY chain with
a single impurity can be written as

H=HO+ V,
where
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Ic, , c,, ] =0,
and can be used to present Ho and V as follows:

Ho=h g C. C.+(J/2)g (C.+C +,+H. c. ),
J J

V=Jhhco Co+(hJ/2} g (Cj+Co+H. c. ) .

(7)

(9)

In the absence of an impurity the eigenvalues of Ho for
an infinite chain form a single energy band

E =h +J cosk, 0 (k (2~ . (10)

In this work, we are interested in the localized or "split-
off' states with the energies outside the band (i.e., with

I
E —h

I
)J ) and their contribution to the normalized

magnetic susceptibility:

where S—=SJ+iS . Qperators C and C-+ satisfy the
standard Fermi anticommutation rules

I C,+, C'] =5,,'

posed in Refs. 15—19. The analysis based on perturba-
tion theory (small b J, b, h =0) has led to the prediction of
long-range Friedel-type oscillations of the pseudofermion
density ( C~+Cj ) and corresponding oscillations of the lo-
cal magnetization for T=O. ' The exact solution of this
problem was given in Ref. 17 using a Green-function
method. The temperature damping of the oscillations of
local magnetization, which limits the range of indirect in-
teraction between impurities, was studied numerically in
Ref. 18. The formation of split-off states for a particular
case of zero magnetic field (and hence b, h =0) was inves-
tigated in Ref. 15 while Ref. 19 deals with local critical
exponents for the T=O magnetic phase transition in the
impure chain.

The split-off energy levels can be found as the poles of
the retarded Green function

6;j(E)= i I— 8(t)exp(iEt/iri)( I C(t), C+( 0)] )dt,

(14)

where 8(t) denotes the unit step ("inclusion" ) function.
The corresponding equation of motion in the site repre-
sentation is

Here N is the total number of spins in the chain (when
convenient we put N ~ ~ ), and ( ) denotes the
canonical average corresponding to an absolute tempera-
ture T. In a Wigner-Jordan representation

[H (E+i0)I—]6=I
where I denotes the unit matrix and

H; =h5; +J/2(5; +, +5; . , )+Jhh6;05 o

(15)

and

S'=C.+C.——' (12) + —,'b Jl(5, ,+5,)5;o+(5;,+5;,)5jo] . (16)

The solution of Eq. (15) has been found in the form'7

(13)

The impurity problem described by Eqs. (1)—(9) has been
I

g.j=2QIj + /J(1 —Q2)

(17)GlJ 1'J +AG;J

where g; denotes the Green function of the ideal chain'
and b G; is the change introduced by an impurity.
Denoting f=(E—h)/J we have

)I (1 g )g2IjI+i+g2IjI+3]+4+hQ2IjI+&
OJ OJ

J(l —Q )(1—o Q
—2hhg)

(19)

where

Q =f i"}/1 f', f I
&1, — —

Q =f—sgn(f)&f —1, If I
) 1 .

Parameter o. is defined as

(20)

(21) l~h
I
&(1—~)/2=1 (J /J)'

then there are no split-off states. For

(25)

satisfying the additional condition
I Q I

& 1.
The existence of such solutions depends on the values

of 0. and hh. There are three possible cases. If

o =2(J'/J) —1, J'=J+b,J . (22)

A.ccording to (21) for states outside the pseudofermion
band 0 &

I Q I
& 1, and f=

—,'(Q+ 1/Q). Consequently, the
energy of the split-off state is given by

lych I
) (1 o)/2=—1 —(J'/J)'

lych I

) (o —1)/2=(J'/J) —1
(26)

E, = h + (J/2)(g+ 1/Q),
where Q is the solution (if any) of the equation

1 —2bhg —og =0

(23)

(24)

there is one split-off state with the energy

E =h+J +J (o.+1}+(bh) +o.
20 20'

o.&0 (27)
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and

E, =h+ J(bh+ I/4bh ), cr =0 .

This Hamiltonian can be diagonalized by a canonical
transformation

Note that taking the limit o ~0 in (27) results in (28) so
that E,(o ) remains continuous for 0.=0.

Finally, for

b, h
~

((cr —1)/2=(J'/J) —1 (29)

there are two localized states with energies given by

E,+=A+(J/2o )[bh(cr —1)+(o+1)V(5h ) +o ] .

(30)

&he graphic representation of conditions (25), (26), and
(29) is shown in Fig. 1. If

~

J'~ ~ J then there is at most
one split-off state provided that the absolute value of the
site energy perturbation Ah is sufticiently large. For

~

J'~ )J there are two split-off states at h =0, one of which
may be suppressed by an increase in the magnetic field,
provided that b,g&0. Note also that the formation of lo-
calized states and the effect discussed in the next section
do not depend on the sign of the coupling constant
J' =J+6J in the immediate vicinity of the impurity.
Indeed, the sign of J' can be changed by a unitary trans-
formation H~ UHU+, U=2SO.

The formation of split-off states for h =0 was con-
sidered in Ref. 15. In this particular case, Ah =0 and ac-
cording to Eqs. (25)—(30) there is no split-off state unless

~

J'~ )J. If the latter condition is satisfied, then there are
precisely two split-off states with energies

a„=g e'„~'c„, (33)

where +'„' denotes the nth component of the pth eigen-
vector of H corresponding to the eigenvalue E . The vec-
tors %"p' are assumed to be orthonormalized.

In terms of the new operators (which satisfy the same
anticommutation rules as C )

H= gE a+a
p

Consequently,

(a+a~ ) =[1+exp(PE~ )] (35)

—y (S;)=—y((C,+C, ) —,)1, 1

J J
(36)

as

g (Sf ) =—g [ [1+exp(PE )]
J p

(37)

Consequently, the normalized magnetic susceptibility
defined by expression (11) is given by

where 13=1/k~T, k~ is the Boltzmann constant, and T
denotes the absolute temperature. Since, according to
(33), 2~a~ a~ =2/CJ+CJ. , we can express the normalized
magnetization

E,+ =h+(o + 1)J/2Vo . (31)
PJ dE /dhk=
2% 1+ cosh(PE )

(38)

III. MAGNETIC SUSCEPTIBILITY Separating the contributions of the in-band (kb) and
split-off states (k, ) we write k =kb+ k„where

We now investigate the possible experimental manifes-
tation of split-off states. With reference to Eq. (16) PJ ~b+~ dE/dh

1+ cosh(/3E)
(39)

H= QHJC;+CJ . (32)
and D (E) denotes the in-band density of states, whic»s,
of course, affected by the presence of impurities.

For the contribution of the split-off states with energies
E, we have

FIG. 1. Conditions for the formation of split-off states in a
spin-2 XYchain with a single impurity. A, no split-off states; 8,
one split-o6 state; C, two split-o6'states. Boundary lines are in-
cluded in region B for

~

j'/J~ & 1 and in region 2 for
~

J'/J~ ~ 1.

PJ dE, /dh
402%, ' 1+ cosh(PE, )

where N, denotes the degeneracy factor and the summa-
tion is extended over all (if any) split-off energy levels.
For a single impurity, N, = 1 as discussed above. If, how-
ever, we consider a chain with N, «N identical impuri-
ties and neglect the splitting of the localized states associ-
ated with the indirect [Ruderman-Kittel-Kasuya-Yosida
(RKKY)-type] impurity-impurity interaction, then
N, =N, and

PJn, dE, /dh
k, = (41)2, 1+ cos(PE, )

where n; =N;/N denotes the fraction of chain sites occu-
pied by impurities.

The accuracy of approximation (41) is discussed in the
next section. Here we note only that it requires n, &(1.
Hence, the contribution of split-off states is negligible ex-
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cept for a particular case when E, reaches zero for a cer-
tain value of the magnetic field h =ho (and consequently
for h = —ho). When this occurs, Eq. (41) predicts two
characteristic peaks at points h =+ho on the magnetic-
field dependence of susceptibility (see Fig. 2). What hap-
pens is that according to Eq. (35), at sufficiently low tem-
peratures, the occupation number (a,+a, ) changes rapid-
ly with E, =E,(h) near the point ho corresponding to
E,(h)=0. This is a common feature of systems of parti-
cles described by Fermi-Dirac statistics. The only special
feature of the present problem is that the chemical poten-
tial of pseudofermions (whose total number is not fixed) is
equal to zero. ' The abrupt charge of the occupation
number near h =ho results in a steplike behavior of the
average magnetization [see Eq. (37)] corresponding to the
peak of magnetic susceptibility shown in Fig. 2.

The magnetic-field dependence of split-off energy levels
for two different types of impurities is shown in Fig. 3. In
accordance with Fig. 1, the number of split-off states
which exist in the chain depends on the magnitude of the
magnetic field. Furthermore, even if an impurity (de-
scribed by parameters J' and g') is such that split-off
states do exist in a certain range of magnetic fields, the
equation E, (h) =0 may not have a solution in this range
[cf. Fig. 3(b)]. Indeed, expressions (27) and (30) can be
used to show that split-off states do not cross the zero en-

ergy level unless

(a)

(J'/J) &g'/g )0 . (42)

If condition (42) is satisfied, then the magnetic field corre-
sponding to the center of the peak

(43)
(J'/J)

[ [2(J'/J )' —g'/g](g'/g) ]
'"

is determined by the coupling constant J' and the g factor
g'=g+Ag of the impurity.

In Eq. (41) the dE, /dh vs h dependence is relatively
weak as compared with that of cosh[PE, (h)]. Approxi-
mating this derivative by its value at h =ho and using the
expressions for E, given above, we find, after some alge-
bra,

JPn, (1+6,g/g)(o —b,g/g)
k, =

[o(2+ kg/g) —bg/g ][1+cosh(PE, )]
(44)

and

E, =h [ I+(bg/g)(cr —I )/2o ]

b/J
FIG. 3. Energy levels of split-ofF states as functions of the

normalized magnetic field for (a) J' =2J, g' =2g; (b) J' =2J,

0.10

+iIJ[(a+ I)/2o ][o+(Ah ) ]'

The sign of

i)= —sgn[h [2o+(bg/g)(cr —1)]]

(45)

(46)

o.o5—

0.00

—0.05 I

2

h/Z

is chosen in such a way that if there is more than one
split-off state then E, corresponds to the one with the en-
ergy closest to zero.

The magnitude of the peak predicted by Eq. (44) is pro-
portional to JPn;. Hence, even for small impurity con-
centrations, n; &&1, the impurity-induced peak is observ-
able if, in addition to condition (42), the temperature is
sufficiently low (JP- I/n; ) and ho falls within the range
where the magnetic susceptibility of the ideal chain is
negligible. The latter is given by the author of Ref. 3 as

FIG. 2. Normalized magnetic susceptibility of the impure
(solid line) and ideal (dashed line) spin- —' XY chains. Symbols
represent Eq. (44); J'=2J, g'=g/2, T=0.04J/k~, n; =0.015.

ko= J sech [(PJ/2)[(h/J)+ cosy]]dy .
4~ 0

(47)

For P( ~h ~

—J)&&1, PJ &) 1, evaluation of the integral us-
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ing the Laplace method results in

k o
-—&f3J /2m. exp [ —P( /

h
/

—J ) ] . (48)

10

(a)—

Thus, if P(ho —J) ))1, then ho corresponds to the range
where ko is exponentially small (see Fig. 2). Physically,
this means that for ~her=ho the split-off energy level
(which is equal to zero) is separated from the pseudofer-
mion band by a few kz T.

IV. VIRIAL EXPANSION

k=ko+n;f, +n; g [f2(r) —2fi]+
r=1

In this expression k is the normalized magnetic suscepti-
bility given by Eq. (11), ko is the normalized susceptibili-
ty of the ideal chain,

(49)

Expression (44) for the contribution of the split-off
states to magnetic susceptibility is first order with respect
to the impurity concentration n, It is derived by neglect-
ing the indirect (RKKY-type) interaction of magnetic im-
purities.

In principle, the validity of (44) may be assured by re-

ducing n, or increasing the temperature (which limits the
range of the indirect impurity-impurity interaction. '

)

However, if JPn, is too small then the peaks on the k (h)
dependence described by Eq. (44) become insignificant.
To extend the computations into a somewhat wider range
of concentrations, we use the virial expansion of Ref. 20.
For a one-dimensional problem with integer coordinates
of impurities this gives

—10
0

10

0

(b)-

f =F —F (5O)
—10

f2 =F2(r) —Fo,
where Fo =koN,

d y (S;)
j=1 one impurity

(52)

FIG. 4. Magnetic-field dependence of f2(r) (solid line) and
2f, (circles) for (a) r =2 and (b) r =6; J'=2J, g'=g/2,
T=O.04J/k, .

N
F (r) = —J g (S')dh.j=1 two impurities separated by a distance r

(53)

In what follows we neglect terms of order O(n; ), i.e., the
clusters of more than two impurities. For temperatures
and concentrations considered below, the resulting error
is less than 1% for the peak values of k.

Expansion (49) is written assuming that coordinates of
impurities are not correlated. The length X of the chain
is chosen sufficiently large to make size effects
insignificant. In particular, while computing susceptibili-
ties F, and F2(r), impurities are positioned well outside
the range of boundary-induced oscillations of local mag-
netization. ' Note also that for X~~, F0, F„
F2=0(N) while f„f2=0(l). The magnetic suscepti-
bility of the chain with two impurities was computed nu-

merically using the expression

F2(r) = —J g [1+exp(PE~ )] (54)""
p

where now E are the eigenvalues of the Hamiltonian
matrix describing the two-impurity problem.

Typical results for f2 and f, are shown in Fig. 4. For
r =2 the additional splitting of the split-off energy levels
associated with individual impurities significantly
modifies the high-field (~h ~

)J) susceptibility. In con-
trast, for r ) 5, in the high-field region f2(r) =2f„which
assures a rapid convergence of X„[f2(r)—2f, ]. For
~h ~

(J, fz(r) may be different from 2f, for higher r [see
Fig. 4(b)].

Physically, this difference in f2(r) field dependence for
high and low magnetic fields is related to the
temperature-dependent range of impurity-induced
Friedel-type oscillations of local magnetization. '

Indeed, the indirect interaction between impurities is
negligible unless the oscillations of (S') produced by the
first impurity can reach the second. For T=O at large
distances r from the impurity site j=0 the oscillations of
local magnetization are described by the following expres-
sion
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[(1—o. )cos(kF) —2bh ] [ sin[(2r+1)kF] —o. sin[(2r —1)k']]—2bh sin(2rkF)
hS„=

2~r[1+4hh +cr +4bh(o —1)cos(k~) —2cr cos(2kF)]
(55)

0. 1

0.0

(a}

A

M
V

—0. 1

—02

—0.4
—20 20 60 80

SITE NUMBER j

where, b,S„=(S„')—(S„');d„iand

kF= cos ( —h/J) .

Thus, for T=O, AS„o= 1/r. However, at finite tempera-
tures, the range of the oscillations is significantly re-
duced' (in direct analogy with Friedel oscillations in
metals which for T & 0 decay exponentially with distance
from the impurity ').

This description is illustrated in Fig. 5 where (S~ ) is
computed using a numerical procedure outlined in Ref.
18. The size of the chain in Fig. 5 is kept intentionally
small in order to show both boundary and impurity-
induced oscillations of local magnetization. For h =0.5J
the oscillations of the local magnetization (S') are clear-

ly seen at a distance r = 10 from the boundary or impuri-
ty. This agrees with the fact that for this field f2(6) is
significantly different from 2f, . In contrast, as shown in
Fig. 5(b), a strong field (h =2J) suppresses the oscilla-

tions of local magnetization everywhere except in the vi-
cinity of the impurity. Consequently, for this field, in-
direct impurity-impurity interaction is negligible for
r ~5, sothat f2(r)=2fi forh=2Jandr&5.

The magnetic susceptibility of an impure spin- —, XY
chain computed using the first three terms of the virial
expansion (49) is shown in Figs. 6—8 for three different
types of impurities. For J'=J/2 and g'=3g/2, the
equation E,(h)=0 has no solution for ~h

~

& J, and k
remains exponentially small in the high-field region (Fig.
6). In this case, the introduction of impurities results in a
modification of the k(h) dependence for ~h

~

& J.
For J'=2J and g'=g (Fig. 7) or J'=2J and g'=g/2

(Fig. 8), high-field peaks associated with split-oF energy
levels are clearly seen. Equation (43) for the magnetic
Geld corresponding to the center of the peak remains val-
id, but the shape of the peak is altered by the indirect in-
teraction between impurities [Fig. 8(b)]. In addition to
the first-order peaks at h =+ho, in Fig. 8 one can also ob-
serve secondary peaks corresponding to the pairs of im-
purities with r =1 and 2. The magnitudes of these peaks
are of the order of J/3n;'. In general, clusters of more
than two impurities described by higher-order terms in
the virial expansion (49) produce the peaks of the order of
JPnf, q &2 on the k(h) dependence. These high-order
peaks can be ignored for JP=25, n; =0.05 corresponding
to Figs. 6—8. However, as shown in Fig. 8(b), the quadra-
tic term in the virial expansion cannot be neglected for
these values of P and n;

Let us now compare these results with an essentially
exact solution obtained for spin- —, XY chains with non-
magnetic impurities. ' A single nonmagnetic impurity
breaks the infinite chain into two semiinfinite parts. This
effect can be treated formally by putting hJ= —J(i.e., by

0.0 1.0

—0. 1 0.8
y~

~ I

~ ~

—0.2 0.6

A

M
V

—0.3 0.4

0.2

0.0

—0.6
—20 20 40 80

02 I I I

—0.5 0.0 0.5 1.0 1.5 2.0 2.5

sITE NUMBER j

FIG. 5. Local magnetization in the finite-size (N =70) spin-2

XY chain with a single impurity, for (a) h =0.5J and (b) h =2J;
J'=2J, g'=g/2, T=0.04J/k&.

FIG. 6. Normalized magnetic susceptibility of impure (solid
line) and ideal (dashed line) spin- 2

XY chains; J' =J/2,
g'=3g/2, T=0.04J/kB~ ni
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FIG. 7. ~. Same as Fig. 6 for J' = —2J, ' =g.
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As suggested earlier, ' ' ' impurity related e6'ects may
be experimentally observable in compounds like
CszCoC14, PrC13, and Pr(C2H~SO4)3 9H20
(Refs. 28 and 29) representing isotropic spin —,' XFchains,
provided that impurities with desirable properties are
identified. The temperature range of interest is between
the temperature of the three-dimensional ordering (which

may be affected by the presence of impurities ) and
J/kB
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