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Calculation of the zero-field susceptibility and critical temperature of Ising
magnets on the basis of the principle of limit similarity
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A simple analytical approximate method for the calculation of the zero-field susceptibility and the
critical temperature for the Ising model is proposed. The analysis is based on the rule of limit correspon-
dence. Assuming that the first three terms of the high-temperature series expansion are known, accurate
values for the eight types of lattices are obtained. These values (excepting the honeycomb lattice) differ
from those obtained through series extrapolation by 0.8% rms, and generally compare favorably to esti-
mates computed through the heuristic Bishop formula. In connection with an associated percolation
problem, a more accurate formula for the critical bond percolation probability is proposed.

I. ASYMPTOTIC SYMMETRY,
TWO-SIDED LIMIT CORRESPONDENCE

AND THE MONOVARIANT INTERPOLATION

Let us consider the Ising model at an arbitrary regular
lattice being D the Euclidean dimensionality and c the
first coordination number. Every site i =1, . . . , X is oc-
cupied by one magnetic moment p; =poS;, S;=+1.

The Hamiltonian is

Htt = —
(J/2 ) g S,SJ poH g S, . —

For the one-component (scalar) model (1),

Bo(m ) =arctanhm, Uo(m) =m /2 . (9)

Following Ref. 2, let us construct dimensionless
functions —the thermic one, f, and the caloric one, g:

f=(aB/aB ), g=(aU/aU, ), . (10)

For the state functions B and U, we have the high-
temperature limit corresponding to noncorrelated spins:

lim [B(m,y ), U(m, y ) ]= [Bo(m), Uo(m)] .
y —+O

The double sum is taken for the nearest neighbors i,j.
Let us introduce the variable y of the temperature T:

y =cJ/(k~T) = TM/T,

where

(2)

By construction, in the high-temperature limit,
f=g =land f)0. Moreover, the simple analysis of the
low-temperature expansion also shows that f=g= 1 in
the low-temperature limit also.

Thus, the two-sided symmetric asymptotics exists:

B =poH/(k~T),

the variable m of the magnetization,

(4)

m =(S,), —1(m &1

the variable U of the interaction energy,

U (S,SJ )/2

In these variables the thermodynamic identity is of the
form

d4= Udy —B dm .

TM =cJ/k~

is the Curie temperature in the Weiss mean-field approxi-
mation the variable B of the magnetic field H,

g=G(f): G(0)=0, G(1)=1, G"(f)(0. (12)

For example, at the Bethe-Peierls-guggenheim quasi-
chemical approximation it corresponds exactly to a

VD, m: lim(f, g)= lim (f,g)=1 .
y~O y —+ oo

By virtue of (11), one can call f,g the two-sided limit
correspondence variables.

The mapping of the manifold of the thermodynamic
states of the Ising model into the f gplane forms a set of-
squares of the same size, 1X 1, enumerated essentially by
the Euclidean dimensionalities a=1,2, 3, . . . . In this
connection it turns out that the f gmappings are mono--
variant only for the main, exactly solvable, limiting cases
and approximations. Namely, they are degenerated into
the curves of the form
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one-parametric family of straight lines:

G(f) =(2/c)f+(c—2)/c . (13)

As it is known, this approximation interpolates the exact
results for a one-dimensional (c =2) Ising chain and the
Curie-%'eiss-Ising model (c = oo), the last corresponding
to the mean-field approximation (3) in the real situation.

In particular, the map D =0, c =0 (ideal magnet) con-
tains one point f=g= 1, the map D= 1, c=2 contains
the squares diagonal g=f and the map c= 00 contains
the straight lines f=0 and g = 1.

Generally, (12) is an approximation. By virtue of (11),
one can call it a monovariant approximation of the two-
sided limit correspondence, or briefly, the monovariant
interpolation, 6(f) being the monovariant approximant.

W(Bp,y)=B[m(Bp, y)] . (14)

II. STATE EQUATION,
ZERO-FIELD SUSCEPTIBILITY,
AND CRITICAL TEMPERATURE

Let us introduce, according to (8), instead of m, the
variable Bo and the auxiliary function 8':

From (20), the singular part G, of G is

G, =G,f', a=1—(I/y),
and the amplitude is

I'+ = (G,y, /y )~ .

Completely, G is constructed in the form

6=6,+6„, 6,(1)+G„(1)=1.

(22)

(23)

(24)

In the first approximation 6„=0, G =G„and from (19)
and (22) —(24) it follows immediately that

F+ =Gc = 1, Tc = TM /p (25)

G„=(1—G, )f (26)

where 6, and b have to be founded. Then, from (16) and
(19) the susceptibility and the Curie temperature are
given by

This simple formula improves systematically the mean-
field approximation, as y grows with decrease of D.
Thus, G, is a relatively small correction for G, . Let us
take G„, generalizing (13),of the form

BW/By —m(B )G(BW/BB )=0 . (15)

Then from (7), (9), (10), and (12) one gets for W the
Hamiltonian-Jacobi-type equation: y =y[&(l)—&(f)], y, =y &(I),

Y(f)=fG, 'g( —6„/6, )"/[ny(b —a)+1] .

(27)

(28)

f+(y) KTp/KT, H=O, T) T~

Thus, for m =0 it follows from (16) that

df+ ldy+G(f+ )=0 .

(17)

(18)

This equation has an energy-type first integral associated
with a cyclic variable y. It is solved by quadratures. By
use of (12), it is convenient represent it in the form

y=T~/T= f 6 '(P)Bp[mG(f)/6(P)]dg/Bp(0),

(16)

where, as usual, the prime denotes the derivative. Due to
the boundary condition y =0 for f=1, (16) is valid only
in the supercritical region T) T„O(y (y, = TM/T, .

Let f+ be the inverse zero-field susceptibility Il T with
respect to its ideal value ~To..

The series in the last formula represents the incomplete B
function and converges rapidly because of the small ratio
6„/6, .

III. CALCULATION
OF ZERO-FIELD SUSCEPTIBILITY

AND OF THE CURIE TEMPERATURE
FOR EIGHT LATTICES

In the one-component case, it follows from (9) and (16)
that

y = f dP 6(P)/[6'(P) —G'(f)] . (29)f
The values of the parameters G, and b of the approxirna-
tions (22), (24), and (26) are obtained by means of the
four-term high-temperature expansion of the susceptibili-

.1,3,7 —13

Moreover, if T= T„then

y, =TM/T, = f dp/G(p) . (19)
f+ =1—y+y /c+s3y l(3c),
c3= 18n3/c

(30)

(31)
From (18) and (19) one gets

y, —y = f d0/6(0)
0

(20)

f+ =++ [(y —y, )/y, ]' . (21)

Thus, the calculation of the thermodynamic properties
requires the construction of the monovariant approxi-
mant G(f).

Some general properties of G follow from critical
asymptotics of the susceptibility with amplitude F+ and
critical exponent y:

Here n 3 is the arrangement number for closed triangular
graphs on the lattice of given type: n3=2, F3=4 for a
hexagonal lattice, n3 =8, @3=1 for a face-centered-cubic7

lattice, ' and n3 =0, F3=0 for other analyzed lattice
types.

Together with the universal critical exponent y(D), the
coe%cients of (30) form the minimal set of individual
geometric parameters which are necessary for the lattice
identification. In this sense, the approximants (25) and
(30) are also the minimal ones.

By combining (18), (23), (25), and (30) and equating the
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coefficients of the same order in y, one obtains

G, =1/( I+a, ),
a, =2y (1—E,w) /[(1 —e3)c —2],
b =2—(1+yE3)/(1+E,w),

E,w=(y —1)[(c/2) —1) .

(33)

(34)

One could see that cled=0 for the two basic limited
universal classes corresponding to the one-dimensional
Ising model (c =2) and the Weiss mean-field approxima-
tion (y= 1). Therefore, one can call e,w as the Ising-
Weiss parameter. In particular, for y=1, @3=0 one ob-
tains the linear monovariant equation (13) of the quasi-
chemical approximation.

The values of y, computed by (28) are shown in Table
I. In the column labeled y, (HT) the high-temperature
extrapolation results are given (for D =2, the exact ones).
These results are systematized in Ref. 15. The value
y=1.241 was taken from Refs. 16 and 17. The percent
error relative to HT is given in the columns labeled %.
The column labeled y, (B) is commented on in the next
section.

The method proposed improves essentially the high-
temperature series convergence. In fact, the results ob-
tained using the input data only, or otherwise by solving
the equation f+ (y) =0 with (30), are incorrect even quali-
tatively by lack of the y, (D) dependence.

On the other hand, one can see from Table I that the
second (minimal) approximation gives the results with
the rms deviation (excepting the honeycomb lattice) of
0.8%. It is three times smaller than that corresponding
to the best analytic approximation (41).

As for the zero4eld isothermal susceptibility, the re-
sult corresponding to (26) and (27) is simplified essentially
for the y rational, in particular, for y =

—,
' (the exact result

for D =2) and y= —,
' (the best rational approximation of

just the HT data). It turns out that in this case the ex-
ponents a and b in (25) are rational ones also. It permits
ones to express (27) through the elementary functions'

y =y(1+ai ) '(m +1)(2n + 1) 'y "[I(1)—I(x)],
(35)

where

lnx =(lnf+ )/[y(m+1)], (36)

in/= —(lna, )/(2n + 1), (36a)

n —1

I(x)=( —1) ln(x+g) —g cos[rk(m+1)m]ln(x +g —2xgcosrkvr)

n —1

+2 g sin[rI, (m+1)~]arctan[(x gcosrkm)]—, 1&m (2n —1, rk=(2k+I)/(2n+1) .
k=0

(37)

TABLE I. The Curie temperature mean-field approximation
values, TM, with respect to the calculated ones, T, :y, = TM /T, .
In the column headings D denotes the Euclidean dimension, y is
the critical exponent of the isothermic susceptibility (Refs. 16
and 17), c is the first coordination number. The value of y, are
calculated using (28) and are compared with y, from the high-
temperature series extrapolation (HT) from references "Ref.
(HT)", and with the heuristic Bishop (B) formula (41) (Refs. 5
and 19). The errors (%) are given by [y, y(HT)]/y(HT)—
([yi&)—y(H&)]/y(H&)l. fr = [exp(xy, ) —exp(ay )]i'/[exp(ay, ) —1]i', (38)

[m should not be confused with the magnetization in (3).]
The values of m, n, and the corresponding ones of y,
from (35)—(37) are given in the Table II.

In the important case of the face-centered lattice
(c = 12, e3 = 1), for y =

4 one obtains from (34)
and from (33), b =1. In this case (28) represents the loga-
rithm function, and for the zero-Beld susceptibility one
obtains

D, y yc

Ref.
y, (HT) (HT) y, (a)

where

3 2.0365 1.9750
4 1.7807 1.7629

6 1.6552 1.6486

3.11 2.1063 6.65
1.01 1.8263 3.60

0.40 1.6479 —0.04

TABLE II. The Curie temperature mean-field values with
respect to the ones calculated by (35) (the last line). All symbols
have the same meaning as in Table I except that m and n are
defined by (35)—(37).

3

1.241

3 1.7039
4 1.4896
6 1.3137
8 1.2576

12 1.2217

1.7212
1.4793
1.3300
1.2593
1.2250

21
21
11

11

14

—1.00
0.70 1.5294 3.39

—1.22 1.3544 1.83
—0.13 1.2648 0.44
—0.27 1.2162 —0.72

D, y

(35)

19
20
2.036

2-

3 7
12 7

1.781 1.655

27
16
1.778

5

11 3 3
8 4 9
1.492 1.318 1.264
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«=2(Etw I)/(c) ), y, v=tr 'ln(l+ytc) .

For the fcc one obtains

y«, =301n—", =1.2247 . (4O)

TABLE III. The critical bond percolation probabilities: pb „
from (43) (Refs. 5 and 20), pb, z from (44), pb „from Refs. 22 and
23.

According to Table I, the error is only —0.024%. Out
of the fcc, the accuracy of (39) is worse than that of (27)
and (28) but better than the quasichemical result [for the
last in (39) y =1, e,w=0].

12

pb, ) 0.667 0.500 0.333 0.375 0.250 0.188 0.125
pb, 2 0.667 0.500 0.333 0.400 0.250 0.182 0.118
pg „0.653 0.500 0.347 0.388 0.247 0.178 0.119

IV. THE CURIE TEMPERATURE
AND THE CRITICAL PERCOLATION PROBABILITY

The correlation between the percolation probability
and the critical site percolation probability pz c was es-
tablished by Bishop' (see also Ref. 5) through the heuris-
tic formula

TM /T, =&ca [1+(1/psc ) ]arctanhpsc . (41)

The corresponding values of y are presented in the
column labeled 8 (41) of Table I, psc have being taken
from Ref. S.

On the other hand, the evaluation through (39) shows
that the equation

3'ca =&cv psc =tv(»c ) (42)

keeps within the rms error of 1.4% (exepting 7% for the
honeycomb lattice). y being, by the scaling hypothesis, a
function of D only (within the universality class con-
sidered), (14) and (42) give psc through the basic
geometric lattice'parameters.

As for the bond percolation, a similar correlation is
known also:

(43)

Neither correlation of type y, —
pb, was found to be

suKciently accurate. However, by a heuristic search we

have arnved at

pb, z
= 1/[ 1+(c —2)D /4] . (44)

V. CONCLUSIONS

The proposed monovariant two-sided limit correspon-
dence method belongs to the family of approximation
schemes of the type used in Refs. 24 and 25. However,
we found that this method is of rather general nature and
may be useful for more complicated high-spin or vector
models.
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The values obtained by (43) and (44) and the numerical
(or exact) ones, pb„, ' are given in Table III. The
values obtained by (44) generally compare favorably to
estimates made through formula (43).
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