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Monte Carlo study of magnetic phase transitions in a model for FeC12
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A Monte Carlo simulation of the critical behavior of a quite realistic model of FeC12 in a magnetic
field has been performed. Our results show, in agreement with previous experimental ones, that in the
temperature-field phase space, two regions of highly different critical behavior may be recognized. For
values of temperature T higher than a certain tricritical temperature T„ the transition is continuous.
Conversely, for values of T lower than T, the transition shows all the characteristics of a first-order one.
The relative width of the first-order region was found to be T, /T& =0.87, in excellent agreement with
experimental results. We have studied the role played by competing interaction constants in the critical
behavior of the system, and we have found that the presence of an antiferromagnetic and frustrated
second-neighbor interaction, though small, is essential to reproduce the quantitative behavior of FeCl&.

I. INTRODUCTION

Experimental results on FeC12 and FeBr2, which may
be roughly described as systems consisting of ferromag-
netic planes coupled antiferromagnetically, show that
they undergo a metamagnetic phase transition in an ap-
plied magnetic field, for temperature T lower than a tri-
critical temperature T, above which it becomes continu-
ous.

Some theoretical Hamiltonian models showing a simi-
lar kind of behavior have been proposed. Harbus and
Stanley have performed a high-temperature series expan-
sion on a simple cubic lattice Ising model with in-plane
ferromagnetic coupling and antiferromagnetic coupling
of the planes (the "meta" model) and on the "NNN mod-
el" consisting of a simple cubic Ising lattice with isotro-
pic antiferromagnetic nearest-neighbor (NN) and fer-
romagnetic second-neighbors (NNN) interactions.

Landau has performed a Monte Carlo simulation of
antiferromagnetic Ising simple cubic and simple square
lattices with NN antiferromagnetic and NNN ferromag-
netic coupling, also finding a tricritical behavior.

However all these models, though interesting from the
theoretical point of view, cannot be taken as models of
the measured "prototype" metamagnets: FeClz or FeBr2
as they considered only the simplest lattice structures,
(square and simple cubic) and did not take into account
important features appearing in these systems such as
high anisotropy, triangular lattice planes, superexchange
paths along the c axis, and in-plane frustrated second-
neighbor interaction in competition with a nearest-
neighbor one.

In this work we are interested in a three-dimensional
(3D) Ising model of FeC12 that takes into account those
outstanding features. Thus we have studied a layered sys-
tem consisting of triangular lattice planes coupled anti-
ferromagnetically, with competing in-plane interactions:
ferromagnetic between NN and antiferromagnetic be-
tween NNN, the latter being frustrated in such a lattice
[Fig. 1(a)]. We have also taken into account the superex-
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FIG. 1. (a) Crystalline structure of FeC1~ (Ref. 12). ~ Fe +;

0 Cl . (b) Top view of the 12 neighbors of an Fe + ion. the
considered ion; ~ neighbors in the adjacent plane below.
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change path for the coupling between iron planes, which,
following Anderson's rule, leads to 12 NN in each one
of the neighboring planes [Fig. 1(b)].

The article is organized as follows: In Sec. II we de-
scribe the system, the quantities studied, and some tech-
nical details on the Monte Carlo method used. In Sec. III
we analyze our results and compare them with previous
ones. Finally in Sec. IV we present our conclusions along
with some suggestions for forthcoming work.

II. MODEL AND CALCULATION TECHNIQUES

A. The FeC1& model

We have studied a highly anisotropical 3D Ising sys-
tem consisting of a stacking, along the c axis, of triangu-
lar lattice planes shifted one with respect to the other so
as to reproduce the magnetic sites of Fig. 1(a).

This system may be described by the following Harnil-
tonian:
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where H (T) indicates the critical line in the (T, h) space.
At 0 K the threshold magnetic field to change from the
antiferromagnetic order of up and down planes to a sa-
turated paramagnetic one is h, (0)=24~ J'~ /kii.

where s, =+1 is an Ising spin, ( NN ) and ( NNN ) mean
sums over NN and NNN in the plane perpendicular to
the c axis, respectively, and (NN') means sum over in-
teracting spins belonging the adjacent planes.

Several sets of interaction constants (J&,J') or
(Ji,Ji,J') have been proposed by fitting experimental
data with different Hamiltonian models, ' ' but all of
them agree with the fact that the coupling between
nearest neighbors in the plane is ferromagnetic, (J, )0),
with a magnitude much larger than the antiferromagnetic
coupling between the planes, (J'(0)&

~ J, ~
))~J'~. Those

authors proposing an antiferromagnetic coupling of
second neighbors in the plane, Jz &0, ' have found that
~ J, ~ /~ J2 ~

=7. This interaction (Ji (0) is frustrated in a
triangular lattice (it is not possible to satisfy all the bonds
simultaneously" ), and though small compared to the
first-neighbors interaction, it plays an important role in
the critical behavior of the system.

As J' is a superexchange interaction, mediated by the
two nonmagnetic chlorine planes, we took into account
all the equivalent superexchange paths, ' which gives 12
"nearest neighbors" in each of the neighboring iron
planes, instead of three NN as in previous works [see Fig.
1(b)].

In the following we use the notation

B. Calculation techniques

The system we mainly studied consists of 12 triangular
planes of 18X18 sites, each with full periodic boundary
conditions, but we have also tested for finite-size effects
performing: (i) some runs changing the size of the system
along the c axis, while leaving the size along the other
directions constant (18 X 18 X 6 and 18X 18 X 24 lattices)
and (ii) study of the T, shift when the size of the system is

globally changed in all directions (6X6X6, 12X12X12,
and 24X24X24).

Averages were calculated using typically 5000
MCS/spin after having discarded other 5000 MCS/spin
to equilibrate the system. Near the critical region runs

up to 10000 MCS/spin for averaging and 10 000
MCS/spin to equilibrate the system were performed to
reduce the effect of critical slowing down. Data were
generally taken isothermally with the field both increas-
ing and decreasing, in order to test for irreversibility.
Special attention was paid in the first-order region to
simulate an actual sweeping in h, starting the simulation
in the zones of stable order (ferromagnetic initial condi-
tion for high fields and antiferromagnetic one for very
low fields) and taking always the output at h as the input
for h +Eh.

In each run, we have calculated the following physical
quantities: magnetization (m), staggered magnetization
along the c axis (m„), energy per spin (E), specific heat
(c) by energy fiuctuations, susceptibility (y) by magneti-
zation fiuctuations, staggered susceptibility (y„) by stag-
gered magnetization Auctuations, and Edwards-Anderson
order parameter (q~~).

III. ANALYSIS OF THE RESULTS

Unless stated otherwise the results discussed here cor-
respond to a system having J, /kii = 10 K, J2/kii = —l. 5

K., and J'/kB = —0.5 K. These values have been found
experimentally when taking into account only three NN
in each of the neighboring iron planes. Discussion on
these values when taking into account 12 NN will be
given later.

The analysis of our results shows clearly the existence
of two regions of highly different critical behavior, in the
(T,h) space, in agreement with previous experimental re-

1,3,4

In Fig. 2, m„(T) curves for different values of h in ris-
ing field are shown. For low values of h, (see curves a, b,
c, d) the transition is smooth, and no hysteresis effect is
observed. On the other hand, it is clearly seen that the
fall of m„( T) curves becomes steeper as h increases, turn-
ing into actual gaps with presence of metastable states for
low critical temperatures (curves e, f, g, h of Fig. 2). This
fact along with the large hysteresis effect observed in this
region (not shown here) indicates that a crossover to a
zone of first-order transitions has taken place.

The results obtained for the other physical quantities
confirm this behavior; as an example, we show in Fig. 3,
the specific heat curves as a function of T, for different
fields. In Fig. 3(a) the broad peaks expected for the con-
tinuous region are observed. On the other hand, in Fig.
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the half width of hysteresis is not always correct, as has
been suggested by Creutz, Jacobs, and Rebbi. ' It has
been found that, for some systems, ' the critical point is
not placed in the rniddle of hysteresis gap. Hence, we
prefer to show here the two branches corresponding to
rising and decreasing field.

The TCP may be roughly obtained extrapolating these
two branches to their point of junction. We have found
T, /T&=0. 6 (Tz being the Neel temperature), which is
rather small compared with the value obtained experi-
mentally for FeClz, T;"r /Tg =0.886." This discrepancy
can be solved by fitting experimental data taking into ac-
count 12 neighbors in each of the adjacent planes, instead
of just taking the values obtained for only three. The
resultant values of the interaction constants are then
J& /k~ = 10 K J2/k~ = 1.5 K and J /k~ = 0. 107 K.
The simulations performed using these values give, quali-
tatively, the same behavior described above rsee Fig. 4(b)]

FIG. 2. m„vs T (units of K) curves for different values of h

in both, continuous and first order regions (data taken from ris-
ing field runs): (a) h =8 K; (b) h =9 K; (c) h =10 K; (d) h = 11
K; (e) h =12 K; (f) h =13.5 K; (g) h =14 K; (h) h =14.5 K.
Detailed T sweep is shown for h = 11 K and h =9 K to show
that no gap is actually present (see text for detailed comments).
Unless stated otherwise, all lines are merely a guideline to the
eye.

3(b) we observe delta like func-tion -curves whose peaks
are very diScult to seize, in addition to wider peaks
showing the thermal in-plane disorder at higher values of
T.
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The same differences in the behavior of g and y„ac-
cording to the considered region of the ( T, h) plane are
observed. Harbus and Stanley have proposed that the
tricritical point (TCP) could be determined using the fact
that, in the continuous region, only g„shows a diver-
gence, while g has a finite peak and in the first-order re-
gion, both of them become divergent. As the aim of this
work was not to locate the TCP with precision, we did
not use a sweeping step AT small enough to see this
effect; anyway we could observe that the g„peak in the
continuous region is one order of magnitude higher than
the g one, while, in the first-order region, they both
behave exactly in the same way.

Observing some snapshots of the crystal for different
values of h and T, in the first-order region, one can see
that the transition takes place by a sudden inversion of
"down" planes. In decreasing field runs (ferromagnetic
initial conditions), stacking fault occurs when the sweep-
ing step in h is not small enough; thus, the value of the
remanent magnetization is a finite-size effect.

In Fig. 4(a) the phase diagram is shown; in the lowT-
region, we observe that the critical line is split into two
branches, obtained in rising and decreasing field, which
corresponds to the hysteresis phenomenon.

Concerning the determination of the critical line h, ( T)
in the first-order region, different criteria can be found in
the bibliography. The usual one, which consists of taking
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FIG. 3. (a) c (units of J/K spin) vs T (units of K), for
different values of h; broad peaks, characteristic of continuous
transitions can be observed. o h =9 K; ~ h = 10 K; h = 11
K. (b) c vs T curves in the region of first-order transitions. 0
h =13.5 K; ~ h =14 K. At low temperatures the existence of a
very sharp peak, corresponding to the first-order transition is
indicated. Wider and lower peaks at higher temperatures corre-
spond to thermal in-plane disorder. Data were taken from ris-
ing field runs.
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and after a study of the shift of T, with the lattice size we
have found, for the 24X24X24 lattice, T, /T&=0. 87,
which is in excellent agreement with the experimental
value. However, for this system, the Neel temperature
was found to be T&=34 K, larger than the experimental
one, T&"&=23.5 K. Nevertheless, this value is in agree-
ment with the one found by Vettier, based in a random-
phase-approximation method: T& =33.7 K and is quite
better than the one given by mean-field theory, Tz"=39
K. The discrepancy with experimental results found in
the value of T~ may be understood recalling that the
values of the interaction constants considered here were
obtained by fitting neutron dispersion data to a Hamil-
tonian, which is different from (1). Then when replacing
them into (1), only their respective ratios are accurate
and not their actual values.

Our finite-size effect studies show that, as expected for
this highly anisotropic system, size changes along the c
axis are much more relevant than those along the other
directions (i.e., results for 12 X 12 X 12 are quite similar to
those found for 18 X 18 X 12).

We have also studied the influence of the antiferromag-
netic and frustrated second-neighbors interaction in the
plane. Taking J, /ks = 10 K, J2/ks =0 K, and
J'/ks =0.5 K, we have observed that the system be-
comes very rigid: Quite high (low) values of h in rising
(decreasing) field runs are needed to induce the
antiferromagnetic-saturated paramagnetic transition and
Neel temperature was found to be T~=54 K. So it is
clear that this interaction, though small compared to the
first-neighbor interaction, introduces some degree of "in-
trinsic instability" to the system, which is essential to
reproduce the actual critical behavior of FeC12.
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FICx. 4. (a) Phase diagram for a 18X18X12 lattice with
J)/k~=10 K, J2/k~= —1.5 K, and J'/kg= —0.5 K. (b)
Phase diagram for a 18X 18 X 12 lattice with J& /k& = 10 K,
J2/k& = —1.5 K, and J'/k~ = —0. 107 K. At low T, the two
branches correspond to, o rising field data, CI decreasing field
data. The dashed line shows the region of continuous phase
transitions. h, (0) is the exact value of the threshold field at
T =0 K for the ferro-antiferroInagnetic transition. AF antifer-
romagnetic phase, SP saturated paramagnetic (ferromagnetic)
phase, P paramagnetic phase. T and h are both in units of K.

We have performed a Monte Carlo study of phase tran-
sition in a quite realistic model of FeC12, taking into con-
sideration some of its outstanding features that had not
been considered in previous theoretical studies: a stack-
ing of triangular lattice planes, coupled antiferromagneti-
cally, with competing interactions in the plane (one of
them being frustrated in this lattice) and superexchange
path for the antiferromagnetic coupling between neigh-
boring planes.

We have determined qualitatively the phase diagram
and we have found a crossover between a region of
second-order phase transitions taking place at low h and
high T and another one where the transitions are of first
order at high h and low T; evidences confirming this be-
havior have been observed in all the studied physical
quantities. The relative width of the first-order region is
found to be T, /T~ =O. 87, in quantitative agreement with
previous experimental results.

In the first-order region, we have clearly found hys-
teresis, which is in contradiction with Jacobs and
Lawrence, ' who have only found hysteresis in pulsed field
experiments, and in slight agreement with Carrara who
found a small amount of it in steady field experiments.
This discrepancy can be explained by the fact that we
considered an Ising model, which is known to show
larger hysteresis effects than, for instance, a continuous
spin model. '

We have also found that, when considering the actual
magnetic structure of FeC12, the presence of an antiferro-
magnetic and frustrated second-neighbor in-plane in-
teraction is essential to reproduce the behavior of this
system.

The results of this work will serve as a solid basis to
understand diluted systems like Fe C12Mg, „. Such sys-
tems (diluted anisotropic antiferromagnet in a field) are
realization of random-field systems. '

Some experimental studies' '' ' and simple theoreti-
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cal models have been performed on systems of this
kind, but the results obtained in this work lead us to be-
lieve that considering a frustrated second-neighbor com-
peting interaction as well as a bigger number of interact-
ing spins along the c axis will be of capital importance
once dilution is considered.
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