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Stability of multipolaron matter
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The phase diagram for multipolaron formation in two and three dimensions is obtained in the
strong-coupling limit. Results are presented for the multipolaron energy, mass, radius, and number
of virtual phonons surrounding the multipolaron.

Recently there is renewed interest in strong electron-
phonon coupling problems. This is mainly fueled by (i)
the discovery of the high-2; superconductors, which are
oxides and highly polar, and (ii) problems of excitation
transfer by electrons2 in, e.g. , polymers, polar liquids,
ionic conductors, etc. Previously we investigated the
formation of bipolarons, which is one of the candidates5 6

which may be responsible for superconductivity in these
materials. In the present paper we extend our previous
analysis to the study of the formation of multipolarons.
In view of the inherent complexity of this problem we
limit ourselves for the moment to the strong-coupling
case (see, e.g. , Refs. 7—9). Related to the present problem
we should mention the paper by Degani and Hipolito,
who investigated the formation of dimples consisting of
multielectrons above the liquid helium film. The latter
problem is analogous to a two-dimensional acoustical po-
laron problem while in the present work we will study
the two- and three-dimensional optical Prohlich polaron.

In a recent paperis a system of n charged spinless
distinguishable particles interacting with a quantized
phonon field was studied. Such a system is described
by the generalized Frohlich Hamiltonian:
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where r and p are, respectively, the coordinate and the
momentum of the jth particle, Gk is the amplitude of
the phonon mode with momentum k and energy n&k,
and &(r) = U/r is the Coulomb repulsion potential. A
similar Hamiltonian was studied in Refs. 13 and 14. For
a Frohlich optical polaron we have
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are the variational parameters. The varia-

tional calculations give us in the strong-coupling limitE„4 3/2 1 + (n —1)QF„
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where V is the volume of the system and a is the dimen-
sionless coupling constant
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Here e is the electron charge, e and es are the
high-frequency and static dielectrical constants, respec-
tively. In the framework of a Feynman-type path-integral
method (but with a more simple trial-action) the effec-
tive mass M„and an upper bound to the ground-state
energy E„ofa system of n polarons bound to each other,
were obtained in Ref. 12:
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which is still valid for the present n-polaron problem.
With this formula we obtain from Eqs. (7) and (8)
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where the average number of phonons N„ is scaled by
n times the single-polaron expression N1 in the strong-
coupling limit.

Applying the Feynman-Hellmann theorem an approx-
imate expression for the multipolaron radius R„can be
derived. Differentiation of Eqs. (7)—(9) with respect to
U leads to
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where B1 is the single-polaron radius
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Note that this definition is equivalent to

2 ~ 1

n(n —3.)
+ (r, —r, ~)

(14)

Another possible definition of the multipolaron radius

results in the same Eq. (12) but with a slightly different
expression for the single-polaron radius

Here the n-polaron energy E„and mass M„are scaled
by n times the single polaron energy Eq and mass Mq in
the strong-coupling limit. The quantity F„ in Eqs. (7),
which depends on the number of particles in the system,
serves as a variational parameter and follows from

s (1 —F )'
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where (,
' is the ratio of the characteristic Coulomb and

polaron energies:
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Note that a solution of Eq. (8) exists when ( & ( "z)s
and under this condition the energy of a n-polaron state
becomes negative.

Following Ref. 15 the average number of virtual
phonons can be obtained from the ground-state energy
E as
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In Ref. 12 it was shown that such a n dependence of
the energy E„appears not only in a variational upper
estimate, but also in a lower bound to the ground-state
energy as well. It implies that a multipolaron system, in
the absence of Coulomb repulsion, is unstable: polarons
collapse into macroscopic clusters as was already noted in
Ref. 3. Evidently, this is true for distinguishable particles
but the situation will be completely different when Fermi
statistics are taken into account. When the Coulomb re-
pulsion is included the multipolaron system can be sta-
bilized even in the boson case, as we shall demonstrate
in the following. In real systems the electrons repel each
other through the Coulomb potential V(r) = U/r with

2

U (18)
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and Eq. (9) requires the form

1
(19)

(1 —rj)'
where g = e~/eo is the conventional notation for the ra-
tio of the high- to zero-frequency dielectrical constants.
Equation (19) implies that the physical region is re-
stricted to ( ) 1, or equivalently U & o, (2h w«/m) ~

In Fig. 1 we show (a) the multipolaron ground-state
energy per electron in units of her«, (b) the multipo-
laron effective mass per electron in units of Mq, (c) the
multipolaron radius in units of Rq, and (d) the number
of virtual phonons per electron in units of N1, as a func-
tion of the repulsion for a. = 10 and different numbers
of electrons in the multipolaron state: n = 1 (polaron),
2 (bipolaron), 3, 4, . . . , 10. A multipolaron with n elec-
trons will be stable if its energy is less than the sum of
the energies of any possible combination of multipolarons
consisting of a smaller number of particles

m
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where

n&2, me[2, n], n, c[l,n], and ) n;=n. (21)
2=1

Otherwise the n-polaron state will decompose into two
or more separate smaller multipolarons. These numerical
results were obtained directly from Eqs. (4)—(6) without
using the asymptotic strong-coupling limit. The corre-
sponding phase diagram is shown in Fig. 2.

When the system consists of two polarons (i.e. , n = 2)
we found that in the present approximation a bipolaron
could exist if ( & 8, namely its energy is negative and its
radius is finite. But this state is a metastable one; only

which is the strong-coupling limit within the Feynman
approximation. The distinction between the above two
definitions of polaron radii was discussed in Ref. 16.

Neglecting the Coulomb repulsion (( = 0, F„=1), we
readily obtain

(17)
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FIG. 1. Multipolaron ground-state energy per electron (a) in units of br'er, o as a function of the repulsion for n = 10. The
effective mass per electron relative to the one-polaron mass (b), radius relative to one polaron radius (c), and the number of
virtual phonons per electron relative to that of one polaron (d).

at I,
" ( (2 = 1.1778 the bipolaron energy becomes lower

than the total energy of two separate polarons: for g = I,'2
E'q ———1 and this value decreases to E'q ———1.148 at the
limiting point ( = l. At the critical point ( = I,"2 the
bipolaron mass and the average number of phonons per
particle jump from Ms = 1 and IVY = 1, for two separate
polarons, to JH2 = 1.72 and JV2 ——1.90, respectively. At
the limiting point ( = 1 these quantities reach the values
Ms = 2.17 and ldll = 2.06. The average separation of
two independent polarons is infinity, but in the bipolaron
state 'R2 = 1.20 at ( = (2 and F2 ——1.10 at ( = 1.

For n = 4 we note the following peculiarity: for any
value of ( the state of 3-polarons together with a separate
single polaron is energetically less favorable than a state
with two bipolarons or a bound state of 4-polarons.

Now we consider the important case of very many po-
larons in a crystal (i.e. , n &) 1). In order to find the
critical points (I, between the phases of (k —1)-polarons
and Is..-polarons one has to compare their energies per par-
ticle, that is to solve Eqs. (8) for n = k —1 and n = k
at the same value g = gI, and the equation ZA;

The numerical data for the first five critical points are
presented in Table I.

In the limit of large A: values one obtains

(=1+ — +Ol—3 1 (1&
2 ks~2 (k2) (22)

and the formation of k-polarons is only possible in a nar-
row interval near the limiting point ( = 1. The polaron
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FIG. 2. Phase diagram for a finite number of electrons
2 2inside the multipolaron as a function of g = U /2n for n =

10. n' * (N$ indicates that n' multipolarons consisting each
of N electrons are stable.
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TABLE I. Polaron characteristics at the critical points gg .

1.178
1.100
1.068
1.051
1.040

-1.00
-1.06
-1.12
-1.16
-1.20

1.00
1.90
2.95
4.11
5.37

1.72
2.71
3.85
5.09
6.41

1.00
1.97
2.98
4.04
5.12

1.90
2.90
3.95
5.03
6.14

1.00
1.16
1.11
1.08
1.04

1.20
1.14
1.10
1.06
1.03
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characteristics at the limiting point ( = 1 are given in
Table II for different numbers of electrons in the multi-
polaron cluster.

In the large n limit we obtain the following expressions:
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It is interesting to note that the binding energy per
particle remains finite in the n —+ oo limit even at the
limiting point ( = 1. Also the radius of such a multi-
polaron is finite in this limit. Both are a consequence
of the fact that the Coulomb repulsion prevents the col-
lapse of the multipolaron. But the mass and the average
numbers of phonons per particle increase linearly with
n. This implies that the multipolaron tends to be more
localized with increasing n. It is interesting to note that
the value of the multipolaron mass per virtuaL phonon is
finite at large n

M„W„Mi 2m~
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All the above expressions were derived for bulk [three-
dimensional (SD)j polarons. In Refs. 4 and 17 it was
shown that within the Feynman-type approximation
there exists a simple relation between polaron charac-
teristics in two and three dimensions: the sealing

TABLE II. Polaron characteristics at the limiting point
(=1.

-1.148
-1.241
-1.308
-1.361
-1.404

2.170
3.518
4.997
6.581
8.252

2.055
3.163
4.308
5.479
6.673

1.103
1.041
1.000
0.972
0.949

and all the formulas for the relative multipolaron char-
acteristics (8„,M„,JV„, 'R„) which were referred to the
single-polaron results will remain the same. As a con-
sequence, the 3D stability analysis also applies in 2D
and the ranges of ( values, where the different multi-
polaron phases exist, are the same. This is a result of
the strong-coupling limit considered in the present ap-
proximation. Please note that in the figures we took the
repulsion U dirnensionless while above it has dimensions
of energy/length. As a consequence the numerical results
in the figures for U/cr are the identical in 2D and 3D.

To study the intermediate coupling region we use Eqs.
(4)—(6). Our results are summarized in Figs. 3(a) and
3(b), which represent the most stable multipolaron, i.e. ,
the one with the lowest energy per electron (E„/n), for a
given value of the coupling constant o. versus the scaled
repulsion (. It is only in the limit of an infinite number
of electrons that all types of multipolarons (n = 1, 2, . . .)
appear. If the total number of electrons is finite [e.g. ,
n = 24 in Fig. 3(a)j not all combinations are possi-
ble which are compatible with our example of n = 4 in
the strong-coupling regime. From Fig. 3(b) it is seen
that the system has a tendency to allow for multipo-
larons which are the most stable in the infinite-number
limit with the supplementary condition that the quotient

converts the SD-polaron energy and mass into that of a
2D polaron. Such a scaling infIuences only the properties
of a single polaron

100 -1.940 245.053 134.819 0.745
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