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Vacancy-driven ordering in a two-dimensional binary alloy
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Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Is-
ing model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo
techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed.
Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usu-
al Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacan-
cy trapping in the ordered regions. By measuring local order parameters we show that the vacancy
prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic
jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism
that causes jumps to be homogeneously distributed on the lattice.

I. INTRODUCTION

Binary alloys are known to exhibit a rich variety of
phases as a function of temperature and concentration.
Some of the phase-transition lines can be understood as
order-disorder phase transitions between a high-
temperature phase in which the species are randomly dis-
tributed on the lattice sites and a low-temperature phase
in which the symmetry is broken and two or more sublat-
tices have different concentration of the species. Al-
though their equilibrium phase diagrams begin to be well
understood from first-principles theories, ' the dynamics
of the relaxation to equilibrium is still under discussion.
A typical experiment consists in quenching a binary alloy
from the high-temperature disordered state to a tempera-
ture T well below the order-disorder phase transition.
The long-range order develops by the nucleation and
growth (or spinodal ordering) of ordered domains. This
represents an example of a domain growth process, that
have been studied intensively for the last two decades.
Such processes are very common in nature and appear in
a wide variety of systems. Other typical examples are
crystal growth, phase separation, magnetic domain
growth, and so on. These kind of problems are not only
of interest in the field of materials science but represent
as well a fundamental problem in nonequilibrium statisti-
cal mechanics. Here, the main interest has been to classi-
fy in few classes the growth processes depending on very
general features like the existence of conservation laws.
This possibility seems appropriate in the late stages of
growth when the domain sizes are larger than the micro-
scopic lengths in the system. Hence, by analogy with
critical phenomena, where the order parameter correla-
tion length is much larger than the microscopic lengths,
one expects as a result, power laws, scaling and universal-
ity. In particular, the domain size should increase as
L ( t ) —t" and the structure factor scale as

S(k, t)=[L(t)]"S[kl.(t)] .

d being the dimensionality and S the dynamical scaling
function. For systems with nonconserved order parame-
ter, like in ordering binary alloys, a dynamical exponent
x = 1/2 is proposed (Allen-Cahn law ). This result has
been confirmed by Monte Carlo (MC) simulations for
pure systems. However the exponent seems to be sensi-
tive to the existence of diffusing impurities, quenched
(immobile) and annealed (mobile) disorder or self-
pinned effects. Experimentally, measurements are
difFicult to perform and interpret. A number of experi-
ments are in agreement with x = 1/2. Nevertheless, im-
purities' or nonstoichiometry" may reduce the values of
x. The existence of large universality classes is nowadays
controversial.

Monte Carlo simulation studies of ordering kinetics in
AB binary systems with conserved density frequently use
the unrealistic Kawasaki dynamics, i.e., the elementary
movements consist in neighbor atom exchanges. Actual-
ly, it is known that in metallic alloys atomic diffusion
mainly proceeds via vacancies. ' This fact was already
taken into account by Flynn and McManus' who imple-
mented the vacancy mechanism in the first MC simula-
tions of bcc binary alloys. Details of vacancy motion in
alloys were studied using MC simulations by Beeler and
Delaney' who showed that for low vacancy concentra-
tions, the vacancy random walk concentrates in the or-
dered regions. Recently Fultz' indicate that vacancy
trapping increases when ordering develops, and that low
lattice coordination numbers favors trapping at the anti-
phase domain boundaries.

The problem of domain growth in systems with vacan-
cies has been considered by Mouritsen and Shah. They
have performed simulation studies of ordering with
mixed spin-Aip and vacancy mechanism showing a cross-
over from a x = I/2 to a slower logarithmic law due to
annealed vacancies. Actually this behavior should be as-
sociated with the fact that vacancies are only allowed to
jump to nearest-neighbor (NN) positions. Yaldram and
Binder' have considered the problem of phase separation
of a 2D binary alloy (conserved order parameter) with a
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II. MODEL AND MONTE CARLO
SIMULATION DETAILS

We have used the standard lattice binary mixture mod-
el for the description of a A B, binary alloy. Let us
consider a 2D square lattice of dimensions I XI.
with periodic boundary conditions. On each site
Ci =1, . . . , N =L ] we define a variable S; taking values
1 or —1 if that site is occupied by an atom 3 or B, re-
spectively. The number X„(Ns) of A (B) particles is
kept constant. We include a single vacancy (S, =0) in
the system, substituting an A atom. The concentration
of 3 atoms is then p=N~/N=0. 5 —I. . For the sizes
we have considered (L =30, 50, 100,200, 500) the ex-
istence of a single vacancy does not affect the equilibrium
properties compared to the perfect system. The case of
concentrations different from p =0.5 might be quite
different from the present one, and will be studied in the
future. The interaction between the A and B atoms, re-
sponsible for the ordering phenomena, is modeled by the
nn antiferromagnetic Ising model Hamiltonian:

H*=H/J = g S;S (2)

where (NN) means sum over all the NN pairs and J is a
parameter for the interaction which is taken as unit of en-

fixed small vacancy concentration. The vacancies are al-
lowed to jump to the different nn sites with different rates
for 2 and B exchanges. They obtain a behavior similar
to the behavior corresponding to the direct AB exchange
mechanism model.

In a recent paper' we have reexamined the problem of
ordering kinetics in a two-dimensional (2D) binary alloy
with conserved density. The dynamics is introduced by a
single vacancy that performs jumps to the 4 NN and the
4 next-nearest-neighbors (NNN) with equal probability.
Although the nn jumps are responsible for the ordering,
the NNN jumps are very important because they enable
the movement of the vacancy in the ordered regions with
no energy cost, preventing trapping phenomena. The
main results are (i) after an initial period of domain for-
mation, the growth follows a power law with x =0.77,
clearly faster than x = 1/2, (ii) the fast growth is also de-
duced from finite-size scaling analysis, and (iii) scaling re-
lations for the structure factor [Eq. (1)] are well satisfied
during the domain growth period.

In this paper we analyze carefully the behavior of the
vacancy path in the system during the domain growth for
different probability rates between NN and NNN jumps.
We discuss the possibility that non-uniform excitations,
arising from the interaction with a heat bath and driving
the system to equilibrium, may strongly modify the
universal laws commented above. We also discuss the re-
lation of these results with experiments.

The paper is organized as follows. In Sec. II we
present the details of the model and the simulation. In
Sec. III, we present the MC results. In Sec. IV we discuss
the results and analyze the reasons for the observed time
evolution of the system in detail. Finally, in Sec. V we
conclude.
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ergy. We also define a dimensionless scale of temperature
in the usual way: T*=k&T/J. The ground state of the
system can be described as two alternating sublattices
filled by 3 and B atoms in a checkerboard way. We call
the two sublattices + and —and we consistently define
the sign of a site i [sgn(i) ] as + 1 or —1 depending on the
sublattice to which it belongs. This ground state struc-
ture is N times degenerated since + and —sublattices
can be exchanged, and the vacancy is also free to stay in
any of the N/2 sites of the sublattice occupied by the 3
atoms. At finite temperatures this model exhibits an
Ising-like order-disorder phase transition at practically
the same temperature as the standard 2D Ising model.

Standard MC simulations have been performed. In-
stead of the usual Kawasaki dynamics exchanging A and
B atoms we have considered the following dynamics (va-
cancy mechanism): Only exchanges between the vacancy
and the 8 NN and NNN atoms are allowed. During each
MC step we propose N vacancy jumps to the NN or
NNN positions. The probability of proposing a jump to
NN is S' and to NNN is 1 —8'. The four NN (NNN)
have equal probability to be proposed as new positions
for the vacancy. The proposed jump is accepted or not
according to the usual Metropolis probability:

—AH /T*
(3)

where AH* is the energy change corresponding to the
proposed jump. Since the proposed movements are re-
versible and the acceptation probability is the standard
Metropolis, detailed balance is satisfied for each individu-
al movement. We have not considered the existence of
additional energy barriers that could modify the dynamic
behavior of the system.

We have performed quenches from initially disordered
states to a temperature T*=1.0, well below the order-
disorder phase transition (T,*=2.27). Usually runs of
3000 MCS steps are enough to equilibrate the system
in the L =500 case. For each lattice size
(L =30,50, 100,200, 500) averages over 50, 30, 20, 15,
and 8 different runs have been, respectively, taken. We
have excluded the cases that lead to final "slab"
configurations, corresponding to two competing domains
separated by a Aat interface, and which are characterized
by a very small value of the long-range order parameter
defined below in Eq. (4).

During the simulation, at the end of each MC step, we
have monitored the following quantities: the energy
[E(t)], the acceptance ratio of the proposed jumps to
NN [PI(t)] and to NNN [$2(t)], the long-range order pa-
rameter m (t) defined as
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where +5~s means a sum over all the sites inside a gener-
ic square subblock of size 5X5, +5~~ means the sum
over all the sites inside a 5X5 subblock centered on the
vacancy position, and the angular brackets mean an aver-
age over all the possible nonoverlapping subblocks in the
L XL lattice. The first local-order parameter is a mea-
sure of the short-range order in the lattice (it reaches a
value = 1 when the size of the correlations exceeds a 5 X 5
subblock), and the second one is the same measure but re-
stricted to a local environment around the vacancy.

0

III. MONTE CARLO RESULTS

The first surprising result, completely different from
the simulations using standard Kawasaki dynamics, is the
fast growth behavior. A log-log plot of the energy evolu-
tion versus MC steps, for different lattice sizes and
8'=0.5, is presented in Fig. 1. The final equilibrium en-

ergy E+ has been evaluated using long enough simula-
tions (10 MCS), and does not differ from the one expect-
ed for a system with no vacancy. In a previous paper'
we have also analyzed the growth of the domain sizes
measuring the structure factor S(k, t). For all lattice
sizes the growth is faster than the Allen-Cahn law. An
estimation of the exponent gives x =0.77. For the small
systems the exponent is even bigger.

In Fig. 2 we present the same log-log figure for the case
of L =500 and different values of the probability 8
( W=0. 3, 0.5, 0.7, 0.9, and 1.0). As can be seen, the fast
growth behavior is independent of the value of 8' except
for the case of W=1.0 (NN jumps only) for which the
known logarithmic behavior E(t)-log(t) is found. This
is demonstrated in the inset plot where the curve corre-
sponding to the case 8'= 1.0 is shown in semilogarithmic
scales. For this case the change in the dynamics is very
dramatic. In the ordered regions a jump of the vacancy
to a NN position is accepted with a probability

p =e =2 X 10 while a jump to a NNN position is

-iQ
0

2 4 6 6
ln t

accepted with p =1. Therefore it is very important to al-
low jumps to NNN (very few are enough) in order to
prevent the logarithmic growth.

Figure 3 shows the evolution of the acceptance ratios
of the proposed jumps to NN and NNN ((t, and p2)
defined in the previous section. As can be seen the behav-
ior at long times is the same independent of O'. As the
lattice orders, more NNN jumps are accepted and less
NN jumps are possible.

It should be noticed that the NNN jumps in the or-

FIG. 2. Log-log plot of the excess energy per particle vs time
for different values of the probability 8' of proposing nn jumps
in front of nnn. The curves are sequentially shifted one vertical
unit in order to clarify the picture. The dashed line represents
the t ' behavior. The inset shows the curve with 8'=1 (nn

jumps only) in semilog scales.
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FIG. 1. Log-log plot of the excess energy per particle vs time
for different system sizes. The curves are sequentially shifted
one vertical unit in order to clarify the picture. The dashed line
represents the t ' behavior.

FIG. 3. Time evolution of the acceptation ratio of the vacan-

cy jumps to NNN Pz (curves above) and NN P, (curves below},
for different values of the parameter 8'.
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dered domains cost no energy at all, but only the NN
jumps are really contributing to increase the order in the
system since they exchange atoms from one sublattice to
the other. Therefore the fast ordering dynamics is only
due to nn jumps, and the role played by the NNN is to
improve the mobility of the vacancy inside the ordered
regions, preventing the trapping phenomena (logarithmic
growth) and helping the vacancy to find the disordered
regions (domain boundaries) where it operates increasing
the degree of order in the system.

The difference in the initial time behavior can also be
understood from the above considerations. In the initial
fully disordered configuration one has P&=$2, but since
only nn jumps increase order, the higher W the faster the
lattice orders in the first MC step. This explains the
difference between P, and P2 after the first MC step ob-
served for high 8' values. Also the faster the system or-
ders in the first MC step, the smaller is the value of the
acceptation ratio P& for the NN jumps, and correspond-
ingly the highest is the acceptation ratio Pz for the NNN
jumps. A direct observation of the configuration evolu-
tion in the case of 8'=0.9 shows that after the first MC
steps, the system has formed large ordered domains and
the vacancy travels fast through them, looking for the an-
tiphase boundaries. The above picture is also demon-
strated in Fig. 4 where we plot the local order parameter
averaged over the whole system (m, ) against the local or-
der parameter around the vacancy (m, ), as defined in the
previous section, for the case 8'=0. 5 and L =500. For
a Kawasaki exchange mechanism the averaged local or-
der parameter and the local order parameter around the
position where exchanges are performed are equal, since
jumps are proposed in a homogeneous way. In our case,
we can clearly distinguish two regions. In the initial
stages (less than 1 MC step) the order around the vacancy

is higher than in the system since only the vacancy can
develop order. The data corresponding to this region
shows a higher dispersion since it corresponds to aver-
ages over short intervals inside the first MC step. As
soon as the vacancy has performed 3 or 4 MC steps, the
figure shows that the order around the vacancy is smaller
than the average order in the system. This is due to the
fact that the vacancy spends more time in the disordered
domain boundaries than in the ordered domains. By this
method the excitations in the system (proposed jumps)
are naturally concentrated in the disordered regions,
which accelerates the growth law compared to the case in
which the excitations are performed homogeneously on
the lattice.

IV. COMPARISON WITH
THE EXCHANGE MECHANISM

The results presented above, suggest that the nonho-
mogeneity of the excitations in the system is responsible
for the observed fast behavior. In a general way, when
the system exhibits dynamical scaling, it has been
shown' that the exponent x is related to the way the in-
terface velocity changes under uniform magnification of
the linear dimensions of the system. In particular if the
velocity scales as

v (AL) =A~u (L),
where k is the magnification factor, then it is obtained
that x =1/(1 —P). This argument can be used in our
case, because previous studies of the structure factor
S(k, t) (Ref. 17) have clearly shown that scaling [Eq. (1)j
is present after an initial transient period.

Let us now consider a system of linear dimension L
with an interface of length P and study how the velocity
of the interface changes when the system is magnified a
factor A, . If the excitations in the system are homogene-
ous, like in the case of usual exchange dynamics (no
rnatter if the exchanges are proposed randomly or
sequentially on the lattice), in each unit of time (1 MC
step) every site in the interface is, in average, visited once,
so the interfaces advance the same distance independent
of A. . Thus, in the system of dimension XL the velocity
u (kL) changes as:

u (AL) =A, 'v (L)

0.40
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giving x = 1/2, as deduced from a deterministic Langevin
equation assuming a Ginzburg-Landau free energy func-
tional. Consider now the extreme case in which all exci-
tations are concentrated on the P interface sites. During
a unit of time (1 MC step) the sites of the interface are
visited L /P times. Then the interface advance per unit
of time is proportional to L, giving:

u (AL) = v (L)

FIG. 4. Local order parameter around the vacancy position
m, vs the average local order parameter m, . The straight line
corresponds to the expected behavior if the vacancy homogene-
ously sweeps the lattice. The arrows on top indicate the corre-
sponding time evolution in MC steps.

which leads to a maximum dynamical exponent x = 1. In
our case the vacancy spends most of the time on the in-
terface but sometimes it travels across ordered domains,
slowing the growth. This effect might be more important
the larger the system size is, justifying the possible de-
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crease of the exponent x when I. increases and p de-
creases (see Fig. 1).

With the above considerations in mind, we compare
the results obtained with the exchange mechanism with
those corresponding to the vacancy mechanism. In both
cases, during the scaling regime, only the NN jumps (or
exchanges) are responsible for ordering.

For the case of exchanges, the NN jumps are practical-
ly only accepted when the exchanges are proposed on the
interface, so the acceptation ratio P& is proportional to
the length of the interfaces, and consequently it goes like
P",(t)-t ' . For the extreme case in which the excita-
tions are only proposed on the interface, P, would be con-
stant until the interface disappears. In our case of vacan-
cy mechanism (nonhomogeneous) an intermediate behav-
ior is expected. Figure 5 shows the evolution of the nn
acceptation ratio P, for the case of exchanges (P, ) and
vacancy (P& ) mechanism for a system with L = 100.
is compared with a phenomenological linear fit. The in-
set shows P, in logarithmic scales compared with a t
law.

The change in the growth law from x = 1/2 to
x =0.77 can be understood as a change of time scale be-
tween the homogeneous and nonhomogeneous case. The
corresponding time scales ~" and ~" are proportional to
the inverse of the acceptation ratios (P„P","). The ratio
between the two time scales is then given by

'~
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C' ~
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FIG. 6. (a) Ratio between the time scales corresponding to
the homogeneous case (exchange mechanism) and the nonhomo-
geneous case (vacancy mechanism) obtained from data in Fig. 5.
The continuous line is the ratio between the two fits also in Fig.
5. (b) Corrected time scale vs noncorrected time scale in log-log
scales.

r (t)
1th(t) p/l(t)
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Figure 6(a) shows C(t) calculated from the MC results,
together with the theoretical behavior obtained from the

ratio between the two fitted behaviors (linear and r '
)

in Fig. 5. The time correction that should be applied to
the nonhomogeneous case in order to recover the horno-
geneous behavior is given by
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which is shown in Fig. 6(b). Figure 7 shows the behavior
of E(t) (in a log-log scale) for the vacancy mechanism be-
fore (curve 1) and after (curve 3) the time correction, to-
gether with the results corresponding to the exchange
mechanism (curve 2). An exponent x =0.46+0.03 is ob-
tained close to the x =1/2 when the nonhomogeneity of
the excitations is corrected. Small differences could be
associated with the existence of a small fraction of NNN
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FIG. 5. Comparison of the acceptation ratio to nn positions

P, vs time, obtained with vacancy mechanism and with the usu-
al exchange mechanism. The straight line corresponds to a phe-
nomenological linear fit. The inset shows the case correspond-
ing to exchange mechanism in log-log plot, together with the
t ' behavior. These results correspond to a system with
L =100.
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FIG. 7. Log-log plot of the excess energy per particle vs time
computed using the vacancy mechanism (1) and the exchange
mechanism (2). Curve (3) corresponds to curve (1) after apply-
ing the time correction plotted in Fig. 6(b).
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jumps on the interface contributing to local ordering.
This result justifies the assumption that the nn jumps in
disordered regions (interfaces) are the main ordering
mechanism and are responsible for the fast growth.

Most of the -simulation results existing in the literature
are performed with the standard homogeneous exchange
mechanism. In fact, nonhomogeneous methods (like the
n-fold way' ) have been used as artifacts to accelerate
MC simulations but the growth results have always been
"corrected" for the nonhomogeneity. Here we propose
that such nonhomogeneities could naturally appear in
systems where ordering is controlled by vacancies and
where no other slowing mechanism appear. Binder has
recently used the vacancy mechanism to simulate a case
of phase separation (conserved order parameter). In that
case no difference is found between the vacancy mecha-
nism and the usual exchange mechanism, since the
growth is controlled by the particle diffusion giving
x =1/3. Also very recently, simulations of a model for
order-disorder phase transitions with strain induced cou-
pling leads to a growth law faster than the usual Allen-
Cahn law. It is dificult to see if in that case the excita-
tions are homogeneous or not, but could be that the ex-
istence of strains produces a nonhomogeneous behavior
of the system in agreement with our results.

To our knowledge no experimental measurements re-
porting such fast growth law in the case of ordering
binary alloys exist. Different reasons for that can be ar-
gued. Firstly most experiments are performed on 3D sys-
tems. The behavior of the vacancy walk in 3D is different
from the 2D case and this could modify the 3D growth
law. Future simulation studies for the 3D case will clari-
fy this point. Secondly, the presented results could
change due to vacancy-vacancy correlations for larger va-
cancy concentration. Also, in real systems, the effective
vacancy concentration could change during growth
which will also infIuence the time scale. Finally, the ex-

istence of additional energy barriers other than those
coming from the local order, could slow down the move-
ment of the vacancy and give a smaller exponent x.

Nevertheless, in the light of the present results, we
strongly encourage more experimental work specially
designed to reveal this vacancy driven mechanism. Spe-
cially, stoichiometric binary alloy films with a well con-
trolled vacancy concentration could be good candidates
to gain understanding in the present problem.

V. CONCLUSIONS

We have simulated the domain growth process in a
binary alloy quenched below its order-disorder phase
transition. Instead of the usual pair exchange dynamics
we have used a single vacancy dynamics. Trapping phe-
nomena has been prevented by allowing vacancy jumps
not only to next but also to next-nearest neighbors. This
dynamics models an interaction between a heat bath and
the system which is established only through the vacan-
cy. For energy reasons the vacancy prefers to stay in the
disordered regions. Then, the excitations in the system
(vacancy jumps) are no longer homogeneous, but natural-
ly concentrate in the antiphase boundaries. This ac-
celerates the ordering process giving rise to a growth ex-
ponent larger than 1/2. The process is curvature driven
but it cannot be simply described by the usual (Allen-
Cahn model) formalism for a system with nonconserved
ordered parameter and conserved density. A third equa-
tion describing the dependence of the vacancy diffusion
with the local order should be incorporated.
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