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A theory of the quantum Heisenberg spin-glass model with Dzyaloshinskii-Moriya interactions
is presented in external magnetic fields for arbitrary spin. The imaginary-time functional-integral
technique and the replica method are used. The model is investigated numerically within the static
approximation. The smallest eigenvalue of the Hessian matrix is obtained by a generalized Almeida-
Thouless method and the stability conditions are found, which give the upper and lower critical
lines, respectively. Anisotropy-temperature phase diagrams are evaluated for different spin numbers
in the case of no applied field. Thermodynamic functions, such as the entropy and the specific heat,
are studied. Additionally, we can show that the local susceptibilities for different spin numbers are
stabilized on a plateau at low temperatures by a small amount of the anisotropy.

I. INTRODUCTION

In recent years, considerable research has been de-
voted to anisotropic spin-glass systems. Experimentally,
macroscopic anisotropy is found in the hysteresis of the
remanent magnetization in a lot of spin-glass systems.!:?
The anisotropy is found to behave either uniaxially or
unidirectionally. Spin glasses with uniaxial anisotropy
behave either Ising-like or Heisenberg-like, depending on
the magnitude of the single-spin anisotropy energy. This
type of anisotropy has been the subject of some recent
theoretical investigations.3~7

Additionally, unidirectional anisotropy has been found
in otherwise isotropic spin glasses due to nonmagnetic
impurities.® This kind of anisotropy can be explained by
Dzyaloshinskii-Moriya® (DM) interactions in addition to
the usual isotropic exchange interactions. The DM inter-
action has the form

Hpym = ZD“ - (Si x S;) (1)
ij
with the vector coupling D;; = —D;; between spins on

lattice sites ¢ and j. For example, in CuMn a conduc-
tion electron of the host (Cu) is first scattered by a Mn
spin, then by a nonmagnetic impurity via spin-orbit in-
teraction, and finally by a second Mn spin. Specifically,
this anisotropy does not depend on the crystal directions,
but on the field-induced remanent magnetization. As has
been demonstrated recently,! in a magnetic field a strong
crossover from an Ising-type or de Almeida—Thouless
(AT) -type!! to a Heisenberg or Gabay-Toulouse (GT)
-type!? transition is observed due to DM interactions.
Besides the experimental work, numerous theoreti-
cal studies have been devoted to spin-glass systems
with DM interactions. Bray and Moore!'® considered a
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classical Heisenberg spin-glass model with dipolar and
DM interactions and pointed out that the model ex-
hibits the characteristic behavior of an Ising spin glass.
Fischer!4 investigated a classical soft spin-glass model
with DM anisotropy within the mean-field approxima-
tion and found the crossover behavior of the upper crit-
ical line. Dasgupta and Yao!® studied the nature of the
macroscopic anisotropy in a classical Ruderman-Kittel-
Kasuya-Yosida (RKKY) spin glass with weak DM inter-
actions by a Monte Carlo simulation. Their results repro-
duced several features observed in hysteresis and torque
experiments qualitatively. Subsequently, Goldbart!® in-
vestigated a classical vector spin glass with quenched
random DM interactions and uniaxial anisotropy within
the replica theory. He predicted spin-glass order below
a critical temperature and established Parisi’s!? replica
symmetry-breaking scheme. In the limit of infinite
anisotropy its thermodynamic behavior becomes that of
the Ising spin glass.

Since quantum fluctuations become important at low
temperatures, it is desirable to extend these investiga-
tions to quantum models. Quantum spin glasses have
been studied for the first time by Sommers!® and by Bray
and Moore!® who deal with an isotropic quantum Heisen-
berg spin glass. The quantum nature of the spins is taken
care of by introducing a local dependence of the dynam-
ical variables on an imaginary time. The static approxi-
mation imposed by these authors is known to give rather
good results at not too low temperatures, and it is applied
to a large number of different spin-glass systems.5:6:20722
Going beyond the static approximation means to take
the time dependence of the dynamic self-interactions into
account explicitly. This is possible only for some basic
quantum spin glasses without an applied field.”23:24

So far the quantum Heisenberg spin glass with DM
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anisotropy has been studied only by Kopeé and Biittner2®
with the help of the thermofield dynamics. They have
calculated numerically field-temperature phase diagrams
and anisotropy-temperature phase diagrams for different
values of the anisotropy and the applied magnetic field,
respectively. These calculations are based on a rather
crude approximation for the time dependence of the rel-
evant Green’s functions. It is therefore of great interest
to study the same model with other methods.

In the present paper we investigate this model within
the static approximation. We introduce time-dependent
operators and the replica method in order to treat the
quantum nature of the spins and the quenched aver-
age, respectively. The self-consistency equations are ob-
tained in the general case. We calculate phase diagrams,
order parameters, local susceptibilities, and thermody-
namic quantities. The results are compared with those
obtained in Ref. 25.

II. MODEL HAMILTONIAN AND REPLICA
METHOD

The Hamilton operator for a Heisenberg spin glass
with Sherrington-Kirkpatrick?® (SK) exchange interac-

—o0

+oo +o00
(Z™)p =/ dJijP(Jij)/ [ oW (D;))
i —o0

1
xTr T exp ﬁ/ d'rz
0

tions and infinite-ranged random Dzyaloshinsky-Moriya
interactions is given by

H=—ZJ,;J'S,;'S_7' _ZD“ . (Si XSj)—Zh'Si,
1j 7] i
(2)

where h denotes an external magnetic field. The sums
extend over all distinct pairs of sites (ij) and the ex-
change interactions J;; and D;; are random parameters
with symmetric Gaussian probability distributions

N 1/2 NJ2
P(Ji;) = (gﬁ) exp (" QJZJ (3)
and
N \*? ND;; - D;;
W(Dy;) = (5;;55) exp (~——2%2—”> S )

The spin operators S; obey the standard spin-
commutation relations. In order to carry out the average
over random bonds we use the replica method, where the
average of the n-time replica partition function Z is given
by

n

> JiiSE(r) - S§(r)
i

a=1

+Y Dy - [Sg(7) x S(7)]

ij

+> h- sg(r)] } : (5)

and where we introduce a formal dependence of the spin operators on the imaginary time 7 in order to treat them as ¢
numbers.'®1® The imaginary time-ordering operator T rearranges the operators in the expansion of the exponential
in Eq. (5). Now, the integrals defining the J and D averages can be performed readily. The n-replica partition
function may be rewritten as the following quadratic form:

1 1 2
(6 /0 dr /0 dr’[(1~d2)zz (stg(ﬂ%(ﬂ))

a pv

(Z")gp =Tx T, exp{

2 2
S (z s;-;,<r>s:i,<r'>)

a#B pv i

A DA EIACH
a i

2
+d® 1 Y se(r)sE ()

a#fB \ in

1
+ﬁ/0 erh~s:-*(r)}, (6)

where we set d = D/J. The variable Sg (7) is a Cartesian component of the operator S¢(7). These terms can be
linearized via a Hubbard-Stratonovich transformation

(Z™ip = DA%(r,T') DR, (r,7') DA (1, 7') DRy (r,7')
o= JT2aes [T orte) [ 11 /1, e
x exp (—NnfSF[R, A, Q,A]), (7
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where in the limit N — oo the functional integrals can be evaluated by the method of steepest descents and the
problem is reduced to a single-site problem. Due to the stationarity of the free energy one finds!®

A"‘ﬁ(r, )= Z ng(f, '),
173
(8)
A%(r,7') = Z R%,(7,7").
7

The free energy and the effective Hamiltonian become

nBFR, Q] = (ﬁ") / dT/ dr’ [Z 3 RS, (7, )RS (7, 7') Puer

a uvop

+ Z Z QE(r, 7)Q%E(r, T’)P,“,,,pjl —InTrT; exp(—BHe[R,Q]), (9)

aF#pB uvop
—-BH(R, Q] = $(8J)? / dr / df[ Ry, (T, 7") PuvopSg (1) S (T')
a pvop
+ 3 Q) PuepSE(r)SE(T) +ﬂ/ LS, (0
(a#B) uvop
with
Puvop = d26,65p + (1 — d®)8,s6,,. (11)

III. THE STATIC APPROXIMATION IN THE REPLICA-SYMMETRIC APPROACH

We consider replica symmetry and the order parameters and self-interactions as independent of the times 7 and 7’.
Additionally, magnetic fields are applied in the z direction only. The order parameters and self-interactions may be
separated now into longitudinal (L) and transverse (T') components by the decomposition

R, =6, [RL(S,,,Z + Rr(1 - 61”)] ,
(12)
Q;w = Ouv [QLéuz + QT(]- - 6#2)] .

After substituting these equations into the free energy [Egs. (9) and (10)], Hubbard-Stratonovich transformations are
applied to linearize the quadratic forms in the effective Hamiltonian. The free-energy density becomes

BFIR.Q| = (ﬁJ) {R} +2(1 +d*)R} + 4d*RLRr — [Q} + 2(1 + d*)Q} + 44°QLQr] } — /Dz InL(z),  (13)
with
L(z) = / Dz Trexp {B8J [a1(z Sz + ySy) + a2(z1S: + ¥1.5y) + a32S; + a4z1S;] + BhS,} (14)
B sinh[(25 + 1)Q(z,21)] _
- [ pu e = [ pmes@ (15)

and

=+/d?Qr + (1 +d?)Qr,
ag = \/dz(RL - QL) + (1 + dz)(RT - QT),
a3 =+/Qr + 2d?Qr,

as =+ Rr — QL + 2d*(Rr — Qr).

(16)
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Throughout we use the abbreviation

+o0 3
/ Dz A(z) = /_ ) @—frsg/—zexp(—qz/Z)A(z). (17)

The function (z,z,) is given by

J
Q(z,2z1) = -ﬁ?\/(alm + a271)? + (a1y + a2y1)? + (asz + asz1 + h/J)2. (18)

The stationarity of the functional F[R, Q] with respect to the spin self-interactions and spin-glass order parameters
gives the following self-consistency equations:

Ry 2d2RT+(ﬁJ)2/L( )/Dzl%(n)[ @R -2+ — (z1~1)]

—d? 1 2d?
Re= Rt s | g [ Pats@ [ (w%+y%—2)+;—i—(z%—1)],
(19)
Q=-20r + o0 [ P2 Dzl“I’s(Q)[ (592 -2+ (2 - 1)
B2 ) L(z) gLt a3t
—ﬁ/Dz [a—%(x +y2-2)+ a—g(z — 1)] In L(z),
d? 1 1+d2 2d?
@r =150+ s | [ )/DZ1<I>S(Q)( LGt -9+ 276 - )
/D < M 2—2)+—(z _1)) lnL(z)]
Now the susceptibility tensors can be determined by
__9*fR,Q]
Xuw == ah oh,
1 1
=W [ oz [L—@ / D5 ()11 ~ 8) = o / D21®5(Q)m / Dzlés(ﬂ)w]
—E/sz,“,(z), (20)

where a, = ay = a2 and a, = a4.
Let us now consider the special case with no applied field . Due to symmetry one finds

Rr=RL=R, Qr=QrL=Q (21)
and the free-energy density [Eq. (14)] becomes

2
BF[R,Q] =3 (%{) (1 + 24%)(R? - @?) - /Dz In L(z). (22)
It is now advantageous to introduce spherical coordinates where  is given by
Q= %—]- a?p? + a2p? + 2a1a2pp1 cos by, (23)
since a1 = a3 and a2 = a4 in this special case h = 0. The corresponding self-consistency equations are
2 * dP 2 —p? 1 * dp ! —p?
R= ep/2——/ ——/ dcos by p? e P1/2 Bg(0)(p? — 3),
3P0+ 2 R-0) Jo L) Jo var ), 4os0e s@er —3)
(24)
2 o0 dp A2
+ P12 p% (3 — p*)In L(p),
Q=R+ srmiramg ), v G- ARiG)

with
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L(p) = dp1/ dcosf; p?e” pl/z‘I’s(Q)

(25)

In the paramagnetic phase the order parameter vanishes. Since a; = 0, €2 becomes independent of #; and the resulting

equation for the self-interaction R reads

2

R= / - = pl /2 25(Q) (o} - 3). (26)

3(BJ)%(1 +2d*)(R - Q)L(p = 0)

IV. STABILITY ANALYSIS AND PHASE
DIAGRAMS

In order to evaluate conditions for the phase bound-
aries we analyze the stability of the replica-symmetric
solution. We set

R =R, +£5,
QP =Qu+nP,

where 4 = x,y,2, R = Ry = Ry, R, = R, Q, =
Qy=Qr,and Q, = QL. Re and Qe (© = L, T) are the
self-consistent solutions within the static approximation.
The fluctuations are assumed to be small. The free en-
ergy F[R, Q] has to be expanded up to the second order
in the fluctuations, where its deviation from the station-
ary value should be positive definite for a stable solution.
It turns out that the structure of the quadratic form is
the one of the corresponding matrix of de Almeida and
Thouless (AT) in their prior work on the stability of the
SK solution.!! Due to the inherent symmetry of the self-
interactions in replica space, only those eigenvalues of the
stability matrix which do not depend on self-interactions
may lead to an instability. In the limit n — 0 there re-
mains the problem of finding the eigenvalues of the ma-
trix

A=P-2Q+R, (28)

(27)

which is a 3 x 3 matrix due to the three spatial compo-
nents, and the matrices P, R, and Q are defined in the
Appendix. The following equation results:

Ay = d*+ (1 - d®)6,
—J2 " + (1 - d%)8,u]

ulyl
x[d? + (1 - )6, ]xE, (29)

with the susceptibility correlation functions

X2 = / Dalxp (2)]2. (30)

Because of rotational symmetry with respect to the z axis
one can express the susceptibility correlation functions in
matrix form as
X%Z X( (2)
x® = X2 2) X(Z) X(2) . (31)
NONOM &

f

The same symmetry argument applies to the matrix .

The condition for the occurrence of an instability is
that the smallest of the eigenvalues k of the matrix A,
defined by

det[A — k1] =0, (32)

vanishes at the critical temperature. The solutions of Eq.
(32) are

k1,2 = (AL + A7 + Agy)
F\/HOL + A + Aay)? + 222, — ALOr + Agy).

(33)
Vanishing of the eigenvalue x; determines the upper crit-
ical line — the so-called Gabay-Toulouse line'? — at

which transverse spin-glass ordering occurs. On the other
hand, the lower critical line resulting from the condition
k2 = 0 — the so-called Almeida-Thouless line!! — de-
scribes the transition to longitudinal spin-glass ordering.
Note that for d = 0 and h = 0 both of the eigenvalues
vanish at the same critical temperature T.

In this paper we mainly consider the case of zero mag-

netic field but nonzero anisotropy d, where X(Z) g? ) =

x® and X(Z;,) = x(mzz). The resulting eigenvalues become

r= (1= 72 + 2@ + 2d2]) (1+ 2d2),
ko= (1 - 720® — x@l1 - &) (1 - &),

In the high-temperature phase the order parameter
and the off-diagonal susceptibilities vanish while the di-
agonal susceptibility is related to the spin self-interaction
by

(34)

X = pBR. (35)
The condition 1 = 0 reduces to
Ro= — 1 (36)

BJVI + 2d2

In the case S = % the self-consistency equation for R
may be calculated analytically. The result is

8
= L . 7
R=1 [1 T IT BT 2d2)R] (37)
Thus the transition temperature is given by
1
ksT. = —=J(1 4 2d?)'/2. 38
sle= =% ( ) (38)

It is enlarged due to anisotropy compared to the pure
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quantum Heisenberg spin glass!® by a factor of (1 +
2d2)'/2, This result agrees with the thermofield calcula-
tions in Ref. 25, but the actual result shows a reduction
of the transition temperature due to quantum fluctua-
tions by a factor of v/3 while the thermofield method did
not. For strong DM interactions (d > 1) the transition
temperature depends linearly on D.

In the opposite limit S > 1 the transition temperature
approaches the classical limit!6

S(S+1)J
kBTc=¥

(1 + 2d2)'/2, (39)

We have solved the self-consistency equations (24) nu-
merically to calculate the upper and lower critical lines
for different spin numbers in the anisotropy-temperature
plane. The results are displayed in Fig. 1. The corre-
sponding classical upper critical line is shown for compar-
ison. As expected, the upper critical lines in the static
approximation approach the classical result with increas-
ing spin number. In agreement with the thermofield
calculations?® the lower critical line terminates at a crit-
ical value of the anisotropy at zero temperature. But we
find an enhancement with increasing spin number in the
static approximation. Note that the lower critical lines
are calculated with a Monte Carlo integration technique
which explains the noise in the data.

Figure 2 shows the local susceptibilities as functions
of the temperature for different anisotropy values at a
fixed spin number § = %. We find a qualitative agree-
ment with the thermofield results. Below the critical tem-
perature both methods show a decreasing temperature-
dependence with increasing anisotropy, but above the
critical temperature the present curves do not coincide

2-5 T T T T

1.5
1.0

0.5F ™ el

0.0 o Y N . .
0.0 0.5 1.0 1.5 z.0 2.5

3t/S(S+1)

FIG. 1. The anisotropy-temperature (¢t = kgT/J) phase
diagram at h = 0, including upper (solid) and lower (dotted)
critical lines for the spin numbers S = %, 1, 2, and 2 (from
left to right). The upper dotted line shows the corresponding
phase boundary calculated in a classical treatment.

1.00 | . 1
Ix ™
0.50 F = RN
-..-... l..-:b
0.00 .
0.00 0.25 0.50
4

FIG. 2. Local static susceptibility vs temperature (¢ =
ksT/J) for S = } and d =0.0, 0.2, 0.5, and 1.0 (from top to
bottom, respectively).

1.00 ‘ T
R,Q Las AA‘AA.‘.‘.....IIII
0.75 | et
-'- '.-'.
0.50F . .¢ .
o aet
0.25—°°o° et 1
0.00
0.0 0.5 1.0 1.5
3t/S(S+1)

FIG. 3. Spin-glass order parameter g and self-interaction
R as functions of the temperature (¢ = ksT/J) for fixed
anisotropy d = 0.2 but different spin numbers S = %, 1,
and % (circles, squares, and triangles, respectively). The self-
interactions are given by the filled symbols.
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for different anisotropy values. Figure 3 shows the spin-
glass order parameter g and the self-interaction R as func-
tions of the temperature for different spin numbers and
for fixed anisotropy. In contrast to the thermofield results
we find a rather linear decrease of the order parameter at
low temperatures. Order parameter and self-interaction
meet at zero temperature to ensure a finite free energy
in this limit.

V. THERMODYNAMIC FUNCTIONS

The static approximation allows us to calculate ther-
modynamic quantities directly. We will focus here on the
entropy and the specific heat in the case h = 0. With the
free energy in Eq. (22) the entropy is given by

S/kp = 3(BJ)*(1 +2d%) (R* - Q%) + /DzlnL(z)

- / Dzﬁ / Dzl&%gﬂ)g(z, 21) (40)

and may be calculated if the self-consistent solutions of
the self-interaction and the order parameter is known.
The temperature dependence of the entropy for differ-
ent spin numbers is shown in Fig. 4. The entropy re-
mains positive at all temperatures though the replica-
symmetric approach is used. This is presumably due
to the static approximation which is known to become
worse at very low temperatures and which has the ten-
dency to increase the entropy rather strongly. Obviously,
the entropy does not scale with the factor S(S + 1) like
the transition temperature and the order parameter. In
Fig. 4 the entropy is plotted against g(gt_ﬁy which is the

S/kp .
1.00 Lt
0.75 | . et
0.50 |- e

N 0.5 [ B
0.25 Ay 2 i
-))"h ’ N
0.0« .
0 1 2
0.00 1 1
0.0 0.5 1.0 1.5
3t/S(S+1)
FIG. 4. temperature (¢t = kg7T/J) dependence of the en-

tropy for fixed anisotropy d = 0.2 but different spin numbers
S = %, 1, and % (circles, squares, and triangles, respectively).
The inset shows the specific heat in the case S = %

correct temperature scale for a comparison of thermal
quantities for different spin values. From this figure it is
clearly seen that reducing the spin number S and thereby
increasing the effect of quantum fluctuations results in a
strong reduction of the entropy.

The specific heat can be readily obtained numerically
as

88
Co=T 5. (41)

The inset in Fig. 4 shows a typical result for the spe-
cific heat. It depends quadratically on temperature at
low temperatures and shows the typical mean-field cusp
at T, before it decreases at higher temperatures. The
dependence on d is found to be very small.

VI. SUMMARY

A quantum vector spin-glass theory is presented in
which the imaginary-time functional-integral technique
and the replica method are used. The self-consistency
equations for the spin-glass order parameters and self-
interactions are set up in the general case of random ex-
change, random Dzyaloshinskii-Moriya interactions, and
external magnetic field. These quite complicated equa-
tions have been solved numerically within the static ap-
proximation for the special case of the vanishing exter-
nal field. We calculate phase diagrams, susceptibilities,
and order parameters and find a rather good qualitative
agreement with the thermofield calculations of Ref. 25,
but we find some differences in detail. Additionally we
calculate the entropy and specific heat which goes beyond
the scope of the thermofield method.
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APPENDIX

The elements of the stability matrix appearing in the
matrix A are

P, = Gf[f,ﬂ)’(“ﬂ),
Q;w — G}(g/,ﬂ),(aﬂ), (A1)

R[,Ll/ o Gfl.?/’ﬂ)’(’y,6) R

where distinct greek letters denote distinct replicas. The
functions G are given by
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Ggiﬁ)s(a’,’yl) — TIL% [dZ + (1 _ d2)5;w] (5(0‘7)’((,17:)

—(B1? Y [ + (1 = )8 [d + (1 — )b, (S35, S8/ ST) — (S2 SIS ST))

w'v!

(A2)

where the thermal average has to be done with respect to the replica-symmetric effective Hamiltonian

—BHeg[R, Q] = 1(BJ)? [ S Ry [d?+ (1 —d¥)éun] D SIS

2%

wv'

+)Qu [+ (1 —d)su] D 3,55,] +8> h-8°
(o#B) a

(A3)

Due to replica symmetry this Hamiltonian may be linearized by introducing the Gaussian noises z and z; where it
becomes in the limit n — 0 the argument of the exponential in Eq. (14). The expectation value of a spin operator
then factorizes with respect to different replicas and finally results in

Tlliir%)(sﬂ) = /DZL_(lzj /Dzl’I‘r Sy exp {BJ [a1(xSs + ySy) + a2(z1S5 + y15y) + a32S; + as215,] + BhS,}

= / Dz(S,)1.

The components of the eigenvalue matrix A become

(A4)

A =d2+ (1= d*)bp — (B)? D [d®+ (1 —d*)buu] [&® + (1 — d*)6uu]

'

x / Dz [(S,08u)? — 2(8,05,)1(8,u)1(Su )1 + (Sur)2(Sur)?]

=d®+ (1 —d)bu — J2 ) [d® + (1 — d)buu] [d® + (1 - d®)6,./] /Dz Xor (2).

v’

(A5)
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