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A series of numerical electronic density-of-states calculations is performed for rational approximants

to a model one-electron potential based on icosahedrally arranged plane-wave components. It is found

that high-order approximants can have band gaps even if the low-order approximants do not; further-

more, the magnitude of the gap increases with the order of the approximant. The results are interpreted

via a two- and three-wave analysis of the energy eigenvalues at the pseudo-Jones-zone faces and edges. It
is also found that the mechanism of band-gap reduction in the rational approximants is the presence of a
small density of gap states. An analytic calculation shows that these gap states result from a splitting of
threefold and pseudothreefold states at the valence-band edge when the icosahedral symmetry is broken.

The splitting is proportional to the error with which the ratio between the approximant indices approxi-

mates w, the golden mean. Finally, an application to the A1CuLi system is presented.

I. INTRODUCTION

This paper addresses the mechanisms by which
icosahedral symmetry, by itself, increases the tendency
toward gap of quasigap formation in nearly-free-electron
(NFE) -type quasicrystals. This effort is motivated by (l)
recent conductivity, ' specific-heat, ' and photoemis-
sion ' experiments, which have suggested a strongly re-
duced Fermi-level density of states (DOS) in some stable
NFE quasicrystals and their rational approximants, and
(2) quantitative electronic-structure calculations for
stable rational approximants, which have found pro-
nounced dips in the electronic DOS, or quasigaps, around
the Fermi level. The mechanism of quasigap formation
in icosahedral quasicrystals has previously been ad-
dressed " using essentially a two-plane-wave analysis
based on the "pseudo-Jones zone. " This is the polyhed-
ron in reciprocal space defined by the planes bisecting the
dominant Q vectors in the one-electron potential. In a
crystal, if these Q vectors are the smallest reciprocal-
lattice vectors, then the pseudo-Jones zone becomes
equivalent to the first Brillouin zone. Couplings between
opposing faces of the pseudo-Jones zone lead to gaps at
particular k vectors, which become valleys and peaks in
the DOS upon k-space integration and can lead to gaps in
the DOS if the potential is strong enough. The Fermi-
level DOS is most strongly perturbed if Q is close to 2kf.
The earlier analysis has shown that the icosahedral ar-
rangement has enhanced quasigap effects because of the
high degeneracy of some shells of reciprocal-lattice vec-
tors.

The present analysis focuses on a complementary
effect, namely the effect of the arrangement of the quasi-
reciprocal-lattice vectors in a shell whose number of
quasi reciprocal la-ttice vecto-rs is fixed at twelve Ifirst.
perform numerical calculations for periodic rational-
approximant structures. These utilize a finite-
dimensional secular determinant obtained by using a
plane-wave basis with a kinetic-energy cutoff. I find that
a small unit-cell cubic crystal can never have a gap, but

sufficiently high-order rational approximants can have a
gap if the potential is strong enough. Subsequently, I
present two analytic calculations. The first is based on
the pseudo-Jones-zone analysis and extends the earlier
analysis to the edges and corners of the Jones zone, which
have been treated' for periodic crystals but have not, to
my knowledge, been analyzed for icosahedral phases.
The second analytic calculation treats gap states that are
seen in the numerical results. At Bloch wave-vector zero,
the symmetry is high enough that some parts of the secu-
lar matrix can be diagonalized analytically. It is found
that the gap states correspond to particular combinations
of threefold and pseudothreefold wave vectors and that
their penetration into the gap is due to a splitting of the
valence-band edge caused by the lowered symmetry rela-
tive to the icosahedral case. Finally, I argue that some of
the effects seen in the calculations may be relevant to the
A1CuLi system.

II. MODEL POTENTIAL AND METHOD

The one-electron potential is modeled as follows:

12

V(r)= Vo +exp(iQ r),

where all of the twelve Q vectors have the same magni-
tude Qo. I take Vo )0. For the metals typically found in

NFE quasicrystals, the atomic pseudopotential Vz, (Q),
is, in fact, positive' at Q =2kf. This potential is clearly

highly idealized but exhibits in the simplest fashion the
effects of interest here.

The case of greatest interest is that in which the Q vec-
tors in Eq. (I) are arranged icosahedrally. Unfortunately,
existing numerical methods cannot treat this case, since
the Q vectors are incommensurate, and there is thus no
translational periodicity. However, one can approximate
the icosahedral arrangement arbitrarily closely by a set of
commensurate Q vectors:

Q, = [Qol(m +n )'~ ](+n, +m, O)
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and cyclic permutations of this form. The icosahedral ar-
rangement corresponds to n /m =r = 1( 1+&5 ) /2
=1.618. . . . I use the Fibonacci sequence of approxima-
tions to w: [1/1,2/1, 3/2, 5/3, . . . ]. In order to prevent
a possible misunderstanding, I point out that the notation
n/m =1/1 does not correspond to the usual "1/1" ra-
tional approximant defined by the orientation of a hyper-
plane in six-dimensional space; the latter corresponds to
n /m =5/3. Similarly, the usual "2/1" rational approxi-
mant corresponds to n /m =8/5.

In general, the rational-approximant potential is in-
variant under translations of

magnitude of the gap increases as n /m goes to 8/5. Fig-
ure 1(b) shows similar results for Vo=0. 13 Ry. In this
case, the potential is not strong enough to produce a gap
even for the 8/5 case, but a minimum or quasigap in the
DOS is present. The trend toward increasing gapping
effects with the higher-order approximants is seen again;

(a)

a =2'(n +m )'~ /Qo, (2)

in the x, y, and z directions. Thus one has, at the worst, a
simple-cubic Bravais lattice with lattice constant a. Pro-
vided one takes a finite kinetic-energy cutoff, it is possible
to set up a secular matrix of finite dimension, which can
be numerically diagonalized. If n and m are both odd,
then an additional symmetry is present, and the Bravais
lattice is bcc; for n =m = 1, one simply has the familiar
fcc shell of twelve reciprocal-lattice vectors, which comes
from the bcc Bravais lattice. We choose
(A /2m)QO=3. 2 Ry, which in the simplest Jones-zone
analysis give a face-center gap centered at
(A' /2m)(QO/2) =0.8 Ry; this is roughly comparable to
the energies at which quasigaps are found in the ab initio
calculations. We use a kinetic-energy cutoff of 2.0 Ry,
which is more than twice as high as the energy of the
quasigap. This allows us to go as high as n/m =8/5 in
the rational approximants. My calculations using higher
cutoffs up to 5 Ry for lower-order approximants show the
same trends as the 2.0-Ry results. To avoid having
discontinuities in band energies, which would result from
an abrupt cutoff, we use a smooth energy-dependent
cutoff giving Hamiltonian matrix elements of the form

CC

o 20

~ 1.0-

0 0

(b)

E (Ry)
1.0

2/I

&k+QIVll &=[f(I1+Ql)f(k)/f(Qg/2)']Vo,

where

f (k) =expI aE,„/[E,„—E(k)]], —

(3)

E,„ is the energy cutoff, E (q) is the free-electron energy
of q, and a is arbitrarily chosen to be 0.05. With this
form for the matrix elements, & k+ Q ~ V~ k &

= Vo if
~k+Q~ =k =Q, /2.

III. NUMERICAL DENSITY-OF-STATES RESULTS

Results for VO=0. 25 Ry, are shown in Fig. 1(a). The
n /m = 1/1 results, corresponding to a simple bcc crystal,
have a fairly deep minimum corresponding to a quasigap.
The overall behavior is fairly similar to ab initio results'
for bcc I.i. I find that no matter how strong the potential
is (as long as Vo is positive), the 1/1 arrangement pro-
duces no gap in the DOS. As one goes to the higher ap-
proximants, the minimum value of the DOS drops to a
very low value in the 3/2 case. Beginning with the 5/3
results, a gap develops. Thus it is possible for a nearly
icosahedral structure to have a gap in circumstances in
which a smaller-unit-cell cubic structure does not. The
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0

8/
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FIG. 1. (a) Calculated DOS distributions p(E) for rational-
approximant structures, for VO=0. 25 Ry. DOS given in units
of the free-electron DOS at E =0.8 Ry. (b) Calculated DOS
distributions for rational-approximant structures, for Vo =0.13

Ry.
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the minimum value of the DOS for the 8/5 case is rough-
ly half of that for the 1/1 case. However, unlike the
Vo =0.25 Ry case, the behavior around the gap region is
essentially converged already for the n/m =3/2. The
electronic structure is expected to converge more rapidly
with the order of the rational approximant for weaker po-
tentials. To second order in Vo, for example, only the
magnitudes of the Q vectors and the value of Vo enter the
DOS; the angles between the Q vectors enter only in
higher orders of perturbation theory. The magnitudes of
the Q vectors are the same for all of the approximants.
Thus, if the potential were sufBciently weak for a second-
order treatment to be accurate, then all of the approxi-
mants would have essentially the same DOS.

IV. PSEUDO- JONES-ZONK ANALYSIS

I now give a simplified physical interpretation of the
above numerical results in terms of the energy eigenval-
ues on the faces of the pseudo-Jones zone. The familiar
twelve-sided first Brillouin zone for the 1/1 case is shown
in Fig. 2(a). For the k vectors N at the centers of the
faces, k=(+sr/a, +m. /a, O), most of the physics is given
by a two-plane-wave analysis involving k and —k. This
gives the energy eigenvalues E (k) =(A' /2m)(2m /
a )+ Vo, resulting in a gap of magnitude 2VO. (Here I ig-
nore the effects of the energy-dependent cutoff). The
lower edge of the gap is thus nondegenerate. Consider
now the edge-center point F =(2/3)(2n /a, n /a, n /a).
This point is coupled to two other equivalent k points of
type F (one of which is indicated in the figure) by the

Q=( —2m/a, —2m/a, O) and (
—2~/a, O, —2m/a) poten-

tial components; these two k points are in turn coupled to
each other by the Q=+(0, 2m. /a, —2~/a) components.
Thus there is a threefold degenerate subspace, and one
has to use a three-wave analysis. The Hamiltonian ma-
trix for the three plane waves has the form

Eo Vo Vo

Vo Eo Vo

Vo Vo Eo

where Ep is the kinetic energy at F. The eigenvalues are
then Ep +2 Vp and Ep

—Vo, with the latter being doubly
degenerate. For Vo) 0, the latter is the lowest-energy
state.

Consider the line connecting F to X. Of the two bands
emerging from the lower, doubly degenerate state at F,
the three-plane-wave analysis indicates that one connects
to the top of the gap at N and one to the bottom, as
shown in Fig. 3(a). Thus the gap at N is "erased" by
effects at the edge of the Jones zone. Even if the band
hookup is not the same as indicated by the three-plane-
wave model, or the energy at F is not inside the X-point
gap, one can readily show that it is topologically impossi-
ble to connect the eigenvalues at N to those at F without
erasing the gap at N. This result is based only on the de-
generacy of the lowest state at F. Therefore, it is likely
valid when additional components are "turned on" as
well, provided they are not strong enough to change the
ordering of the eigenvalues at F.

Consider now the icosahedral pseudo- Jones zone,
shown in Fig. 2(b). The twelve Q vectors have the form
Q=go/(I+r )' (+, +r1,0), along with cyclic permu-
tations. As in the cubic case, the eigenvalues at the face
centers are given by E =(A' /2m)(QO/4)+Vo, and the
gap has magnitude 2 Vo. The edge center
F =go/(I+r )' (&5/2, 0,0) is connected by the
( r, +1,0)-t—ype potential components to two other k
vectors k=go/( I+r )' ( —

—,', +1,0) having the same
length as F. However, in contrast to the fcc arrange-
ment, these k vectors are not equivalent to F. In addi-
tion, they are not connected by any of the Q's contribut-
ing to the potential. Thus the matrix for the threefold-
degenerate subspace has the form

Vo Vo 0

Vo Eo Vo

Vo Eo

n/I = 1/1 (a) (b)

2vo

FIG. 2. Jones and pseudo-Jones zones for (a) n/m = 1/1, (b)
n /m =~, and (c) n /m =2/1.

FIG. 3. Likely band lineups for (a) cubic n/m =1/1 and (b)
n /m =~. In (b), Eg indicates band gap.



2518 A. E. CARLSSON 47

where Eo is the kinetic energy associated with the point
F. The eigenvalues of this matrix are nondegenerate: Eo
and Eo+&2Vo Thus, the band connections shown in
Fig. 3(b) are plausible; unlike the cubic case, it is possible
to have a band gap in the DOS. A parallel four-wave
analysis for the corners of the Jones zone also yields a
nondegenerate lowest eigenvalue, and allows the possibili-
ty of a band gap.

I now show that if the Q vectors are rational approxi-
mants to the icosahedral ones, then the magnitude of the
band gap, if one exists, increases with the order of the ra-
tional approxim ant as icosahedral symmetry is ap-
proached. This result is expected on the basis of the
near-sphericity of the pseudo-Jones zone. It is indepen-
dent of the sign of Vo. Since the threefold corners of the
icosahedral pseudo-Jones zone have the highest kinetic
energy, one would expect the valence-band edge states to
be built out of the corresponding plane waves. In the
rational-approximant Jones zones, illustrated in Fig. 1(c)
for the 2/1 case, these 20 corners split into two classes.
One class contains eight corners P in (111)-type direc-
tions. The other has twelve members P', in (n, m, 0)-type
directions. Of these two classes, one has higher free-
electron energy than in the icosahedal case and one has
lower free-electron energy, leading to a splitting of the
valence-band edge. The choice of which class is higher
depends on whether n/m is greater or less than 7-. The
30 edge centers similarly split into two classes. In fact,
any crystallographically related collection of points on
the boundary of the icosahedral pseudo-Jones zone hav-
ing more than twelve members is split in the rational ap-
proximants. The only collection of points having twelve
or fewer members is the face centers. Thus, if either the
valence- or conduction-band edge occurs away from the
face centers, this edge is split in the rational approxi-
mant. The band gap is then reduced. The analytic re-
sults to be presented in the next section confirm this
band-edge splitting mechanism for the reduction of the
band gap.

V. GAP STATES

A remarkable feature of the numerical results obtained
here is that the reduction of the band gap in the rational
approximants relative to the icosahedral case occurs via
the appearance of a small density of gap states, rather
than through overall shifts in the band edges. This is
shown in detail in Fig. 4, which magnifies the band-gap
region of the "5/3" plot in Fig. 1(a). While the
conduction-band edge is quite sharp, a low density of gap
states is seen between roughly E =0.76 and 0.82 Ry. I
find that the width of the gap states drops with increasing
order of the rational approximant; also as the order in-
creases, the placement of the gap states alternates be-
tween the valence-band and conduction-band edges.

The origin of the gap states can be seen via an analytic
calculation of the eigenvalues at k =0 around the
valence-band edge in the 5/3 case; we shall see that this
calculation confirms the simplified pseudo-Jones zone
analysis presented above. Note that k denotes the Bloch
wave vector corresponding to the cubic lattice constant,

0.3—
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0.7 0.8
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FIG. 4. Expanded picture of electronic DOS in the region of
the band gap, for Vo =0.25 Ry and n /m =5/3.

(3,0, 1)~(—2, 3, 1)(2,—3, 1),(0,0, —4)

(2, 2, 2)~(2, —3, —1),( —1,2, —3)( —3, —1,2) .
(4)

TABLE I. Free-electron energies and f factors Icf. Eq (3)] for
n /m =5/3 and n /rn =7./1.

Eo(K) (Ry) f (K)/f ( Qo /2)

5/3

7./1

(3,0, 1)
(2 2 2)
(3,1,2)

(4,0,0)
(7-—1, 7-—1, 7-—1)

(2(7.—1),0,0)

0.941
1.129
1.318
1.505
1.013
1.351

0.989
0.969
0.939
0.890
0.982
0.932

not the physical momentum entering the pseudo-Jones
zone analysis. Analysis of the numerical wave functions
shows that the upper edge of the gap states is, in fact, at
k=0. At this value of k, the wave functions are built up
entirely of reciprocal-lattice vectors K. The calculated
wave functions also show that the states around the
valence-band edge are dominated by the following K vec-
tors, in units of 2vr/a: (3,0, 1), (2,2,2), (3,1,2), and (4,0,0).
The potential does not have the full 48-fold symmetry of
the cubic lattice because the potential matrix element for
the momentum transfer Q=(5, 3,0) (Vo) does not equal
that for Q=(3, 5,0) (0). All cyclic permutations and sign
changes are included in the symmetry operations of the
potential, but permutations that exchange only two in-
dices are not. Thus for example, (3,0, 1) is equivalent to
(1,—3,0), but not to (1,0,3). Therefore, it is important to
keep in mind the ordering of the spatial coordinates in
the (3,0, 1)- and (3,1,2)-type components of the wave func-
tion.

The free-electron energies of these K vectors, obtained
via Eq. (2), are given in Table I, along with the values of
f (K)/f (Q /o2) that enter the potential matrix elements
in Eq. (3). The nonzero couplings are between pairs of
the following types, along with those obtained from these
by the symmetry operations given above. (Note that each
symmetry operation has to be applied simultaneously to
both of the vectors that are coupled. )
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Thus the first two shells in Table I couple only to the
second two and vice versa. All intrashell couplings van-
ish. Although the (2,2,2)- and (3,0, 1)-type K vectors are
not directly coupled, they do have an indirect coupling
via the (3,1,2) shell. For example (3,0, 1) is coupled direct-
ly to (

—2, +3, 1), which is in turn coupled to

( —2, +2, —2). Thus the indirect coupling of (3,0, 1) to
(
—2, 2, —2) equals its indirect coupling to ( —2, —2, —2).

However, it is possible to construct a wave function that
has nonzero components in the (2,2,2) shell, but vamsh-
ing components in the (3,0, 1) shell. To see this, consider
a wave function of the form

Ilgwu~& =(1/&8)[12,2, 2& —
I

—2, 2, 2, &
—I2, —2, 2, &

—I2, 2, —2&

+ 2, —2, —2&+i —2, 2, —2&+i —2, —2, 2& —
i

—2, —2, —2&] .

Because
~

—2, 2 —2& and
~

—2, —2, —2& appear with opposite signs in gzzz&, the indirect coupling between ~3, 0, 1& and
~ /~zan & vanishes; the same is, of course, true for all of the other members of the (3,0, 1) shell by symmetry considerations.
Thus, one can construct a wave function containing only ~t/rzzz& and (3,1,2)-type K vectors. The linear combination of
(3,1,2)-type K vectors that couples to

~ Pzzz & has the form

I@„,& =(1/&24)[I I2, —3, —1&+
I

—1,2, —3 &+
I

—3 —1» I
—

I I

—» —3, —1&+ I1,2, —3 &+ I3, —1,» }
—. ],

where each group of three K vectors in curly braces cou-
ples to one member of the (2,2,2) shell, according to Eq.
(4). The signs in front of these groups are the same as
those in

~ gz~ &. One then finds that
( tP222~ H~f»z &

=&3Vo, where Vo includes the eFects of
the f factors in Eq. (3). Thus the possible eigenvalues as-
sociated with this type of wave function are given by the
eigenvalues of the following matrix:

Eo(222) &3Vo

&3Vo Eo(312)

which are

E+QbE +3VO

where E =[Eo(222)+Eo(312)]/2 is the average of the
kinetic energies of the (2,2,2) shell and the (3,1,2) shells,
and

bE = [Eo(222)—Eo(312)]/2

is their difference. The eigenvalue corresponding to the
minus sign in Eq. (5) is 0.818 Ry, in very close agreement
with the edge of the gap states seen in Fig. 4. My
analysis of the numerically obtained wave functions
confirms that this is the correct wave function. We note
that the (2,2,2) directions have true threefold symmetry.
One readily sees that the wave function itself also has
true threefold symmetry, in the sense that rotation about
any of the threefold axes leaves the wave function invari-
ant. I note that the identification of the wave functions
around the valence-band edge with the threefold axes is
consistent with the pseudo-Jones-zone analysis performed
above.

One can similarly build states out of the (3,0, 1) shell
that do not couple to the (2,2,2) shell. As we shall see
later, the (3,0, 1) shell is pseudothreefold, in that as the or-
der of the rational approximant increases, the (3,0, 1) K
vectors gradually become equivalent to the (2,2,2) vec-
tors. In this case, the wave function is built out of the
(3,0, 1) shell, the (3,1,2) shell, and the (4,0,0) shell. We
first ignore the (4,0,0) shell and treat exactly the remain-

ing part of the Hamiltonian. Then the analysis is entirely
parallel to the preceding case, except that each member
of the (3,0, 1) shell couples only to two members of the
(3,1,2) shell. This leads to a matrix element
($3o, ~H~Q»z& =&2Vo, rather than the &3 factor ob-
tained before. Here, ~gio, & is any linear combination of
K vectors in the (3,0, 1) shell, which is not indirectly cou-
pled to the (2,2,2) shell; since the (3,0, 1) shell has twelve
members and the (2,2,2) shell has eight members, the
noncoupling condition corresponds to a system of eight
equations in twelve unknowns, which must have at least
four solutions. ~$3iz& is the corresponding linear com-
bination of K vectors in the (3,1,2) shell, according to Eq.
(4). The factor of 3 in Eq. (5) is then replaced by a factor
of 2, and one obtains an energy of 0.751 Ry. Inclusion of
the (4,0,0) shell by second-order perturbation theory leads
to a downwards of approximately 0.025 Ry, and thus a
final energy of 0.726 Ry. This eigenvalue is fourfold de-
generate because of the multiplicity of solutions for

~ $30, &; this is again confirmed by the numerical results.
The difference between the energies of the threefold

and pseudothreefold states calculated here is a measure of
the strength of the deviation from icosahedral symmetry.
To see this, we generalize the above analysis to arbitrary
n /m. The K-vector shells are then as follows:

(3,0, 1) =- (m, 0, 2m n), —

(2, 2, 2) -(n —m, n m, n —m), —

(3, 1,2) = (m, 2m n, n —m—),
(4, 0,0)=(2(n —m), 0,0) .

In the limit of icosahedral symmetry, n /rn ~w/1, the ra-
dii of the first two shells become the same, since

3(n —m) —[m +(2m —n) ]~2(r ~ 1), —

which vanishes for ~= ( 1+V'5 ) /2. Thus the twelve
(3,0, 1) and eight (2,2,2) K vectors merge into a single shell
of 20 threefold vectors, which correspond to the corners
of an icosahedron. It is thus legitimate to call the (3,0, 1)
vectors pseudothreefold. Similarly, the 24 (3,1,2) and six
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(4,0,0) K vectors merge into a shell of 30 twofold vectors,
which correspond to the edge centers of an icosahedron.

In the limit of icosahedral symmetry, the valence-
band-edge energy can readily calculated. The kinetic en-
ergies of the relevant shells, and the appropriate f factors
are given in Table I. Using Eq. (5), we obtain a value of
0.751 Ry for the valence-band edge, which is now fivefold
degenerate. This is fairly close to what would be extrapo-
lated from Fig. 4 if the gap states were ignored. Thus, in
going from icosahedral symmetry to the rational approxi-
mant with n/m =5/3, one has the following scenario: a
fivefold-degenerate valence-band edge is split into a
quadruplet and a singlet. The singlet corresponds to the
edge of the gap states, while the quadruplet is seen as a
minor feature in the valence band, at around 0.72 Ry in
Fig. 1(a). I have thus confirmed the band-edge-splitting
mechanism hypothesized in the pseudo-Jones-zone
analysis.

As the order of the rational approximant increases,
two important changes occur. First the kinetic-energy
splittings between the two pairs of shells in Table I be-
come smaller; these splittings are approximately linear in
~n/m —r~. Secondly, the signs of the splittings alternate
with the order of the rational approximant, in the sense
that for n/m =8/5, the energy of the threefold shell is
lower than that of the pseudothreefold, for n/m =13/8
it is higher, and so on. Thus if one skips alternate ration-
al approximants and takes the sequence

n/m =5/3~n/m =13/8 —+n/m =34/13,
etc. , one expects that the width of penetration of the gap
states should be approximately proportional to n/m —r.
If one instead considers n/m =8/5, 21/13, etc. , one
finds that the fourfold pseudothreefold states, instead of
the singlet states, are the gap states. These do not
penetrate as far into the gap, and essentially merge with
the valence band edge.

VI. CONCLUSIONS AND APPLICATION TO A1CUL1

My main conclusions are that band-gap formation in
icosahedral quasicrystals can be strongly enhanced
without a high-degeneracy shell of Q vectors, and that
the size of the gap increases as icosahedral symmetry is
approached. These effects are smaller if the potential is
too weak to form a gap; in this case the electronic struc-
ture in the vicinity of the quasigap is fairly well con-
verged already for low-order rational approximant struc-
tures. Furthermore, in the cases with gaps, the band-gap

reduction due to the breaking of icosahedral symmetry is
due to gap states that arise from the splitting of the
valence-band edge. So far no quasicrystals with band
gaps have been observed. However, our results may be
relevant to the AlCuLi system. For appropriate electron
concentrations, both its stable icosahedral quasicrystal
form and its rational approximant of the Frank-Kasper
type have a Fermi-level DOS reduced by a factor of near-
ly 1/3 relative to the free-electron value. ' The approx-
imant corresponds to our n /m =5/3 model, although, as
mentioned above, it is known as the "1/1 approximant"
to the quasicrystal. One of the several possible shells of
Q vectors with Q =2kf comprises an icosahedron and
has the indices (311111)in the scheme of Elser. ' This
shell may be responsible for the quasigap effects men-
tioned above. Previous analysis '" has focused on the
(222100) shell because it gives the most intense x-ray
scattering. However, the x-ray scattering is dominated
by Cu, which, at least in the rational approximant, is ir-
relevant for the formation of the quasigap. Thus the
(311111)shell may be as important as the (222100) shell
in creating the potential responsible for the quasigap. In
A1CuLi, very small differences in electronic properties be-
tween the quasicrystal and the rational approximant are
usually observed, ' consistent with my result that in the
quasigap case [cf. Fig. 1(b)) the electronic structure is
practically converged (as a function of the order of the
rational approximant) for the n/m =5/3 case. Placing
the A1CuLi quasicrystal and rational approximant under
high pressure may convert the quasigaps into actual band
gaps. This contention is based on ab initio band calcula-
tions that I have performed for Li. These calculations
give the pressure dependence of the band gap at the face
of the first Brillouin zone, which is roughly a measure of
the strength of the pseudopotential. The results indicate
that the Li pseudopotential becomes stronger under pres-
sure, even when scaled by the Fermi energy. According to
the present results, this could open up a band gap, which
should appear in the quasicrystal before the rational ap-
proximant.
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