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The transition from the polarized paramagnetic state to the antiferromagnetic phase in an applied
external magnetic field has been investigated theoretically by linear spin-wave theory at T = 0. Our
analysis applies to spins arranged in a lattice of cubic symmetry. In addition to the Zeeman term,
the Hamiltonian consists of bilinear interactions. Antiferromagnetic transition to a state described
by an ordering vector Q is discussed in terms of softening of the corresponding spin-wave excitation
in the paramagnetic phase. It is shown that the onset of antiferromagnetic order can be calculated by
solving an eigenvalue problem. The smallest eigenvalue of the Fourier transformed 2 x 2 interaction
matrix, which describes the spin-spin interactions in the plane perpendicular to B, determines B„
Q, and the direction of the antiferromagnetic component. For sufficiently anisotropic spin-spin
interactions, these quantities can depend on the direction of B with respect to the crystalline axes.
However, when the spin structure shows an easy-plane anisotropy, which is possible for ordering
vectors of the type Q = (h, 0, 0) and Q = (h, h, h), and for some vectors at the Brillouin-zone
boundary, the direction of B has no such eAect. The general results were first applied to investigate
the stability of the easy-axis type-III antiferromagnetism of the fcc lattice, characterized by Q =
z./a(1, 1/2, 0). It was shown that, if the spin-spin interactions are sufficiently anisotropic, type-III
order becomes unstable against type-I order [Q = ir/a(1, 0, 0)] when a strong enough field B is
applied along a [111]crystalline axis. If the anisotropy is comparable to the isotropic next-nearest-
neighbor coupling, like in K2IrCl6, a high-field ordering vector, between the type-I and -III vectors,
is predicted. As another application, the magnetic phase diagram of nuclear spins in copper was
investigated. Antiferromagnetic type-I ordering has been found in this fcc metal below T~ = 60 nK.
We studied the puzzle presented by the neutron-diffraction measurements of Annila et at. , which
show that type-I order is absent in the high-field region below B, = 0.25 m T when B ]] [111],although
this kind of ordering was observed in the same fields when B

~~
[100] or [110]. Soft-mode analysis

shows that the high-field ordering vector for B [[ [ill] is of the general type, Q = (h, k, l), where

]6[, ]k~, and ]I] are all unequal and nonzero, in agreement with our previous suggestion based on the
mean-field theory. We predict various (h, k, I) structures in fields B H, for several field alignments
other than [111]. The magnetic phase diagram of nuclear spins in copper can be explained on the
basis of the previously calculated spin-spin interactions at least in fields B B, if the calculated
parameters are changed only slightly.

I. INTRODUCTION

Anisotropic spin-spin interactions have profound con-
sequences on the ordered spin structure of an antiferro-
magnet: Since the interactions are not invariant under
rotation, the spin directions are coupled to the lattice
symmetry. Application of an external magnetic field in-
troduces an additional symmetry-breaking field. It is of
interest to study how the ordered spin structure compro-
mises between these two different kinds of energy terms.
We address this question by investigating theoretically
the transition to the antiferromagnetic phase from the
polarized paramagnetic state in the critical field B, at
T = 0. It is under these conditions that the possible
competition between the magnetic and exchange ener-
gies is strongest.

Antiferromagnets are often described by isotropic spin
Hamiltonians even though the true interactions contain
anisotropy. An isotropic model is easier to treat math-

ematically and can often account for the property of
interest, such as the experimentally determined mag-
netic structure. When a consistent theoretical picture
of the magnetic behavior is desired, however, it is nec-
essary to consider anisotropic spin-spin interactions as
well. There is some anisotropy present in all magnetic
materials owing to the dipolar force. Although this term
is, in most electronic magnets, significantly weaker than
the exchange interaction, there are some systems, like
cerous magnesium nitrate, in which the dipolar energy
dominates. More often, however, the largest anisotropic
coupling arises from various exchange mechanisms. The
first experiment in which the anisotropy of the exchange
interactions was determined is by GriKths et at. Their
paramagnetic resonance measurements revealed a signif-
icant anisotropic contribution to the spin-spin interac-
tions in KzlrCls and in (NH4)2IrCls. Later, strongly
anisotropic spin-spin interactions have been found in sev-
eral antiferromagnets, such as various lanthanide and ac-
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tinide monopnictides. ~

Theoretical studies of antiferromagnets with
anisotropic interactions were made by ter Haar and
Lines. s 4 They considered the spin structure only at
B = 0, perhaps because interest in field effects arose only
later. Experimental studies on the effect of an external
field on the magnetic structure are often complicated by
the fact that the routinely accessible fields are limited
to 5—10 T, which, with the magnitude of magnetic mo-
ment of atoms, corresponds to a thermal energy of 10
K. This is significantly smaller than the nearest-neighbor
interaction in most antiferromagnets investigated so far.
By now, however, several materials have been found in
which the whole field-region for antiferromagnetism is ex-
perimentally accessible. s

Among the more unconventional systems, strongly
anisotropic spin-spin interactions are often encountered
in nuclear magnets. s In these spin assemblies the
whole field region for antiferromagnetism is accessible
because the relevant fields are on the order of 10
T. The experimental challenge with nuclear magnets
is the extremely low ordering temperatures, which are
in the nanokelvin region. In nuclear spin assemblies
the anisotropic coupling arises both from the dipolar
force and from the various exchange mechanisms.
Analogously with paramagnetic-resonance measurements
in electronic magnets, quantitative information about
the magnitudes of the isotropic and anisotropic interac-
tions can be obtained in nuclear spin systems by NMR
experiments. ii is Unlike electronic magnets, exchange
forces in nuclear systems can be determined quite reli-
ably from theoretical ab initio calculations, z4 which
are even believed to be 10% accurate in light elements
such as copper.

In this paper we discuss antiferromagnetic ordering at
T = 0 in the field B = B, by the soft-mode approach. In
this technique, the energy needed to excite a spin wave
at a wave vector k in the paramagnetic state is calcu-
lated. When a spin wave k = Q becomes soft, i.e. ,
when its excitation energy vanishes, the paramagnetic
state becomes unstable with respect to antiferromagnetic
order, characterized by a spin modulation of wave vec-
tor Q, and a phase transition occurs. Our results apply
to cubic systems with a Hamiltonian consisting of bilin-
ear interactions, in addition to the Zeeman energy. The
type of anisotropy that we treat is due to bilinear spin-
spin interactions. We neglect, in particular, single-ion
anisotropy due to crystalline fields. This is permissible
in spin S = 1/2 systems, for which single-ion anisotropy
strictly vanishes, and in materials for which the dominat-
ing anisotropy is caused by spin-spin interactions.

We apply our results to study the stability of the zero-
field structures of several antiferromagnets against other
types of antiferromagnetic states in an external field.
This problem can be investigated efFectively, although
somewhat indirectly, by calculating the zero-field struc-
ture by linearizing the mean-field equations at T = T,
and by comparing the result to that obtained from lin-
earized equations at B = B,(T = 0). The calculations
are technically simple because Fourier transformations
reduce the labor to comparing eigenvalues and eigenvec-

tors of the resulting 3x3 and 2x2 matrices, respectively.
The reduction in the dimensions for the latter case re-
flects the fact that antiferromagnetic order develops, in
leading order, only in the plane perpendicui*r to the field.
Although the zero-field transition at T = T, has been
extensively investigated with the eigenvalue analysis, ap-
parently this technique has not been applied to studies
of spin ordering at B = B,(T = 0).

Our work was mostly inspired by the recent studies
of nuclear magnetism in Cu. ' s' Additional motiva-
tion was given by the observation of nuclear magnetic
ordering in Ag, s z7 zs PrNis, ss and Pr, and the search
for ordering in Tl s Sc s4 Au Aulnq, and in
Rh. The specific problem that we discuss is the phase
diagram of nuclear spins in copper, which shows re-
markable complexity. Recent neutron diffraction exper-
iments revealed two different magnetic Bragg peaks in
the antiferromagnetically ordered structure: (1 0 0) and
(0 2/3 2/3) superlattice reflections were found. zs The
relative intensities of the two Bragg peaks depended
sensitively on the strength and direction of the ex-
ternal magnetic field. zsss At low B, the two reflec-
tions appeared simultaneously. This effect, as well
as the relative intensities of the two neutron peaks
were accounted for by our theoretical model. 4s We
also predicted ' the selection rules, prescribing which
of the twelve (0 2/3 2/3) reflections, equivalent un-
der cubic symmetry, should appear for the different
high-symmetry-Beld directions. Our rules were veri-
fied by later neutron-diffraction measurements. Unex-
pectedly, however, at fields B = 0.17 —0.25 mT, ap-
plied in the [111] direction, neither the (1 0 0) nor the
(0 2/3 2/3) Bragg peak was observed, although simul-
taneous susceptibility measurements indicated antiferro-
magnetism.

The unknown spin structure for B
~ ~

(1, 1, 1) has re-
cently been discussed theoretically by Lindgard and
by us. While we used the mean-Beld theory, Lindgard
employed the soft-mode approach. The two calculations
yielded dissimilar results for the antiferromagnetic struc-
ture. To understand the underlying differences between
these two, mainly numerical calculations, we have ana-
lytically studied both approaches and their relations with
each other. Our present work shows that the mean-Geld
(MF) and soft-mode theories yield, in fact, identical re-
sults and confirms our previous conclusions. 4s

The present paper is organized as follows: In Sec. II
we first find the spin-wave excitation energies in the para-
magnetic state by following the early work by Holstein
and Primakoff. We then study the transition between
the paramagnetic and antiferromagnetic phases at T = 0
by using the soft-mode approach. The critical field for
the transition and the wave vector of the soft mode are
obtained. The transition is further investigated in Sec.
III for various directions of the magnetic field and of the
soft-mode wave vectors, which are possible under cubic
symmetry. In Sec. IV we briefly compare the soft-mode
and mean-field theories of the antiferromagnetic transi-
tion at B,(T = 0). In Sec. V we apply the soft-mode
approach first to investigate the stability of type-III or-
dering in an fcc lattice at B P 0. We then discuss the
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magnetic phase diagram of nuclear spins in copper and
make some comments on the corresponding diagrams of
silver and gold. The main results of our paper are sum-
marized in Sec. VI.

given by

where

&k —4[Di [' ) (2)

IX. SOFT MODES

A. Spin-wave energies

The Hamiltonians of nuclear spins in copper and silver
and of several other spin assemblies in a cubic crystal
consist of bilinear spin-spin interactions and the Zeeman
energy, viz. ,

Ck = —[A *(k) + A""(k)] + B —SA"(0),
2

D„=—[A**(k) —A""(k) —2iA*"(k)] .
4

Here A(k) is the Fourier transform of the interaction ma-
trix, viz. ,

A i(k) —) A ~eikr, ,

H= —) S, A, S~ —B )
where S, is the spin operator acting at site i,, and the
3x3 matrix A, describes the interaction between spins
i and j. 8 is the applied external magnetic field. The
coeflicient hp, where p is the gyromagnetic ratio, has
been absorbed in B so that the field has the units of
energy. A, consists of the dipolar and exchange forces;
the latter interaction may be isotropic or anisotropic.
The symmetry of the anisotropic exchange coupling need
not be dipole-like but can be of more general form. ~3

Constraints on the form of A, are imposed by the
symmetry of the lattice, which is here assumed to be cu-
bic. First, because of the inversion symmetry of the crys-
tal, A, is a real and symmetric matrix. If the crystal
did not display inversion symmetry, an antisymmetric,
Dzyaloshinski-Moriya type of interaction would be pos-
sible as well. Second, A, transforms like a second rank
tensor with respect to r,~, the vector joining spins i and
j. This imposes certain conditions for the elements of
A, when r;z lies in a symmetry direction of the crystal.
For example, if r,~ is of the form (E, I, 0), the components
of A;~ satisfy A;* = A,"." and A, ' = A,". ' = 0. There are
altogether six different cases for r,~ in a cubic lattice; the
corresponding forms of A, have been listed in Ref. 23.

The spin-wave energies for the Hamiltonian of Eq.
(1) have been derived by Holstein and Primakoff. 44 The
scheme of their calculation, which is now familiar from
several textbooks, s is the following: The Harniltonian
is rewritten using the spin-deviation operators, higher-
order terms than those bilinear in the spin-deviation
operators are neglected, the resulting Hamiltonian is
Fourier transformed and finally diagonahzed by use of
the Bogoliubov transformation. This procedure yields
the normal modes, i.e., spin waves, and the correspond-
ing energies. The excitation energy for a spin wave is

It is clear from Eq. (2) that in a high enough field
all excitation energies uk are positive. With decreasing
field one of the spin-wave energies eventually becomes
negative indicating softening of this particular excitation
and instability of the paramagnetic phase.

B. Isotropic interactions

It is instructive to consider first isotropic interactions,
A, ~ = J,~6 P. The spin-wave energies are then

ark = B+ S[J(k) —J(0)],
where J(k) is the Fourier transform of J,~. When the
field is lowered, the soft; mode appears for the wave
vector Q, which corresponds to the minimum of J(k):
J(Q) = mink(J(k)). The critical field B, for the soft-
mode transition is

and the transition is continuous. B, and Q are indepen-
dent of the orientation of B.

The ordered spin configuration below B, is beyond the
applicability of the spin-wave theory for the paramag-
netic state. The natural interpretation for the appear-
ance of a soft mode at a wave vector C} is, however, that
immediately below B, there is a small antiferromagnetic
component, described by Q, in the plane 3 B.

C. Anisotropic interactions

To study the soft-mode transition in the presence of
anisotropic interactions, we rewrite the spin-wave energy
of Eq. (2) in the form

(k) + B/S —A" (0) A "(k)
A u(k) Ayy(k) + B]g Azz(0)
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The determinant vanishes when B—/S+A" (0) coincides
with an eigenvalue A(k) of

(A**(k) A*"(k)l
( ) =

I A*~(k) Auu(k) I

This 2x 2 matrix is the xy block of the Sx3 matrix A(k)
and corresponds to the plane perpendicular to the field
direction z. Thus the soft-mode transition takes place at

B, = S[A(0) —A(Q)]

to a state described by the wave vector Q, where A(0) =
A" (0) and

(a) (b)

A(g) = mink, (A, (k) ) . (10)

When rotated to an orthogonal basis (x, y, z), the matrix
A(k) becomes

3

A(k) ~ ) nn ) A,e,e, ) PP
Ck=Z, 'JJiZ i=1 P=2:,y, Z

~ ~= ) nP ) A, (e, n)(e, P)
-p &' )

(12)

where n and P run over x, y, and z. Denoting the field
direction by z, the xy block equals A(k). Let x and y
be the two eigenvectors of A(k). The xy block is then
diagonal and the eigenvalues of A(k) are

3

Ai(k) = ) A, (e, x)

and

3

A2(k) = ) A, (e, y)

Since Q, (e, x) = P, (e, . y)z = 1, the two eigenvalues

of A(k) are bounded by the three eigenvalues of A(k),
i.e. ,

min;(A, (k)) & A~ (k) & max'(A~(k) j . (15)

The relationship between the eigenvalues A~(k) and

A~(k) is visualized by Fig. 1. When a real and symmetric
3x3 matrix operates on the unit vectors of a sphere, an
ellipsoid is created. The lengths of the principal axes

The matrix A(k) clearly depends on the direction of
the external field. Therefore, the eigenvalues A, (k) can
also depend on the direction of B, and so can the ordering
vector Q and the critical field B,.

To find the relationship between the two eigenvalues
of A(k) and the three eigenvalues of A(k), we write A(k)
in terms of its eigenvalues A, and the normalized eigen-
vectors e, , i = 1, 2, 3, viz. ,

3

A(k) = ) A,e,e, .

(c) (d)

are given by the eigenvalues A;, which can be taken as
positive numbers for the illustration. The intersection
of the ellipsoid and the plane perpendicular to the field
direction i; defines an ellipse, the principal axes of which
correspond to the eigenvalues A, of the 2x2 matrix A(k).
It is obvious that the lengths of the principal axes of this
ellipse are bounded from above and below by those of the
ellipsoid, in accordance to Eq. (15).

An important special case for which two of the eigen-
values of A(k) are degenerate is illustrated in Figs. 1(a)
and 1(b). For any field direction, the ellipsoid and the el-
lipse have at least one common principal axis, i.e. , eigen-
value. If the lowest eigenvalue A;„ofA(k) is degenerate,
it follows that the soft-mode transition always takes place
for the corresponding wave vector Q at the same value
of the critical Field, independent of its direction.

In the general case, the eigenvalues of A(k) are non-
degenerate, as illustrated in Figs. 1(c) and l(d). If this
is the case for the zero-field ordering vector, which cor-
responds to the eigenvalue Am;„, an intersection by a
plane perpendicular to B yields, in general, eigenvalues

A, which are larger than A;„[Fig. 1(d)]. The eigenvalues
are equal only when the field is exactly perpendicular to

FIG. 1. Illustration of the relationships between the eigen-
values of the real and symmetric 3x3 matrix A and its 2x2
submatrix A. The three eigenvalues A, (Ai & A2 & A3) of
A describe the lengths of the principal axes of the ellipsoid,
while the two eigenvalues A, of A are equal to the principal
axes of the ellipse drawn using the broken line. The ellipse
is determined as the intersection of the ellipsoid and a plane
perpendicular to the external field B. (a) and (b): Degenerate
eigenvaiues Ai = A2. In (a), B is J to the plane spanned by
ei and eq, leading to Ai = A2 = Ai 2. In (b), B is in a general
direction, leading to Ai = Ai, 2 & Aq. (c) and (d): Nondegen-
erate eigenvalues A, . In (c), B is J to the plane spanned by
ei and eq, leading to Ai = Ai and A2 = A2. In (d), B has a
general alignment, leading to A& & A& and A2 & A3.
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the principal axis corresponding to A;„. It is then possi-
ble that a vector Q, difFerent from the zero-field ordering
vector Q, yields min; g(A, (k) j. Then the wave vector of
the soft mode and the critical field can depend on the
direction of B.

If the ordering vectors in zero field at T = T, and at
B = B, when T = 0 are different, the phase boundary
between the paramagnetic and antiferromagnetic states
in the B-T plane should show an interesting cross-over
between these two limiting cases. This effect will be in-
vestigated in a forthcoming paper.

III. SOFT-MODE TRANSITIONS FOR
DIFFERENT FIELD ALIGNMENTS

A. ClassiAcation of the antiferromagnetic
modes perpendicular to the Beld

I et us see what we can conclude about the antiferro-
magnetic transition at B = B, by knowing only the wave
vector Q, which yields the lowest eigenvalue A;„of the
Fourier transformed 3x3 interaction matrix A(k). Our
analysis in Sec. IIC showed that if A~;„ is degenerate,
the ordering vectors at zero field when T = T~ and at
B = B, when T = 0 are the same. In this section we
find the ordering vectors in cubic systems for which this
simple behavior occurs. It turns out, however, that the
eigenvalues are nondegenerate for the most zero-field or-
dering vectors Q. Therefore, the wave vector for the soft-
mode transition into Q is, in general, different from Q.
However, if the field is applied in a cubic high-symmetry
direction, it is possible that Q = Q, depending on the
symmetry. In fact, in several cases it is easy to show that
Q = Q even if the particular spin-spin interactions are
not known, but in the remaining cases one does not know
whether Q g Q without calculations using the actual ex-
change parameters.

Among the ordering vectors Q that we have investi-
gated, those of the form (h, 0, 0), (h, h, h), (h, h, 0) pos-
sess high symmetry. We have also studied the less sym-
metric cases Q = (h, k, 0) and Q = (h, h, l), and the case
with no symmetry, Q = (h, k, l), where ~h~, ~k~, and ~l] are
all unequal and nonzero. These are the six possibilities in
a cubic crystal. Likewise, there are six symmetrically in-
equivalent directions of the external field. We denote the
field alignment somewhat difFerently to avoid confusion,
namely, [100), [ill], [110], [(rlO], [Qrl], and [(rl(].

Let us first consider ordering vectors of the form
(h, 0, 0). Then, owing to the cubic symmetry,

(aOO)
A(h, o, o) = 0 b 0 (16)

(Oob)
with eigenvalues Ai ——a and Az = As = b. The re-
spective eigenvectors are ei = (1,0, 0) and ez and es,
which span the plane perpendicular to eq. If A;„equals
the degenerate A2 and A3, the soft mode always appears
at k = Q [Figs. 1(a) and 1(b)]. The number of soft
modes is, however, not the same for different field align-
ments. For B

~] (1,0, 0), the two normal modes corre-

sponding to k = (h, 0, 0) become soft at B, because both
eigenvectors ez and es are J B [Fig. 1(a)). In addition,
there is one soft mode for k = (0, h, 0) and k = (0, 0, h)
each [Fig. 1(b)]. Taking also into account the modes at
(—h, 0, 0), (0, —h, 0), and (0, 0, —h), we find altogether
eight soft modes at B, for the six vectors in the star of
Q, which we denote by (Q)' or, in the component form,
by (Q, Q„,Q, ). For field alignments B

~~ (1, 1, 1) and
B

~] (1, 1,0), it is possible to find one eigenvector J B for
each member of (Qj'. There are thus six soft modes at
B = B,.

If the number of soft modes depends on the field align-
ment, as in the case discussed above, it is possible that
so does the order of the transition. In fact, we believe
that the number of soft modes at B = B, equals the
dimensionality of the order parameter; this is a crucial
quantity in the Landau-Ginzburg-Wilson theory of phase
transitions. 47

Let us then consider such an anisotropy that the eigen-
value Ai for Q = (h, 0, 0) is lowest; the eigenvector
ei is then parallel to (1,0, 0). For Q = (0, h, O) and
Q = (0, 0, h) the respective eigenvectors are (0, 1, 0) and
(0, 0, 1). If B is perpendicular to one of these eigen-
vectors, a soft-mode transition takes place at the cor-
responding wave vector, e.g. , at k = (0, +h, 0) and
k = (0, 0, +h) when B

]~ (1,0, 0), and at k = (0, 0, +h)
when B

~~ (1, 1,0). For example, if B
~~ (1, 1, 1), no eigen-

vector corresponding to (h, 0, 0) order is perpendicular to
the field. The soft-mode transition may or may not take
place at a (h, 0, 0) vector. Generally, it is only known
that the transition occurs in a field that is lower than
B = S[A(0) —Ai(h, 0, 0)]. The wave vector and the field
at which the transition takes place depend on the actual
values of A,

The analysis for ordering vectors of the form (h, h, h)
is rather similar to the case Q = (h, 0, 0): There is again
a unique eigenvalue and two degenerate ones. If A

equals the degenerate Az and As, there is a soft-mode
transition at a (h, h, h) vector for an arbitrary field align-
ment, whereas if A;„= Aq, there is a soft-mode transi-
tion at a (h, h, h) vector, provided that the field is per-
pendicular to one of the eight eigenvectors (+1,+1,+1).
For example, when B ]] (1, 1,0), magnons with wave vec-
tors (h, —h, +h), and (—h, h, +h) become simultaneously
soft at B, = S[A(0) —Ai(h, h, h)]. When B

~] (1,0, 0)
or B

~~ (1, 1, 1) one cannot assess, in general, whether a
soft-mode transition takes place at a (h, h, h) vector or
not.

The common feature of the ordering vectors Q
(h, h, 0), (h, k, 0), (h, h, l), and (h, k, l) is that the eigen-
values of A(Q) are unique. Therefore, for an arbitrary
nonsymmetric alignment of B, it is not known whether a
soft-mode transition takes place at one of the vectors of
(Q)'. For fields applied along the high-symmetry direc-
tions [100], [111],and [110] it is, however, often possible
to find an eigenvector of A(Q), which is J B and which,
therefore, becomes soft at B = S[A(0) —A;„(Q)].

The eigenvectors of A(Q) can be deduced if Q lies in
one of the crystalline symmetry directions. Consider, for
example, Q = (h, h, O). The Fourier sum of the interac-
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tion matrix A, has the form

(ado)
A(h, h, 0) = da0

(00 c)
which has eigenvectors (1, 1,0), (1, —1,0), and (0, 0, 1).
When Q = (h, k, 0), h g k, there are two eigenvectors
ei and e2 in the xy plane, while es = (0, 0, 1). When
Q = (h, h, l),

A(h, h, l) = dae
(eec

One eigenvector is (1,—1,0) and the other two have the
forms (1, 1, n) and (P, P, 1).

In Table I, we summarize our results of the soft-mode
analysis for magnetic structures in a cubic lattice. Wave
vectors at zone boundaries deserve, however, special at-
tention and must be treated separately. For example,
k and —k are equivalent at the zone boundary, whereas
they have been counted as two different vectors in Table
I. Furthermore, the eigenvectors can have special sym-
metric directions and the eigenvalues may display ad-
ditional degeneracy. Consider, for example, the zone-

boundary vector in the reciprocal lattice of the body-
centered-cubic system, Q = a/a(1, 1, 1), with 2a equal
to the lattice constant. A(Q) is proportional to the unit
matrix so that its three eigenvalues are degenerate. This
is a refiection of the fact that the bcc lattice consists
of two interpenetrating simple-cubic lattices so that a
two-sublattice antiferromagnet does not break the sym-
metry. In fact, most observed antiferrornagnetic struc-
tures correspond to zone-boundary wave vectors. For
example, of the four conventional fcc antiferromagnets
described by ordering vectors Q = vr/a(1, 0, 0) (type I),

~/a(1/2, 1/2, 1/2) (type II), Q = vr/a(1, 1/2, 0)
(type III), and Q = vr/a(1/2, 1/2, 0) (type-IV), struc-
tures of type I, II, and III correspond to a zone-boundary
vector. In Sec. VA we shall discuss the zone-boundary
effects on the eigenvalues and eigenvectors of A(Q) in
type-III fcc antiferromagnets.

B. Stability of the ordering vector Q
corresponding to A

In Sec. III A we listed the cases for which the sym-
metry requires that the wave vector Q of the soft-mode
transition equals the zero-field ordering vector Q. It was
shown that for a nondegenerate Am;„, this happens only

TABLE I. Number of soft modes for the various wave vectors Q and for different directions of the external magnetic field
B, which are possible under cubic symmetry. The modes become soft in a field B, = 8[A(0) —A„(Q)], provided that no other
mode becomes soft in a higher field. This is equivalent to assuming that the lowest eigenvalue A;„= A (Q). The number of
soft modes expresses how many of the eigenvectors e„(Q) are perpendicular to the field direction for the vectors in the star of
Q, {Qj".When the quoted number is zero, softening of the mode is, nevertheless, possible in the field B = S[A(0) —A„(Q)] if
the eigenvector e„(Q) is accidentally perpendicular to B, and in lower fields as well if no other mode becomes soft in a higher
Beld.

(h, 0, 0) (h, h, h) (h, h, 0) (h, k, 0) (h, h, l) (h, k, l)

Members in {Q)'
eq

e3

(1,0, 0)

in plane Z ey

in plane J eq

(1, 1, 1)

in plane J e~

in plane J eq

12

(1, 1, 0)

(1,—1,0)

(0,0,1)

24

(a, P, O)

(P, Oo)—

(0,0, 1)

24
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for external fields aligned in the planes perpendicular to
the eigenvector e(k), where k c {Q)'. In this section
we study whether Q equals Q even when the field is
slightly tilted away from one of these planes. Knowing
that Q = Q when the interactions are isotropic, we wish
to find out whether the strength of the anisotropic inter-
actions needs to be above a certain level for Q to depart
from Q or whether this is possible for arbitrarily small
anisotropie terms. One expects a priori the first possibil-
ity because experiments seldom show that the ordering
vector depends on the field alignment.

Let us first assume that Q = Q even when the field is
tilted by an angle 8 out of the plane J e(Q). This would
be seen as a decrease in B,or, equivalently, as an increase
in the eigenvalue A~;„(Q). According to Eqs. (13)—(14),
the change in A;„(Q) can be as large as

IV. COMPARISON WITH
THE MEAN-FIELD THEORY

A. Isotropic interactions

In the MF theory, the ground state is always described
by the wave vector Q that corresponds to the minimum
of J(k), i.e. , J(Q) = ming{ J(k)). In an external field,
the spin structure of minimum energy for an arbitrary Q
is given by

(S,) = QS2 —m2 [xcos(Q r, ) +y sin(Q r;)] + mz,

(22)

where

(23)
(Q) = [A ~ (Q) —A (Q)] 8' (19)

The increase AA~;„(Q) is clearly proportional to the
anisotropy of the interactions.

We then assume that a new ordering vector Q ' close to
Q is stabilized by the tilt because the eigenvector e(Q ')
is more closely perpendicular to the field than e(Q). The
eigenvalue A~;„(Q ') is, however, larger than A~;„(Q),
which tends to destabilize Q '. Let us assume for sim-
plicity that the new eigenvector e(Q ') is exactly per-
pendicular to the tilted B so that the increase in the
eigenvalue due to the tilt is AA = A~;„(Q ') —A~;„(Q).
To estimate AA we note that the change in the order-
ing vector Ak = Q ' —Q has to be sufficiently large
to rotate the eigenvector at least by an angle 8. Since
the components of e(k) transform like the correspond-
ing components of k, we may write (Ee(k)) oc (Ak)",
where n = 1, 3, 5, . . . . The required change Ak for a fixed
8 is smallest when n = 1. It then follows that

~

Ek
~

=
8

~ Q ~. Let us further assume that the isotropic term
dominates the spin-spin interactions. Since the gradient
of A;„(k) vanishes at k = Q, we obtain

1
&A =

2 [(q &i )'~(k)]i =g 8'Q', (20)

where q denotes a unit vector along Ak. The contribu-
tion from the anisotropic interactions to DA has been ne-
glected. If the increase in the eigenvalue due to a change
in the ordering vector, is larger than that due to the
anisotropy, i.e., if

The structure is conical with the antiferromagnetic com-
ponent rotating in the plane J B. In the field B, =
S[J(0) —J(Q)], the cone transforms continuously into
the polarized paramagnetic state. Both B, and Q are in-
dependent of the field alignment. Therefore, the MF the-
ory for the ordered state and the soft-mode calculation
for the paramagnetic phase give a mutually consistent
picture.

B. Anisotropic interactions

No general solution for the MF ground state of an an-
tiferromagnet with anisotropic spin-spin interactions has
been presented so far, not even for the spin structure
immediately below B,. We have recently studied this
question. In a forthcoming paper, we will present an
equation for the structure in the vicinity of the phase
boundary in the B Tplane. A-t B = B, (T = 0), the
MF result reduces to the soft-mode solution. The order-
ing vector immediately below B, is the one that yields
the lowest eigenvalue for the matrix A(k) of Eq. (16),
with B, = S[A(0) —A;„].Antiferromagnetism at T = 0
develops in the plane perpendicular to the external field.
Since only the in-plane interactions matter, the order is
determined by the corresponding 2x2 block of the 3x3
interaction matrix.

V. APPLICATIONS

-[(«)'~(k)] =9 O'- A ~ (Q) —A (Q) (21) A. Stability of type-III ordering in B g 0

the ordering vector Q is stable even though the field is
tilted away from the plane J e(Q). Since the left-hand
side of Eq. (21) is linearly proportional to the isotropic
interaction, the anisotropic force has to be sufBciently
large in comparison to its isotropic counterpart to cause
a change in the ordering vector when the field is rotated
with respect to the crystalline axes.

In Eq. (20) we assumed that the second derivative of
J(k) does not vanish. If it were equal to zero, which to
us seems very unlikely, the ordering vector would change
even for an arbitrarily small anisotropic interaction.

Several antiferromagnets of an fcc crystal lattice
show type-III ordering, like K2IrCls, 4s 4s P-MnS, M and
MnS2. This spin structure is characterized by the six k
vectors belonging to the star of Q = (vr/a)(l, 1/2, 0). We
show here that antiferromagnets that are of type III at
B = 0 can undergo phase transitions in an applied field.

We first derive some well-known properties of type-III
order using eigenvalue analysis. At the same time we
show how the eigenvalues and eigenvectors of the Fourier
transform of the interaction matrix are afFected when the
ordering vector is at the zone boundary. A(k) for k =
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(k, k&, 0) has the form

(ado)
A(k, ky, 0) = d b0

(Ooc)
If k~ = vr/a, so that k is at the boundary of the first
Brillouin zone, A(m /a, k„,0) = A( —x/a, ky, 0). The
xy component of this matrix equation reads d = —d,
since A ~(k) transforms like k~kp. Thus d = 0 and
A(m/a, k„,0) is diagonal.

Since the type-III ordering vector vr/a(l, 1/2, 0) is a
corner point of the first Brillouin zone, it follows also that
A[7r/a(1, 1/2, 0)] = A[7r/a(0, —1/2, —1)] yielding A** =
A", i.e. , a = c. Thus

one of the three crystalline axes, this case corresponds, in
fact, to the column for Q = (h, 0, 0) with A;„=Ai. Of
the high-symmetry-field directions, the transition takes
place at a type-III structure for B

~~
[100] and B

~~ [110]
when B = B, = S[A(0) —Ai s(Q)]. If the field is applied
along the [111]crystalline direction, B, will be lower and
the ordering vector may or may not be of type III. We
now concentrate on analyzing the soft-mode transition in
this field direction.

We assume that the Hamiltonian consists of an
anisotropic nearest-neighbor (NN) interaction and an
isotropic next-nearest-neighbor (NNN) interaction of the
type JzS, S~. The general form of the interaction be-
tween neighboring spins, separated by the lattice vector
r,~

= (a, a, 0), is

a00)
A[sr/a(1, 1/2, 0)] = 0 b 0

(00a)
t'K Kg 0 )

A[r,, = (a, a, O)] = Kg K, 0
(0 OK, )

(26)

The magnetic unit cell of a Q = vr/a(1, 1/2, 0) structure
is obtained by doubling the fcc unit cell in the [010] direc-
tion as shown in Fig. 2. If a ( 6, type-III order has easy-
plane anisotropy and spins are in the xy plane. If a & 6,
the anisotropy is of easy-axis type and the spins are along
the unique axis y. This is the case if the magnetic dipo-
lar interaction is the dominating source of anisotropy. s

More often, however, other sources of anisotropy domi-
nate. Indeed, both easy-axis [KzlrClz (Refs. 48 and 49)
and MnSz (Ref. 51)] and easy-plane [P-MnS (Ref. 50)]
type-III structures have been found.

In order to understand the behavior of type-III an-
tiferromagnets in an external field we study the tran-
sition at B,(T = 0) by using the soft-mode approach.
If the anisotropy is of easy-plane type, the solution is
simple. Antiferromagnetism develops at a vector be-
longing to the star of Q = vr/a(1, 1/2, 0) when B
B, = S[A(0) —Ai s(Q)] for all field alignments. In fields
0 & B (B„the ground state is a canted four-sublattice
structure in which the antiferromagnetic component is
perpendicular to B and shows a repeated left-left-right-
right pattern. 3

The behavior of type-III antiferromagnets with easy-
axis anisotropy is more complex. Because the easy axis is

(A (k) 0 0
A(vr/a, k„,0) = 0 A2(ky) 0

0 0 As(k„) J
(28)

with eigenvalues along the diagonal and eigenvectors
ei = (1,0, 0), ez = (0, 1,0), and es ——(0, 0, 1). The
eigenvalues are

Ai (ky) = —4K, + 4(K, —K,) cos(ak„)
+2J2[2 + cos(2ak„)],

The components of A, transform like r~r, . For ex-
ample, the interaction matrix for spins separated by
r,~

= (a, 0, —a) reads

( K~ 0 —Kg)
A[r,, = (a, 0, —a)] = 0 K, 0

(—Kg 0 K )
We next calculate the Fourier transform of the inter-

action matrix. It is necessary to find A(k) for wave vec-
tors of the form k = (7r/a, k„,0), which includes type-III
(k„= vr/2a) and type-I (k„= 0) ordering as particular
cases. We find

A2(k„) = —4K, + 2J2[2 + cos(2ak„)], (29)

+' v

FIG. 2. Magnetic unit cell for type-III antiferromagnetic
order in an fcc lattice. The black and white spheres rep-
resent oppositely directed spins for the ordering vector k =
vr/a(1, 1/2, 0). The spins are along the y axis in an easy-axis
antiferromagnet, while they are along an arbitrary direction
in the xz plane in an easy-plane system.

As(k„) = —4K —4(K, —K ) cos(ak„)
+222[2+ cos(2ak„)] .

Note that Kg does not enter into the equations above.
When k„= vr/2a or k„= 0 we recover the results by ter
Haar and Lines. We will not dwell on the question for
which values of K, K„Kg, and J2 the ground state is,
in fact, a type-III structure. Here we just assume that
the parameters are such that the zero-field structure is
of type III.

In type-III magnets the cos(ak&) term in Eqs. (29)
vanishes. If K, ) K~, the lowest eigenvalue is Az(k„)
so that the structure has easy-axis anisotropy. When
J2 = 0, A2(k„) assumes the constant value —4K, along
the line k = (~/a, k„,O). At k„= 0, describing type-
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I ordering, Az = As. The easy-axis type-III structure
is hence degenerate with an easy-plane type-I state and
with a continuum of easy-axis k = (n/a, k„, 0) structures.
A positive J2 is needed to stabilize the type-III order.

The degeneracy of the ground state for ordering vectors
k = (x/a, k„, O) has been found previously for the NN
antiferromagnetic Heisenberg model in the fcc lattice. ss

Our result shows that the degeneracy of the ordering vec-
tor is not lifted by the anisotropy of the NN interaction,
although the degeneracy in the spin direction is. These
results were found already by ter Haar and Lines4 in the
sense that they observed that there is no net average in-
teraction between neighboring (100) planes, which are
the building blocks of the k = (vr/a, k„, O) spin struc-
tures.

A manifestation of the degeneracy or near
degeneracy —of the ordering vector is the suppression
of the Neel temperature. Susceptibility measurements
have indeed shown this to occur in K2IrCl6. The ex-
perimentally determined ratio of the Weiss temperature
8 over the Neel temperature T~ is exceptionally large,
8/T~ = 10.s The effect is well understood as the exper-
imental 8/T~ ratio is in good agreement with the spin-
wave calculation by Lines. 55

The nearly degenerate energies of type-I and -III anti-
ferromagnets for small J2 are important in the selection
of the spin structure in an external field. To find the soft
mode for B

~~
[111],we first construct the 2x2 matrix

A(k), which is the zy block of the 3x 3 matrix A(k) with z
denoting the direction of B. Choosing x = (1, —1,0)/v 2,
y = (1,1, —2) /~6, and z = (1, 1, 1)/~3, we rotate A(k)
into the basis (x, y, z) using Eq. (12). We find

A** = (Ai + Az)/2,
A»=(A +A +4A )/6, (30)
A*" = (Ai —Az)/2v3 .

The eigenvalues Ai z of A(k) are

Ai(z)(k„) = —4[2K~+ K,]/3 (+) 4[K, —K~]

x [1+cos2(ky)]'~2/3

+2J2[2+ cos(2ak„)] .

For easy-axis anisotropy, K, —K & 0 so that A ~

A2. Thus A ~ is the relevant eigenvalue. For a type-III
structure, Ai = —4[K + 2K,]/3+ 2Jz, whereas Ai =
—4K, + 6J2 for a type-I state. For K, —K ) 3J2, spin
waves with type-I wave vectors become soft at a higher
Beld than those with type-I II wave vectors. However,
for the range of parameters K, —K —3J2, soft modes
with other k = (x/a, k„,O) vectors are possible as well.
To find them we minimize Ai(k„) along (vr/a, k„,0). The
soft mo des are

K, —K & 2' . q = vc/a(l, 1/2, 0) (type III),

2Jz & K, —K~ & 4J2 . q = [~/a, cos (p)/a, 0],

K, —K~ & 4J2 . q = vr/a(1, 0, 0) (type I), (32)

where

p = [(K, —K )z/12 J2z —1/3]'i2.

The antiferromagnetic structure is described by the
above wave vector when B - B,. For parameters
K, —K & 2J2, a transition must take place in interme-
diate fields 0 & B & B, because type-III order is stable
at B = 0.

The first of Eqs. (32) provides an example of the in-
equality (21) in Sec. III B, describing the stability of the
zero-field ordering vector. The strength of the anisotropic
interactions has to be above a certain nonzero value for
the ordering vector to change. Because of the constant
eigenvalue along k = (vr/a, k„,0) for NN interactions,
the threshold in the present case does not depend on the
isotropic NN interaction but only on J2. As a conse-
quence, the transition from an easy- axis typ e-III str uc-
ture to a type-I state (perhaps via intermediate phases)
in an external Beld can occur even when the spin-spin
interactions are not pronouncedly anisotropic.

K~ IrC16 is a well-characterized antiferromagnet with
T~ ——3.05 + 0.03 K.5 ' Neutron-difFraction measure-
ments have shown that the ordered structure at B = 0 is
of type III, with spins along the unique cubic axis.
The nearest-neighbor Ir-Ir exchange interactions have
been obtained from paramagnetic resonancei s" and
susceptibilitys4 measurements of a semidilute mixed crys-
tal, where Pt was substituted for Ir. The measurements
were analyzed in terms of a NN interaction

NN = JSi ' Sj + JxSi Sj + JySi S' + JzSi S& (33)

between NN Ir spins (S = 1/2). Here J is the isotropic
part of the exchange interaction, while J~, J„, and J,
are the anisotropic terms, which satisfy J~ + J„+J, =
0. The subscripts x, y, and z denote the principal axes
of the interaction. For nearest neighbors, separated by
r,~

= (a, a, 0), 2:, y, and z are along (1,1,0), (1,1,0), and
(0,0,1), respectively.

For the exchange parameters it was found that J/k~ =
11.5 K, J /k~ = —0.90 K, J„/kii = —0.39 K, and
J,/k~ = 1.29 K. The relations between these values
and those in the interaction matrix (26) are

K = J+(J, + J„)/2,
Kg = (J —Ji, )/2,
K, = J + J,

(34)

The anisotropy K, —K~ is positive, as it should be for
an easy-axis system.

The anisotropy of the NNN interaction was observed
to be extremely small. The isotropic part was found to
be antiferromagnetic with J2/k~ = 0.55 K. Thus type-
III rather than type-I order is favored. The interactions
are clearly NN dominated as Jz/ Ji = 0.05.

Assuming that the exchange parameters of the semi-
dilute system and of the K2IrCl6 compound are the same,
we have numerically determined the lowest eigenvalue
of the Fourier transformed interaction matrix A(k) in a
mesh of 12s/2 = 864 k vectors in the first Hrillouin zone.
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As expected, we find that A~j„ ls obtained at the type-III
ordering vector k = (vr/a, ir/2a, 0). The measured inter-
action parameters give (K,—K~)/ Jz = 3.5+0.5. Accord-
ing to Eq. (32), we predict that for B [[ [ill], in a range
of fields below B„the ordering vector is k = (7r/a, k&, 0)
with k„- 0.2ir/a although the order is of type III when
B = 0. The error bars of (K, —K )/ Jz are such that the
predicted high-field k„can vary from 0 to 0.28ir/a, thus
also including type-I order.

Theoretical values for B, are of experimental interest,
When B i[ [100] or B [[ [110],B, = S~[A(0) —A;„]/gp~,
where p,~ is the Bohr magneton and the factor g = 1.79.~

We have here explicitly written the factor hp = gpz/S,
which was absorbed in B in the previous formulas. The
eigenvalues are A(0) = 12J+ 6 ' and A;„= —4K, + 2J2
so that B, = 40 T. When B ]] [ill], B, is lower by 1%.
The predicted critical Gelds are somewhat high in view
of the relatively low T~ = 3.05 K. This is because of the
strong suppression of T~ in comparison with the Weiss
temperature 6t. The critical field is not expected to show
a similar reduction as T~.

Although the calculated B,'s are not yet readily
reached in neutron experiments, one could perhaps study
the stability of type-III order of KzlrCls when B ]] [ill]
at temperatures close to T~, where the critical field is
lower. We expect, however, that the relative stability
of the type-III structure increases along the B,(T) curve
and the transition to another k = (ir/a, k„,0) state might
not take place at T - T~, even though it occurred at
T = 0. In any case, experiments probing the high-Geld
spin structure of KqlrCls with B ][ [ill] seem interesting.

along several symmetric directions in the reciprocal space
reveal any scattered neutrons. Experiments could not de-
termine the ordered spin structure in this field region.

The spin-spin interactions in copper can be written as

(35)

where the first term is the dipolar force, J,~ is the
Ruderman-Kittel (RK) coupling, and K, describes the
anisotropic part of the exchange force. The RK term is
isotropic in spin space. The interactions have been cal-
culated from the electronic band structure. According
to Lindgard, Wang, and Harmon (LWH), assuming a
nonrelativistic RK force, the minimum eigenvalue is at
k = (vr/a, 0, 0) and shows easy-plane anisotropy. Thus
the high-field structure is of type I for all field directions
in the soft-mode theory. According to the calculations
by Oja, Wang, and Harmon s (OWH), which include
both relativistic RK coupling as well as anisotropic terms,

;„ is at k = (0.87ir/a, 0, 0), whereas A2 s(7r/a, 0, 0) is
higher by 0.6%. Because A~;„ is degenerate, the soft-

[01 1]

0.2

B. Nuclear ordering in capper

Susceptibility measurements have shown that nuclear
spins in copper order antiferromagnetically below T~ ——

60 nK. '5 Three antiferromagnetic phases were found
as a function of the Beld below B, —0.25 mT. The
spin structures were later investigated by neutron diffrac-
tion. At zero field, the phases displayed type-I antifer-
romagnetic order, characterized by (1 0 0), (0 1 0), and
(0 0 1) Bragg reflections. so As a function of the field,
applied along the [011] direction, the intensity of the
(1 0 0) refleetion first decreased and almost vanished at
B = 0.09 mT. In still higher fields, the intensity of the
(1 0 0) peak increased, showed a maximum around 0.16
mT, and finally vanished at B, = 0.25 mT. so Another
Bragg peak at (0 2/3 2/3) was found in intermediate and
low fields, 0.01 & B ( 0.13 mT, with the maximum in-
tensity around 0.10 mT. 26

In more recent neutron-diffraction experiments, the
magnetic field was applied also along the other crystal-
lographic directions. The general behavior of the vari-
ous (1 0 0) and (0 2/3 2/3) reflections was the same as
for B [] [011]. In high fields, aligned close to the [100]
crystalline directions, the (1 0 0) reHection was again
found. However, for fields applied along the [111]direc-
tion, type-I order was not seen in the high-Beld region
(Fig. 3), although the susceptibility signal indicated an-
tiferromagnetism up to B, 0.25 mT. Neither did scans

0.1

0
0 0.1

B (mT)

0.2

[1 00]

FIG. 3. Diagram illustrating the relative neutron inten-
sities of the antiferromagnetic Bragg reflections (1 0 0) and
(0 2/3 2/3) in copper as determined by measurements of An-
nila et aL (Ref. 39). The results are shown as a function of
the magnetic field in the plane B„=B„which contains the
high-symmetry directions [011], [111],and [100]. The inten-
sities for field directions equivalent under fcc symmetry have
been summed together. The (1 0 0) intensity is marked by
white contours and the region of the (0 2/3 2/3) intensity
is shaded. The antiferromagnetic phase is bordered by the
second-order B, curve. In the [011] and [100] field directions,
the (1 0 0) Bragg reflection was observed in fields immedi-
ately below B = B, = 0.27 mT. For 8

]~ [111], there is a
large field region below B = B, in which no neutrons above
the background were detected at the (1 0 0) and (0 2/3 2/3)
Bragg positions. B, for this field alignment was determined
from the measurements of the low-frequency susceptibility.
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mode transition always takes place at k = (0.87''/a, 0, 0),
in disagreement with neutron-diffraction experiments. 9

The calculated spin-spin interactions, used within the
soft-mode theory, cannot predict the unknown high-field
phase.

Another problem with the theoretical exchange pa-
rameters is the stability of the (0 2/3 2/3) order: The
(1 0 0) spin structure is favored in comparison to the
(0 2/3 2/3) order in all magnetic fields. The balance
between the ferromagnetic dipolar force and the antifer-
romagnetic RK interaction is, however, very delicate in
copper as was shown by LWH. Ordering vectors of the
form k = (q, q, 0) with q = 0.6 have almost as low en-
ergy as the type-I order with k = (a/a, 0, 0). Thus
the presence of (0 2/3 2/3) order in intermediate fields
can be explained in two ways: (1) It is stabilized by
Huctuations, in accordance with the theoretical predic-
tion by Lindgardsi or (2) by the molecular fields, which

require that actually A(0, 2/3, 2/3) - A(1, 0, 0), a situa-
tion that is within the estimated error limits of the band
structure calculations. The second possibility is the
same as the basic assumption in our theoretical model, 40

which successfully explained the observed interplay of the
(1 0 0) and (0 2/3 2/3) modulations s in copper within
the mean-field theory and correctly predicted the selec-
tion rules for the various (0 2/3 2/3) reflections for differ-
ent field alignments. This encourages us to pursue the
same approach in the present problem as well.

The eigenvalue A„(k) has a double-well structure as
a function of the k-vector as was shown by LWH. zi Al-
though the band-structure calculations2 2s indicate that
As 3(1,0, 0) is lower than A(0, 2/3, 2/3) by 10%, we as-
sume here, as in our previous work, i that the mod-
ulation corresponding to the true A;„ is close to k =
(vr/a)(2/3, 2/3, 0) and that k = (a/a, 0, 0) is only a local
minimum, i.e. , A2, s(1, 0, 0) - A(0, 2/3, 2/3) - A;„. An
important principle in our previous analysis was to look
for spin structures with only (1 0 0) and (0 2/3 2/3) mod-
ulations such that the lengths [S,

f

of the moments are
independent of the site i. For these structures, no higher
harmonics with large eigenvalues A are possible so that
the energy is determined by the two small and almost
equal eigenvalues A(0, 2/3, 2/3) and A2, s(1, 0, 0). With
(0 2/3 2/3) order only, this is possible at discrete values
of the field such as B = /3/19B, when B

ff [111].4i

With a superposition of the (0 2/3 2/3) and (1 0 0)
modulations, spins can have equal lengths in the range
0 & B & +3/19B, . It is the equal-moment principle
that locks modulation exactly at (0 2/3 2/3) —there is
no symmetry reason for A;„ to be located at this point.
This is unlike the case for k = vr/a(1, 0, 0) which, being
a boundary point of the first Brillouin zone, can be the
exact position of a local minimum for A„(k).

At fields larger than +3/19B, when B
ff [ill] it is

not possible to combine (0 2/3 2/3) order to (1 0 0) to
obtain equal-moment structures. Therefore, the stabi-
lizing lock-in mechanism for the (0 2/3 2/3) order does
not exist, One can then expect that the high-field struc-
ture is of type I, as was concluded in earlier theoretical
work, except when the ordering vector correspond-

ing to the true A;„shows up for fields perpendicular to
the eigenvector of A

Let us next see what we can predict for the properties
of the unknown phase, when B

ff (1, 1, 1), on the ba-
sis of experimental results and the general properties of
the soft-mode transition. We know that A2 3(m'/a, 0, 0) )
A;„because otherwise the transition would always take
place at a type-I vector. In addition, A;„must be a
unique eigenvalue; otherwise the mode would become soft
for all directions of B. The corresponding eigenvector e
should not be perpendicular to any of the three [100] di-
rections. Therefore, e~ g 0, e„g 0, e, g 0. Neither
should e be perpendicular to any of the six [110] direc-
tions. Thus,

f
e fgf e„ f, f

e fgf e, f, and
f e„ fPf e, f.

Inspecting Table I, we then find that the only possi-
ble ordering vector satisfying these conditions is cf the
most general form, viz. , Q = (h, k, t), with fhf, fkf, and
flf all unequal and nonzero. To stabilize antiferromag-
netic order with a Q = (h, k, t) when B

ff (1, 1, 1), the
eigenvector e, corresponding to A;„, has to be almost
perpendicular to (1,1,1). These conclusions are identi-
cal to our previous predictions based on the mean-field
theory.

We have confirmed that the Q = (h, k, l) phase for
B

ff [ill] is not unreasonable in view of the band-
structure calculations of the exchange interactions. By
slightly varying the interaction parameters from their cal-
culated values, we have produced a set of parameters
for which A;„ is obtained at the general, Q = (h, k, l)
type of position in the k space. Table II shows these
parameters, together with the original figures calculated
by OWH. The largest absolute change was made in the
nearest-neighbor interaction which has been enhanced by
18%.

We shall next show that the modified Hamiltonian
gives the experimentally observed high-field behavior,
calculated within the soft-mode theory. Because we in-
tend to employ the Hamiltonian in a numerical simu-
lation as well, we have included the dipolar interac-
tion up to the eighth-nearest neighbors only and ac-
counted for the longer ranging forces by the demagne-
tization and Lorenz factors. For the same reason, the
set of k vectors has been restricted to those compati-
ble with a system of 12s/2 = 864 spins in an fcc lat-
tice. Within this set, A~;„/k~ = —135.57 nK is obtained
at k = (vr/a)(2/3, 1/2, 1/6). The eigenvalues for the
other two relevant k vectors are A[(vr/a)(1, 0, 0)]/k~ =
—135.16 nK and A[(ir/a) (0, 2/3, 2/3)]/k~ = —135.31 nK.
For any other k, A„(k) has a value higher than these.
The eigenvalue for k = 0, which is needed to calculate
B„ is A(0)/k~ = 0.87 nK, assuming zero for the de-
magnetization factor. The eigenvalues for the (1 0 0)
and (0 2/3 2/3) order are such that their interplay
in low fields produces consistency with experiments
and our earlier calculations. Our results depend on
the particular choices for the interaction parameters
only through the three eigenvalues A [(vr/a) (1,0, 0)],
A[(m/a)(0, 2/3, 2/3)], and A[(x/a)(2/3, 1/2, 1/6)], and the
direction of the eigenvector e [(m./a)(2/3, 1/2, 1/6)].

The critical field B,(2/3, 1/2, 1/6) = S[(A(0)
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TABLE II. Elements of the total exchange interaction matrix (A;~) ~ = 6 SJ;~. + K, ~, Eq. (35), for difFerent lattice
vectors r,~. The values in the first columns are first-principles calculations by OWH (Ref. 23) second columns are the modified
interactions. The values are given in nK. The parameters R = P. A;~/(@oh p p) and Q = [P.(A~~g) ]

~ /(@oh p p), where

A;~ = 3[(A;~)* + (A;~)""+ (A;~")"] and p is the number density of atoms, are (R, Q) = (i) (0.34, 0.092) as calculated by
OWH; (ii) (0.34, 0.105) for the modified interactions; (iii) (0.42 + 0.05, 0.095 + 0.003) as determined by NMR measurements
(Refs. 17 and 16.)

(Aex)xx

OWH Modif.
(Aex) yy

OWH Modif.
(Aex) zz

OWH Modif.
(Ae x

)
z Q

OWH Modif.
(Aex) xz

OWH Modif.
(Aex)yz

OWH Modif.

(1,1,0) 12.597 14.884 12.597 14.884 9.428 10.958 1.979 0.644

(2,0,0)

(2,1,1)

(2,2,0)

(3,1,0)

(2,2,2)

(3,2,1)

(4,0,0)

(4,1,1)

-1.649 -1.337 -1.802 -1.507 -1.802 -1.507

2.003

0.320

0.637

0.530

2.005

0.320

0.664 2.005

0.530 0.272

0.664 -0.172 -0.197 -0.172 -0.197

0.495 -0.442 -0.234

0.249

-0.580 -0.580 -0.487 -0.487 -0.714 -0.714 0.008 0.008

-0.120 -0.087 -0.098 -0.065 -0.117 -0.084 0.046 0.046 -0.026 -0.026 0.050

0.350

0.030

0.350

0.000

0.350

0.030

0.350 0.350

0.000 0.030

0.350

0.000

-0.945 -1.085 -0.945 -1.085 -0.945 -1.085 -0.034 -0.034 -0.034 -0.034 -0.034

0.130

-0,034

0.050

( 5.69 107.51 53.28 )
A(2/3, 1/2, 1/6) =

I 107.51 —47.23 64.69

( 53.28 64.69 —26.09)
(36)

which is given in units of nKk~. Figure 5 shows the cal-
culated B,(2/3, 1/2, 1/6) for fields in the plane B& ——Bz,
which contains the high-symmetry directions [100], [111],
and [011].There are six "fingers" (A)—(F) centered at the
directions in which the different (e~, e„, e,) planes inter-
sect the plane B„=B,. The widths of the fingers depend

A(2/3, 1/2, 1/6)] reaches its maximum when A(h, k, l) =
A;„, which occurs when B is perpendicular to any of
the vectors in the star of the corresponding eigenvectors
(e)* = (e~, e&, e,). Thus there are 24 planes (ex, e„, e, j,
shown in Fig. 4(a), such that B,(2/3, 1/2, 1/6) is maxi-
mized for fields in these planes. The angle between the
eigenvector e = (—0.5369, 0.8145, —0.2199) and the [ill]
direction is 88.09', so that they are almost perpendicu-
lar. There are six (e, e„, e, ) planes close to the [111]
direction, whereas there are none in the vicinity of the
[001] and [011] directions. Thus B,(2/3, 1/2, 1/6) has a
low value for B [[ [001] and B [[ [011]but a high value for
B ll [»Il

To see how the critical fields for the ordering vectors
in the star of k = (ir/a)(2/3, 1/2, 1/6) vary between
the maximum values we calculated B,(2/3, 1/2, 1/6) =
S[(A(0) —A(2/3, 1/2, 1/6)] as a function of the field di-
rection. It is then necessary to know also the two larger
eigenvalues and their eigenvectors for the Fourier trans-
formed interaction matrix A[k = (vr/a)(2/3, 1/2, 1/6)].
These can be obtained from

on the angles of intersection. Note that the resolution has
been enhanced greatly to display the dependence of B,
on the field direction.

The critical fields for the k = (ir/a)(1, 0, 0) and k =
(~/a)(0, 2/3, 2/3) ordering vectors have been included in
Fig. 5. Both B,(1,0, 0) and B,(0, 2/3, 2/3) are constant
in the plane B„=B„the former owing to the degener-
acy of A(1, 0, 0) and the latter because the correspond-
ing eigenvector (I/~2)(0, 1, —1) is perpendicular to this
plane [see Fig. 4(b)]. All other modulations in the mesh
of 864 k vectors yield lower critical fields. According to
the diagram, the soft-mode transition around the [111]
field direction takes place at an antiferromagnetic state
described by the ordering vector k = (7r/a) (2/3, 1/2, 1/6)
or its cubic equivalents. This explains why neither
(1 0 0) nor (0 2/3 2/3) Bragg reHection was observed
in high fields when B [[ [111]. Around the [100] and
[Ol1] field alignments, the (0 2/3 2/3) modulation should
appear. B,(0, 2/3, 2/3) is, however, sensitive to any mis-
alignment of the field, whereas B,(1,0, 0) is independent
of the field direction. If B is tilted by 2' off the plane
B„=B„ the (1 0 0) order is stabilized over (0 2/3
2/3). Moreover, when the field is decreased below B„
the equal-moment principle favors (1 0 0) order against
(0 2/3 2/3). It is, therefore, understandable that in the
experiments it is the (1 0 0) order instead of (0 2/3 2/3),
which is seen in high fields close to the [1 0 0] and [0 1 1]
directions.

In the above example, Am;„was obtained at k
(vr/a)(2/3, 1/2, 1/6), but the true position k = (h, k, l)
is unknown. We now state briefly the general properties
of a finger diagram like that of Fig. 5 for any modulation
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of the (h, k, l) type. Let us denote by 8 the angle of the
field with respect the [011]direction: 8 = 8~iiij = 35.26'
for a field in the [ill] direction and 8 = 90' for a field
along [100]. For vectors in the star of the eigenvector
e = (a, P, p), 0 & a & P & p, the positions of the six
maxima as functions of the eigenvector components are

y
BmBX

C

(0,2/3, 2/3)

(1,0,0)

)& [Oiil

0.998 0.999

t 100]
I

1.000

y
BmBX

I

I
I

i

l
1

I

I

I

0
l

r

FIG. 5. Critical fields B, for antiferromagnetic structures
with ordering vectors in the star of Q = 7r/a(2/3, 1/2, 1/6) as
a function of the external field direction in the plane B„=B .
The scale is B, " = 0.37 mT. The finger-shaped curves la-
beled A, . . ., F represent critical fields for the various ordering
vectors Q = (h, k, l) as expressed by Eq (38)., with h = 2vr /3a,
k = vr/2a, and l = m/6a. The resolution has been greatly en-
hanced as shown by the scale on the horizontal axis. The
broken lines with labels (1,0, 0) and (0, 2/3, 2/3) show B,'s
for the corresponding ordering vectors.

cos(8) =
2 (e„+e,)2+ e~

(37)

where

(A) e = (p, a, —P), Q = (l, h, —k),
(B) e=(p, —a, —P), Q=(l, —h, —k),

(C) e = (P, —p, a), Q = (k, —l, h),

(D) e = (a, P, —p), Q = (h, k, —l),
(E) e= (P, —p, —a), Q=(k, —l, h), —
(F) e= (a, —P, —p), C} =(h, —k, —l) .

(38)

FIG. 4. Directions of the magnetic field B = (B,B„,B )
for which the critical field B, of the antiferromagnetic mod-
ulation reaches its maximum value according to our calcu-
lations. Full lines are formed by the corresponding points
(B~/B, B„/B,B,/B) on the unit sphere 2: + y + z = 1,
projected onto the 2:y plane. The symbols (o), (&), and (~)
mark the high-symmetry crystalline directions [100], [110],
and [111],respectively. (a) Modulations described by the or-
dering vectors in the star of Q = s /a(2/3, 1/2, 1/6) with spin
direction e(Q) = (—0.5369, 0.8145, —0.2199); (b) the same for
Q = vr/o(0, 2/3, 2/3) with e(Q) = ~ (0, 1, —1).

The above vectors e can be reflected in the plane B+ ——B,
and/or inverted, while retaining the value of 8. There-
fore, each maximum of B, corresponds to four difFerent
reflections of the (h, k, l) type, amounting to a total of 24
reflections. The other 24 (h, k, l) reflections correspond
to symmetrically equivalent values of 8 6 [vr/2, ~]. The
relative positions of the six fingers satisfy the inequalities

8g & 8g & 8@ & 8g,
Og &Og,
8D &6I~.

(39)

If the stability criterium of Eq. (31) is not satisfied at
Q = (h, k, l), the ordering vector may move in the Q
space when the field is tur~ed, and a more complicated
phase diagram results.

Several remarks should be made when the theoreti-
cal diagram of Fig. 5 is compared with its experimental
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counterpart, Fig. 3. The soft-mode theory applies only at
the phase boundary. It is not known how far into the an-
tiferromagnetically ordered region the stability regions of
the (h, k, l) phases extend to. One expects that the more
the boundary of a finger bulges out, the deeper inside the
antiferromagnetic region the (h, k, t) state is stable. Be-
low 8„the characteristics of the particular spin configu-
ration, in addition to the value of A(h, k, l), are important
as well: The configuration can be a single-k or a multiple-
k structure, and higher harmonics may be induced. In
the plane B„=B„the most stable (ti, k, t) structure is
a 4 —k state although for B

~~ [111]a 6 —k state is also
possible. ~ These questions will be investigated by
numerical simulations in a forthcoming paper.

The theoretical phase diagram suggests that in high
fields aligned close to the [ill] direction there are in
fact several phases. This explains the large field region
with no observed neutron intensity at the (100) Bragg
position. When the diagrams are compared on a finer
scale, it seems as if the experimental diagram would not
support a (h, k, t) state corresponding to the (F) finger.
There is no real discrepancy, however, because the neu-
tron measurements in field directions between the three
high-symmetry directions [100], [111],and [011]were con-
ducted only in fields B = 0.09 and 0.16 mT, which are
clearly below B = B, = 0.25 mT. The neutron contours
just interpolate these data and more extensive results in
the high-symmetry directions. Note also that experimen-
tal results for B aligned in between the directions [100],
[ill], and [011]may suffer from effects due to metastabil-
ity and slow nucleation of the thermodynamically stable
state, whereas the data for the three symmetry direc-
tions are less likely to suer from nonequilibrium effects
as these directions were investigated in more extensive
measurements. Because of the agreement between our
theory and the experiments for B

~~ [100], B
~~ [ill],

and B
~~ [011],we conclude that neutron-diffraction data

support our calculation and that it is worthwhile exper-
imentally to look for the predicted fine structure in the
phase diagram.

The high-field spin structure of copper for B
~~

[111]
has recently been studied also by Lindgard. Although
he too employed the soft-mode theory, a detailed compar-
ison between his and our results is not possible because
Lindgard has reported only his final numerical results.
Lindgard found that the wave vector of the spin-wave
excitation in the paramagnetic state, which softens is (i)
the type-I vector [vr/a(1, 0, 0), vr/a(0, 1,0), or 7r/a(0, 0, 1)]
when B (( [001] or B [[ [110],and (ii) k = (t + 6, t —6, 0)
with t (2/3)(vr/a) and 6005(7r/a) w. hen B ~'~ [111].
These results are, however, in contradiction with the
analytical properties of the soft modes (Sec. III). It is
seen from Table I, that if the ordering vector Q is of
the form (h, k, 0), there is a soft-mode transition at this
wave vector or its cubic equivalent when B

~~
[100]. This

is also true if Q is a type I vector. To obtain a soft-
mode transition at a type-I rather than a type-(h, k, 0)
vector for B

~~ [100], the eigenvalues must be such that
A(~/a, 0, 0) & A(h, k, 0). In copper, the type-I order has
easy-plane anisotropy: Aq(vr/a, 0, 0) = As(vr/a, 0, 0). Be-
cause of this degeneracy, the transition will then occur

for a type-I vector in an arbitrary field direction, in con-
tradiction with the finding (ii). Our numerical results
confirm that Lindgard's calculations must suEer from an
error.

C. Other systems

Nuclear ordering has recently been investigated in sil-
ver as well. is is s7 ~s ~i 72 Antiferromagnetic order was
observed below 560 pK. Experiments have been ex-
tended to negative spin temperatures as well, where
ferromagnetic order has been found at T ) —1.9
nK. ~ The spin-spin interactions of silver have been
studied extensively both experimentallys is is ~i 7s and
theoretically. s 2 74 The RK interaction is antiferromag-
netic and clearly dominates over the dipolar force. The
anisotropic exchange interactions should be small in com-
parison to the dipolar term. "4 The spin-spin Hamiltonian
for silver is thus rather isotropic with the dipolar inter-
action being the largest anisotropic term.

The predicted ground state of silver at zero field is
a type-I antiferromagnet, characterized by the order-
ing vectors (vr/a, 0, 0), (O, vr/a, 0), and (0, 0, vr/a) and
with easy-plane anisotropy. 24 74 7s The soft-mode analy-
sis then predicts, consistently with earlier calculations us-
ing the mean-fields2 and spin-wavess theories and Monte
Carlo simulations, s '~s that the transition from the polar-
ized paramagnetic state takes place to a type-I antiferro-
magnet for all alignments of the external field. These
predictions can, hopefully, soon be tested in planned
neutron-diKraction experiments.

Studies of nuclear ordering in gold are underway. In
this metal, the RK interaction is expected to be even
stronger than in silver. 3 The predicted spin structure is
again of type I. Although weak in comparison with the
isotropic RK interaction, the strength of the anisotropic
exchange might be comparable to dipolar forces. It can-
not, therefore, be predicted whether the expected type-I
structure shows easy-plane anisotropy as in copper and
silver or easy-axis anisotropy as in some lanthanide and
actinide monopnictides with type-I order. 2 The magnetic
phase diagram would be more interesting for the easy-
axis case because, for example, with the [ill] alignment
of the magnetic field, there would be competition be-
tween the energies caused by anisotropy and external
field.

Among the other metallic nuclear magnets investigated
so far, the soft-mode theory has recently been used
by Aoyama and Ishii7 to investigate field-induced phase
transitions in rare-earth compounds such as PrNi5. An
extension of the present analysis to the hexagonal sym-
metry would allow studies of Pr, Tl, and Sc as well. Al-
though AuIn2 has a cubic structure, we cannot draw any
conclusions about nuclear ordering in this compound be-
cause the spin-spin interactions are not known. Rh pro-
vides an interesting material for a study of magnetic or-
der in an external field, since the interactions are strongly
anisotropic. 74 Reliable prediction of the ordered struc-
ture calls for first-principles calculation of the exchange
interactions.
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VI. SUMMARY AND DISCUSSION

The transition from the polarized paramagnetic state
to the antiferromagnetic phase in the critical field B, at
T = 0 has been investigated by spin-wave theory. The
analysis applies to spins in a lattice of cubic symmetry.
The Hamiltonian consists of the Zeeman term and spin-
spin interactions, which can be anisotropic. By emplo„. --

ing the linear spin-wave theory, antiferromagnetic tran-
sition to a state described by an ordering vector Q was
discussed in terms of softening of the corresponding spin-
wave excitation.

The onset of antiferromagnetic order for B = B, was
shown to be an eigenvalue problem, which takes the same
form both in the soft-mode and mean-field theories. The
smallest eigenvalue of the Fourier transformed 2x2 inter-
action matrix, which describes the spin-spin interactions
in the plane J B, determines B„Q,and the spin direc-
tion. For a sufficiently anisotropic spin-spin interaction,
all these quantities can depend on the direction of B with
respect to the crystalline axes. However, when Q shows
an easy-plane anisotropy, which is possible for ordering
vectors of the type Q = (h, 0, 0) and Q = (h, h, h), the
direction of B has no such effect. The number of modes
that become simultaneously soft when B = B, was tab-
ulated for the various symmetry directions of Q and B
which are possible in a cubic system.

The general results were first applied to study the
stability of the easy-axis type-III antiferromagnetism of
an fcc lattice. It was shown that when the anisotropic
nearest-neighbor interaction is much stronger than the
isotropic next-nearest-neighbor coupling, type-III order
is unstable against type-I order in a sufficiently high mag-
netic field applied along the [111]crystalline axis. When
the anisotropic and isotropic terms are comparable, the
high-field ordering vector is of the type Q = (vr/a, k„,0),

which is between type-I and type-III vectors. Such an
ordering vector, with k„= 0.2m. /ai was predicted for

K2IrCls in the high-field region B B, when B ]i [111].
Experiments were proposed to look for this transition.

Another application discussed in this paper was the
magnetic phase diagram of nuclear spins in copper at
nanokelvin temperatures. We looked for an explanation
for copper not showing type-I antiferromagnetism in the
region of fields below B, when B i] [ill], although this
type of ordering was observed in the same fields when
B ]i [100] or [110]. The only explanation compatible
with the soft-mode theory is that for B ]i [ill] soften-
ing of the spin-wave mode takes place at a wave vector
Q = (h, k, t), where ]hi, ]k], and ]l] are all unequal and
nonzero. The result agrees with our previous proposal
based on the mean-field theory. 4s It was shown that var-
ious (h, k, t) phases should be stable in the high-field re-

gion B - Bc for several other field alignments besides
those close to [111]. A model Hamiltonian reproducing
the experimentally observed behavior at high fields was
constructed with exchange parameters close to their the-
oretically calculated values. In a forthcoming paper, ss we
will describe the spin configurations in the whole ordered
region, determined from numerical simulations using the
same Hamiltonian. Some remarks were made on the or-
dered nuclear spin structures of silver and gold, which
are expected to be of type I.
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