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Interfacial roughness in superlattices is currently a topic of significant interest as a result of its impact
on device applications and its influence on thin-film phenomena. In this work we examine the effects of
interfacial roughness on x-ray diffraction from superlattices. By means of a Taylor expansion of the am-
plitude reflection coefficient of the multilayer, we present general expressions for the specular, diffuse,
and total diffracted intensity from a rough multilayer and examine how these quantities are influenced by
roughness distributions and correlations among the interfaces. We present analytical solutions for exem-
plary structures including superlattices with no roughness, correlated roughness, uncorrelated rough-
ness, and partially correlated roughness. We also present a model for cumulative roughening in multi-
layers and characterize its diffraction signature. We show how specific configurations of interfacial
roughness give rise to a variety of additional features in diffraction spectra beyond the customary
pseudo-Debye-Waller attenuation. Specifically, we illustrate how roughness distributions induce
broadening of the diffraction features, and how modulations in the diffuse scattering result directly from
interfacial roughness correlations. We also show that partial correlation of interfacial roughness consti-
tutes a second important source of peak broadening.
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I. INTRODUCTION

X-ray diffraction has been used extensively as a rapid,
nondestructive means of eliciting structural information
from superlattices. The technique can be applied to a
wide range of structural phenomena including strain,’?
epitaxial orientation,>* growth morphology,>® interfacial
mixing and amorphization,””® and crystalline coheren-
cy.>!% An important aspect of multilayer structure re-
ceiving much attention recently is the roughness of the
interfaces. From a technological standpoint, interfacial
roughness in multilayers is important in a variety of ap-
plications. Roughness is extremely important, for exam-
ple, in multilayer optical elements for x-ray wavelengths,
as it dramatically affects the reflectivity of these struc-
tures.!! Although currently debated, recent experimental
studies on coupled magnetic multilayers exhibiting giant
magnetoresistance indicate that interface roughness
enhances the effect.!> Because of the increased presence
of multilayer structures in technological applications, the
ability to measure and control interface roughness will
presumably become more critical. Thus an understand-
ing of the x-ray-diffraction (XRD) signature of interfacial
roughness is crucial to the development of XRD as a use-
ful analytical technique.

X-ray diffraction from superlattices can be divided into
two regimes. These regimes are commonly referred to as
“low angle” and “high angle,” though they more general-
ly correspond to size regimes of the scattering vector q.
The low-g regime is defined by |q|=27/A while the
high-g regime is given by |q|=~2m/d, where A is the
artificially induced bilayer period and d is the average in-
teratomic spacing perpendicular to the scattering vector.
Features in the high-q superlattice spectra result from in-
terference between scattering from atomic periodicity
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and the artificial periodicity imposed by the superlattice
structure. These features are highly sensitive to atomic
structure at the interface and can, for instance, be used to
determine whether crystalline registry is preserved across
interfaces.!>'* Features in the low-g spectra, on the other
hand, result exclusively from the imposed layer structure,
and are sensitive to morphological features of the inter-
face such as roughness. Several reports describe the ex-
traction of interface roughness parameters from experi-
mental diffraction spectra.!>16

Since diffraction experiments measure intensity rather
than electric field, direct access to the structure of the su-
perlattice through Fourier transformation is generally
precluded by the lack of phase information. For this
reason, structural information from superlattices is typi-
cally extracted by fitting spectra generated from models
to the experimental data. In the high-g regime, scattering
is weak and kinematic!” models are typically employed.
Nonidealities such as interfacial alloying,18 discrete and
continuous layer thickness fluctuations,'>!° finite coher-
ence lengths,” and epitaxial strains?® have been incor-
porated. Though kinematic models are often used in the
low-q regime, this approach is not valid in the presence of
strong dynamical scattering. In this case, dynamical
diffraction models?' or optical models?? are more ap-
propriate. The effects of interface roughness (layer thick-
ness fluctuations) on low-g scattering have been recog-
nized and incorporated in several models,?® and several
theoretical treatments for scattering in rough multilayers
have been presented, including those by Green’s func-
tions?>?* and first-order perturbation theory.?>?¢ The
effects of roughness distributions and correlations on
diffraction for superlattices has not been explicitly treat-
ed, however, and this is the subject of the present work.

One of the most common approaches for treating
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roughness in multilayers is to fit the specular 6-26
diffraction spectra to recursive Fresnel models using the
Born approximation to treat interfacial roughness.?’
This treatment leads to a pseudo-Debye-Waller attenua-
tion of the diffracted intensity, exp{—g2n3o?}, 3!
where o is the rms interface roughness of the layers and
n, is the index of refraction of the environment. While
attenuation of the superlattice peaks is invariably ob-
served in real superlattices, this treatment does not ac-
count for other changes to the ideal spectrum caused by
interface roughness. Furthermore, analysis of interface
roughness solely through the specular reflectivity is limit-
ed in that it cannot differentiate surface roughness from
interdiffusion.’! Differentiating these effects is essentially
a problem of measuring the lateral length scale of the
roughness, which can be done through careful measure-
ment of diffusely scattered intensity along nonspecular
directions.!’ The diffusely diffracted spectrum can also re-
veal unique information regarding the vertical correlation
of roughness within the superlattice. Although it is well
known that multilayers exhibit peaks in the specular
scattering at the Bragg condition (q,=m2mw/A) whose
amplitudes are determined by the Fourier coefficients of
the composition modulation,!” a perhaps lesser known
fact is that nonideal multilayers can exhibit similar peaks
in the diffuse scattering.>®> Though the nature of this
enhancement is debated,** it is generally recognized that
enhanced diffuse scattering is related to interfacial defects
which are to some degree replicated or correlated from
interface to interface within the multilayer.?¢

In the low-q regime, the diffraction spectrum is com-
posed of specular and diffuse components, both of which
are strong functions of ¢ and o. Despite this, many
diffraction models treat either the total diffracted intensi-
ty”° or the specular intensity,*® though neither is explicit-
ly measured in a typical diffraction experiment. In the
6-26 diffraction geometry, one measures the specular in-
tensity plus the portion of the diffuse intensity scattered
in the specular direction. Before one can properly ac-
count for this in a diffraction model, it is necessary to cal-
culate both the specular and diffuse components of the
scattered radiation. In this work, we will develop general
expressions for the specular, diffuse, and total diffracted
intensity from nonideal multilayers exhibiting roughness
distributions and correlations. We will define precisely
what we mean by the terms “specular,” “diffuse,” “distri-
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bution,” and “correlation,” and will treat the cases
schematized in Fig. 1 which are, in order of increasing
complexity, (a) no roughness, (b) correlated roughness, (c)
uncorrelated roughness, and (d) partially correlated
roughness. Finally, we will present a model for structural
evolution in multilayers under non-
equilibrium growth conditions and discuss its diffraction
signature in terms of cumulative roughness distributions
and correlations. Through this simple set of models we
present a rigorous yet intuitive means of assessing the
influence of interfacial roughness on superlattice
diffraction.

II. SCATTERING IN ROUGH MULTILAYERS
A. Rough surfaces and random Gaussian variables

We will describe a rough surface in terms of a random
Gaussian variable z defined as the deviation of the inter-
face from its mean position, an approach which has been
successfully applied to scattering from rough sur-
faces.’"¥ The functional form of z is given by the inter-
face profile function z(x), illustrated in Fig. 2(a). Each
interface profile function varies about a local origin posi-
tioned at the mean interface location within the superlat-
tice. The probability that a point on the interface is lo-
cated between a value z and z +dz is described by P(z),
the Gaussian probability density distribution.
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The magnitude of the rms roughness is given by o, the
width of this distribution as shown in Fig. 2(b). We will
frequently evaluate the expectation value of a function
[i.e., (F(2)) ], mathematically given by Eq. (2) below:

(F2)= [ “H2P(2)dz . @)

Frequently, the arguments in F involve a complex ex-
ponential dependence on the interface profile function
z(x), resulting in expectation values which assume the
following form:

(explikz(x)]) =exp(—«k%0?%/2) , (3)

where « is the wave vector magnitude (k=27/A) and A is

FIG. 1. Schematics of the nonideal multi-
layer structures treated in this work: (a) no
roughness, (b) correlated roughness, (c) un-

‘z(’)”’: correlated roughness, and (d) partially corre-
¢@.q  lated roughness. Each interface and the layer
directly underneath it are assigned the same
index, j. Quantities associated with interfaces
(r,2,z(x),{(x),0) are shown to the right of the
interface, while those associated with layer
(n,w,C) are shown inside the layer. Note that
the numbering scheme for the layering is from
Incident,

reflected, and transmitted electromagnetic
d. waves are shown for the first case.
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FIG. 2. The rough interface is described by the interface
profile function z(x) shown in (a) which varies with Gaussian
statistics about the mean position of the interface, z=0. The
rms amplitude of the roughness is described by the standard de-
viation ¢ of the Gaussian probability density distribution P(z)
shown in (b). The lateral coherence length of the roughness, &,
is approximated by the distance between surface asperities and
is assumed to be much smaller than the rms roughness (o <<§).

the x-ray wavelength. A related quantity is the magni-
tude of the scattering vector, |q|, which, for specular
scattering, is given by ¢, =|q|=4wsin6/A. For normal
incidence, the wave vector is related to the scattering vec-
tor by k=gq, /2.

B. Interfacial roughness correlations

It is important to distinguish two types of correlation
in the multilayer structure. The “correlation length” of
the roughness, &, typically refers to the lateral distance
along an interface at which the z heights of two points on
the surface become statistically uncorrelated.>? This di-
mension is approximated by the lateral distance between
surface asperities in a rough interface as shown in Fig.
2(a). Another type of correlation, treated in this work,
refers to how the profiles of consecutive interfaces map
onto one another in a multilayer. Some authors distin-
guish this as “z correlation.”!® If two interfaces are com-
pletely correlated, their interface profile function will be
equal [Fig. 1(b)]. For completely uncorrelated interfaces,
the interface profile functions will be distinct and statisti-
cally uncorrelated [Fig. 1(c)]. The degree of correlation
of interfaces bounding the jth layer can be described by
the correlation coefficient C;,

. (Zj(X)Zj+1(x)>
! [<Zj(x)2><zj+1(x)2)]l/2 ’

It is also useful to define the deviation coefficient Dj

defined such that C}+D}=1. For total correlation C =1
and D =0 while for no correlation C =0 and D =1. Par-
tially correlated interfaces are characterized by fractional
values for C and D [Fig. 1(d)]. These interfaces can be
described by decomposing the interface profile functions
into correlated and uncorrelated components, as will be

described in Sec. IV D.

4)

C. Variance of a rough surface

The variance V of a random variable describes the
spread of that variable about its mean value. The vari-
ance of a rough surface is given by

Vizx)]={([z(x)—(z(x)) ?) =(z(x)*) —{z(x))?* .
(5)
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Since we define the origin of the function to lie at the lo-
cal mean interface position, {z(x))=0, the variance be-
comes simply the square of the rms roughness of the in-
terface profile function: ¥ ={z(x)?) =02 The variance
of a rough surface is extremely important in determining
its scattering properties. This is because a nonzero vari-
ance for the surface profile function will induce a nonzero
variance in the amplitude reflection coefficient p, leading
to diffuse scattering. This will be developed in the follow-

ing section.

D. Specular and diffuse scattering

The amplitude reflection coefficient p is in general a
complex quantity. The variance of a complex expression
can nevertheless be calculated in a manner similar to that
in Eq. (5):

Vip)=(lp—<{p)*)={pp*)—{p){p*) . (6)

By means of Eq. (6), one is able to partition the total
reflected intensity (R) into total, specular, and diffuse
components given below.>! The subscripts ¢, s, and d
refer to total, specular, and diffuse, respectively, while p
is the amplitude reflection coefficient of the scattering.
Similar equations can be derived for the transmitted in-
tensity (7)), by replacing p by 7, the amplitude transmis-
sion coefficient, in Egs. (7)—(9) below,

R,={pp*) , (7)
R, ={(p){p*), (8)
R;=(pp*)—{(p){p*) . 9

Figure 3 shows a general case of scattering from a sur-
face. The scattering vector q is defined by the incident
and scattered x rays, Sy and S according to q=«(S—S,).
Specular scattering is associated with equality of the in-
cidence and reflection angles 6; and 6,, whereupon the
scattering vector assumes the form q=(0,0,q,). In non-
specular scattering, these angles are not equal and
q=(g4,q,,q,) as shown in the figure. Though the terms
“nonspecular” and ““diffuse” are often used interchange-
ably, this is misleading since it implies that there is no
diffuse scattering in the specular direction. Diffuse

FIG. 3. Diagram showing a generalized scattering event in
reciprocal space. Since 6,76,, the depicted scattering is non-
specular. The integrated diffuse intensity R, is contained in the
(g,,q,) plane, while the specular intensity R; is concentrated at
the local origin of the plane, (0,0,q,).
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scattering can occur into any direction above the sample
surface, including the specular direction. A better inter-
pretation of specular and diffuse scattering is that diffuse
scattering is the field scattered by the deviation of inter-
face from that of a smooth multilayer, whereas specular
scattering results from the average change in electron
density associated with traversing the interface. The spa-
tial breadth of the distribution of scattered intensity from
a surface is thus directly related to the width of the sur-
face height distribution, o.

An implicit caveat of the above treatment is that R,
refers strictly to the integrated diffuse intensity over the
27 steradians over the surface. In reciprocal space, R,
corresponds to the integrated intensity over the g,,q,
plane at a particular value of g,, as illustrated in Fig. 3.
The intensity at (0,0,q,) is determined by the specular
reflectivity R, in addition to the diffuse intensity associ-
ated with this point. R, describes the total intensity ap-
portioned to the diffuse field but not how that intensity is
spatially distributed within the diffuse field. This distri-
bution depends on both the magnitude of the roughness,
o, and on its in-plane spatial frequency distribution, ap-
proximated by coherence length £. This is an active area
of experimental'®343¢ and theoretical®>*"8 research.

E. Wave propagation in a rough multilayer

Following the approach of Eastman,? the scattering
from a rough multilayer can be described in terms of a
phase perturbation to waves traveling through the film.
Figure 4 shows an interface described by the interface
profile function z;(x), which separates two media of
c}jfferent refzactive indices, n; _; and n;. Vectors E j+__1,
E j__l, and E j+ are the normally incident, reflected, and
transmitted waves, respectively, reflected and transmitted
components, respectively, while E ; is the incident wave
from underlying layers. The phase of a wave traveling
through this interface will be shifted from that of a wave
passing through a smooth interface on account of the

Lo
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FIG. 4. Schematic showing how roughness is treated in the
phase perturbation model. Horizontal field components are
equated at the interface after compensating for the phase
difference caused by displacement of the interface by the dis-
tance I.

propagation through extra path length I =z;(x). In the
case of a superlattice each layer and associated interface
can be described by a transfer matrix S; which relates the
four interacting electromagnetic waves:

=+ 7+
B =5 % (10)
BT, | VB

where S is given by

1 exp(ia;)
S;=-=
tj

riexp(ib;)

riexp(—ib;) exp(—ia;) an

Here, r; and ¢; are the Fresnel amplitude reflection and

transmission coefficients for an ideal interface at normal
incidence:

n;_,—n;
r=—t——_l (12)
nj_+n;
2n;
j—1
= (13)
Pty

The quantities @ and b are abbreviations of the following
quantities:

a;=klA;z;(x)+¢; , (14)
b;=kZz;(x)—¢; . (15)

Following the notation used by Eastman,?® 3 jand A; are
shorthand notations for the sum and difference of the re-
fractive indices of materials separated by the jth inter-
face:

2;=n;_,+n;, (16)

A;=n;_;—n;. (17)

In addition, ¢; is the phase factor associated with
transversing a layer of average thickness w; and refrac-

tive index n; at normal incidence: ¢;=xn;w;. The
transfer matrix for the entire multilayer is simply the

product of the individual transfer matrices for each layer:
Z=31S2S3"'SM_1SMSM+1 . (18)

Since there is no back-reflected wave incident from the
bottom of the multilayer, E;” =0, and the amplitude
reflection coefficient of the entire superlattice, p, is deter-

mined by a ratio of matrix elements:
p=E; /E§ =Z,,/Z,, . (19)

The phase perturbation approach assumes there is no
large difference between the horizontal and tangential
field components at the interface, and also neglects local
changes in the angle of incidence induced by the rough-
ness. Both assumptions are valid assuming that the inter-
face profile function is everywhere differentiable and that
the amplitude of the roughness is small compared with its
lateral length scale (o <<£).® Numerous experiments
show that the condition o << ¢ is often fulfilled for multi-
layers prepared on smooth substrates.3¢
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F. Scattering from a single rough interface

It is instructive to compare the scattering from rough
multilayers with that from a single rough interface. For
this reason, we now apply the formalism developed above
to a single rough interface. We let j =1 such that the in-
terface bounds materials with refractive indices n, and
n;. The interface roughness is 0;. By making the ap-
propriate substitutions in Egs. (10)-(19), we find that

p=Eq /EJ =rexp[ —2iknyz,(x)] . (20)
By substituting this amplitude reflection coefficient into
Egs. (7)-(9) and evaluating the expectation values using
Eq. (3), we produce the well-known results for the total,
specular, and diffuse components of the reflected intensi-
ty from the rough surface’! given below. It is evident
that while the roughness has no effect on the total
reflected intensity, it does induce an exponential modula-
tion of the specular and diffuse fields according to the

pseudo-Debye-Waller damping term exp{ —4k’n (2)0(2)}.
R,=rt, 1)
R,=rlexp(—4x’nio?), (22)
R,=r?[1—exp(—4x’n3o?)] . (23)

III. APPROXIMATIONS

A. Taylor expansion of multilayer reflectivity

In calculating the reflected intensity from rough multi-
layers, it is clear from Egs. (19) and (7)-(9) that expecta-
tion values involving rational arguments must be evalu-
ated. For some of the cases treated here this is inconse-
quential, while for others it is a severe impediment. For
the case of perfectly correlated roughness, the interface
profile function z,(x) is the same for all interfaces and
consequently can be factored from the rational expres-
sions, allowing the expectation values to be explicitly cal-
culated. For the cases of uncorrelated and partially
correlated roughness, however, the expectation value of
the amplitude reflection coefficient is described by the
general expression in Eq. (24) below. Here separation of
statistically independent components is precluded by the
fact that each interface profile appears as an argument in
both the numerator and denominator of the expression:

Flz1(x),25(x),25( . (x)
[21(x),z5(x),z3(x 2M+lx]> (24)

), .
Glz1(x),z5(x),z5(x), . . ., Zpr 1 1(X)]

(p>=<

One means of treating this problem is through Taylor
expansion of the multilayer amplitude reflection
coefficient so that rational arguments may instead be
represented as an algebraic sum of terms. At normal in-
cidence, the amplitude reflection coefficient for an inter-
face is determined essentially by the difference in refrac-
tive indices of the adjacent media [Eq. (12)]. Since the re-
fractive indices for most materials at x-ray wavelengths
differ only slightly from one (n=~1—8 where §=~107°),
the 7, will be on the order of 1075, Thus, if one expands

J
the multilayer reflectivity in powers of the individual
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Fresnel reflection coefficients Tis it is clear that the ex-
pression will be well represented by only the first few
terms (we truncate the series at second-order products of
the r;). Although the number of scattering events in-
creases as one considers higher-order reflections in a su-
perlattice, this increase is completely offset by the intensi-
ty decrement associated with reflection from an interface,
provided the number of interfaces does not approach the
order of 1/r;. It should be mentioned that by truncating
the Taylor expansion at second-order powers of r;, the
description of the reflected intensity reduces to that of
the kinematic approximation. Though the true dynamic
character can be retained by including higher-order
terms, this correction is extremely small for typical multi-
layers at normal incidence.

The Taylor expansion allows the amplitude reflection
and transmission coefficients for the multilayer to be de-
scribed in terms of statistically independent quantities for
which the expectation value can be evaluated. By means
of the expansion Eq. (24) can be approximated by the
more tractable expression

(PY=H[(F[z2,(x)]),(Flzo(x)]), . . .,
(Fprlzar (0] . (25)

By substituting expressions (11)-(18) into Eq. (19) and
carrying out the expansion, we obtain the following ex-
pressions for the amplitude and intensity reflection
coefficients of the multilayer:

M+1
p=~ 2 rjexp|—i|s;+ 2 2ay , (26)
j=1
M+1 M+1j—1 j
= r2+ > X 2rjricos |di+ 2 2a;+s;
j=1 j=2 k=1 I=k+1
27

In the above expressions s and d are compact notation for
the sum and difference of a and b, respectively,

=a;+b;=2kn; _z;(x), (28)

d.:aj—bj: x)+24; . 29)

; —ZKanj

B. Caveats of the Taylor expansion

Because of the cosine dependence on the incidence an-
gle 6, in the general form of the Fresnel reflection
coefficients,*’ it is important to note that the Taylor ex-
pansion we employ will hold only for a limited range of
incidence angles. The truncated expansion applies when
r; <<1, which is generally fulfilled at x-ray wavelengths
for angles of incidence 6; >40°. For smaller incidence an-
gles, the r; tend toward unity, dynamical effects become
more important, and a greater number of terms must be
retained in the Taylor expansion in order to accurately
describe the behavior. For this reason, we assume normal
incidence diffraction geometry for the purpose of study-
ing the effects of interfacial roughness in the models
shown in Fig. 1. The magnitude of the scattering vector
is varied by means of the x-ray wavelength A rather than
the incidence angle 6;. Since interfacial roughness is
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manifested by the dephasing it induces in rays scattered
from adjacent points on the interface, it is immaterial
whether the severity of the dephasing is varied by means
of the wavelength or the incidence angle under the as-
sumptions of the model. Both angle- and wavelength-
dispersive techniques are widely applied to the experi-
mental characterization of multilayers.*!"4?

Although strong dynamical scattering cannot be treat-
ed under the approximations employed in this model, this
shortcoming is ameliorated by the presence of interfacial
roughness which partitions intensity away from the spec-
ular and into the diffuse field. Roughness induces ran-
dom phase shifts at the interface thereby hindering con-
structive interference among multiply scattered rays at
the Bragg condition (dynamical diffraction). Even for
rough interfaces, however, dynamical effects will become
important at sufficiently small g,, and the implications of
this will be discussed in Sec. V B. Finally, by assuming
both refractive indices in the multilayer to be real, we
have neglected absorption. Though it can easily be in-
cluded, it is not germane to the goal of these calculations.

IV. APPLICATION
TO VARIOUS FORMS OF ROUGHNESS

Using the general expression developed above for the
amplitude and intensity reflection coefficients [Egs. (26)
and (27)], we now present expressions for the total, specu-
lar, and diffuse reflected intensities for each of the multi-
layers shown in Fig. 1. This involves substituting the ap-
propriate values of a;, s;, and d; into the general expres-
sions (26) and (27) and calculating the expectation values
given by Egs. (7)=(9). In all cases, the diffracted intensity
can be expressed in the following form:

M+1 M+1j—1 j—1
R= 3 a(j)r}+2 3 3 BU,k)rjricos | 3 24,
j=1 j=2 k=1 I=k

(30)

The only difference between various cases is the prefac-
tors a(j) and B(j,k) which we will refer to as the
“diffraction coefficients” since they completely character-
ize the diffracted intensity. This distinction is a natural
one since each describes a different physical quantity.
The coefficient a describes how the intensity resulting
from incoherent scattering from individual layers is
affected by roughness. Coefficient 3, on the other hand,
describes how the intensity resulting from coherent in-
terference among layers is modified by the roughness. It
is important to note that, in general, the coefficients o
and B in Eq. (30) are functions of j and k, influenced both
by the roughness and correlation of each interface. We
reiterate that the r; and 7, in Eq. (30) correspond to the
Fresnel reflection coefficients for the ideal interface at
normal incidence. We will designate the cases of no
roughness, correlated roughness, uncorrelated roughness,
and partially correlated roughness by superscripts o, ¢, u,
and p, respectively. The special case of cumulative
roughness treated in Sec. IV E will be designated by the
superscript g. Once again, the specular, diffuse, and total
intensities will be designated by subscripts s, d, and ¢, re-
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spectively. We will use this notation to differentiate the
diffraction coefficients. For example, the coefficient for
coherent, diffuse scattering from a multilayer with un-
correlated roughness will be designated 33.

A. No roughness

Although the diffraction from an ideal superlattice is
well known,** we include it to allow comparison with the
cases treated subsequently. For a perfectly smooth multi-
layer the z;(x) are identically zero, as shown in Fig. 1(a),
reducing the quantities 2a;, s;, and dj to 2¢j, 0, and 2¢j,
respectively. By substituting these values into Egs. (26)
and (27) and evaluating expectation values (7)—(9), we ob-
tain the diffraction coefficients given in Table I. As ex-
pected, the reflection is entirely specular with no diffuse
component. The value for coefficients a® and 3° of 1 and
0 for the specular and diffuse scattering represent limiting
values for these quantities. All subsequent cases involv-
ing surface roughness will exhibit coefficients intermedi-
ate between these two.

B. Correlated roughness

In this case the interface profile function is nonzero
and identical for every interface [z;(x)=z,(x) for all j] as
shown in Fig. 1(b). The standard deviation for zy(x) is
oo In this case, 2a; =2kl ;zy(x)+2¢;, s;=2kn; _1zo(x),
and d;=—2kn;zo(x)+2¢;, resulting in the diffraction
coefficients given in Table II. Since af=p;=1, it is clear
that the total intensity scattered from a conformally
rough multilayer is identical to that of the ideal multilay-
er. On the other hand, the specular component exhibits
pseudo-Debye-Waller attenuation. The behavior of both
quantities is furthermore identical to that of the single in-
terface treated in Sec. IIF. In Table II we have made the
replacement ny=1. Since a{=p and a5 =5 and all are
independent of indices j and k, the specular and diffuse
components are merely exponentially modulated repli-
cates of the diffracted intensity of an ideal multilayer.
This is illustrated in Figs. 5(a) and 5(b) which show the
specular and diffuse intensities from a model multilayer
(20X[Mo 10 A/Ni 14 A]) in which C;=1.0 for all j.

C. Uncorrelated roughness

We now impose the condition that the z;(x) be distinct
and statistically uncorrelated, requiring us to use the full
expressions in Egs. (14), (28), and (29) for a, s;, and dj,
respectively. The rms roughness of the jth interface is
now given by o;. The resulting diffraction coefficients
are presented in Table III. We have invoked the approxi-

mation n;~n,=1 in the arguments of the exponents in

TABLE I. Diffraction coefficients for no roughness.

o a’(j) B, k)
t 1 1
s 1 1
d 0 0
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TABLE II. Diffraction coefficients for correlated roughness.

c a‘(j) B, k)

1 1
s exp( —4x*c3) exp( —4k?03)
d 1 —exp( —4k*0}) 1 —exp(—4k*0})

Table III. As a result, the AJZ- terms drop out since they
are extremely small. This simplification is not extended
to the r; in expression (30), however, since that would
suppress scattering altogether. It is interesting to note
that in this case the total reflected intensity is less than
that of either the ideal or correlated multilayer. This de-
crease in reflectivity is due solely to the loss of correlation
among the layers since only 3 is affected. The lost inten-
sity is accounted for by a corresponding increase in the
transmitted intensity. Finally, since B is zero, we see
there is no coherency in the diffusely scattered intensity.
The lack of correlation between the constituent layers an-
nihilates interference effects leaving only incoherent
scattering from the individual rough layers described by
ay. This is illustrated in Figs. 5(c) and 5(d) which show
the specular and diffuse diffracted intensities from the
model multilayer in which C;=0 for all j. The diffuse in-
tensity is featureless while the specular intensity is modu-
lated by the same pseudo-Debye-Waller attenuation as
for the case of the correlated multilayer.

If the o; are no longer identical but vary with some
distribution, the diffraction spectrum can be modified in
ways other than pseudo-Debye-Waller attenuation: not

-8
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-12

-14

-8

-10

-12

-14
|

| | |
0.0 0.5 1.0 1.5 00 0.5 1.0 1.5 20

q, (1/A) q, (1/A)

FIG. 5. Figure showing the effect of layer correlation on
specular (R;) and diffuse (R, ) diffracted intensities from an ex-
emplary multilayer, 20X [ 10 A Mo/14 A Ni]: (a) R, correlated
multilayer, (b) R, correlated multilayer, (c) R, uncorrelated
multilayer, (d) R, uncorrelated multilayer. Note peaked diffuse
scattering for correlated roughness and featureless diffuse back-
ground for uncorrelated roughness. Specular scattering from
each multilayer is identical.
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TABLE III. Diffraction coefficients for uncorrelated rough-
ness.

u a(j) B (j, k)

t 1 exp[ —2k* (0} +0%)]
s exp( —4«k’c?) exp[ —2k*(0i+0})]
d 1—exp(— 4K20f ) 0

only will the intensities be affected, but the shape of the
spectra will be dramatically influenced. By roughness
“distribution” we mean a rms interface roughness that
varies from interface to interface within the multilayer
[0;=3)]. Figure 6 shows several specular diffraction
spectra from the hypothetical Mo/Ni superlattice
(20X[10 A Mo/14 A Ni]). In each case the interfacial
roughness varies linearly about an average roughness,
(o)=2 A over a range Ac =0, 1, and 4 A, respectively
(0;=(o)+Ac[j/(M+1)—1], M=20). Figure 6
shows that with a finite distribution in the o iz the peaks
broaden in g, in addition to being attenuated. The
broadening becomes more severe as the width of the dis-
tribution increases, and the finite size oscillations between
Bragg harmonics are obfuscated. Although the correla-
tion coefficients were set to zero in this calculation, simi-
lar broadening would occur in the diffuse spectra in in-
stances of nonzero correlation.

= '
o 9 i
—
[e1] -10 —
o
— -11 —
1 i 1
0.0 05 1.0 1.5 2.0

q: /A

FIG. 6. Specular intensity from the exemplary multilayer
(20X[10 A Mo/14 A Ni)) in which a linear variation in the rms
roughness, Ao, has been imposed on the layers. The average
roughness, (o), is 2 A in all cases and the roughness distribu-
tion is described by o;=(o)+Ac[j/(M+1)—1], M =20.
Breadth of the distribution increases from top to bottom; Ac is
0, 1, and 4 A in (a), (b), and (c), respectively. The figure illus-
trates how distributions of the individual layer roughnesses lead
to progressive broadening of superlattice peaks and obfuscation
of the finite size submaxima. Severity of effect increases with
breadth of distribution.
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Peak broadening caused by roughness distributions can
be understood in terms of Fourier concepts. Roughness
distributions endow the superlattice with a locally nonun-
iform bilayer period A which cannot be described ex-
clusively with a harmonic series of Fourier coefficients.
On the other hand, a distribution of Fourier components
around the harmonics can describe the illicit bilayer
period and results in the observed peak broadening. We
note that the broadening caused by roughness distribu-
tions adds to the inherent peak broadening caused by
truncation of the structure at a finite number of repeat
units. Although we have used linear distribution, it is im-
portant to note that broadening will result when there is
any distribution in the rms interface roughnesses.

D. Partially correlated roughness

As mentioned earlier, partially correlated interfaces
can be described by decomposing an interface profile
function into a totally correlated component, given by an
adjacent interface profile function, and an uncorrelated
component representing the intrinsic roughness of the in-
terface. Adjacent interface profile functions can be relat-
ed by the following recursion relationship:

2;41=0;41[D;8; 4+ 1(x)+Cj2(x)] . 31

Here z;(x) is the correlated component while £; ,(x) is
the uncor’r\elated, intrinsic component. The quantities
2(x) and {(x) refer to these functions normalized for a

unity standard deviation:
2(x)=z(x)/{z(x)*)/?, (32)
E)=E(x)/{Ex))2 . (33)

It is clear that for partial correlation, each function z;(x)
will be related to each precursor function z;(x) where
i <j. By means of the recursion relationship above, how-
ever, we can express an interface profile function as a
linear combination of the statistically uncorrelated & ;(x):

j—1
IT C»

m =]

~

z(x)=0, 3 D,_, £(x) . (34)

=1

In the above equation we define Dy =1 and maintain this
definition throughout. Substituting these functions into
Egs. (26) and (27) and evaluating the expectation values
given by Egs. (7)—(9) yields the coefficients given in Table
IV. In deriving the expressions in Table IV we have once
again neglected A; and AJZ» terms in the exponential argu-
ments through the assumption n;=n,=1. The
coefficient B¢ is now a function of all layer correlations
through the quantity ¥? given by

TABLE IV. Diffraction coefficients for partially correlated
roughness.

p af(j) B k)

t 1 exp( —2k%y?)

s exp(—4«x’c?) exp[ —2k*(oi+0})]

d 1—exp(—4x’c?) exp( —2«%Y?) —exp[ —2«k*(o?+0})]
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2 2 it 2
=0;—20;0, [[ C,+o% - (35)
=k

The specular diffraction coefficients af and 2 are identi-
cal to those of the uncorrelated multilayer indicating that
the specularly diffracted intensity is independent of
roughness correlations. This is a manifestation of the
idea presented in Sec. II D, that the specular intensity re-
sults only from the average electron density modulation
associated with an interface. Because all in-plane rough-
ness effects are averaged in calculating R;, it is indepen-
dent of the lateral distributions of the roughness and is
therefore not influenced by z correlation. For perfect
correlation (C; =1, 0;=0) the above expressions reduce
to those in Table II, while for no correlation (C; =0) they
reduce to those in Table III.

Figure 7 shows R, and R, from the exemplary multi-
layer, 20X[10 A Mo/14 A Ni], under various states of
correlation. In each case, the designated correlation
coefficients were applied to each interface comprising the
superlattice. Since a 2-A roughness was also imposed at
each interface, the specular signal exhibits pseudo-
Debye-Waller attenuation evinced by the attenuation of
the Bragg peaks in the total diffracted intensity. The

C =0.80
| | |
0.0 0.5 1.0 1.5 0.0

q, (1/A)

FIG. 7. Composite showing behavior of total diffracted in-
tensity (R,, dashed line), and the diffuse intensity (R, solid line),
for the exemplary multilayer (20X [10 A Mo/14 A Ni]) under
states of correlations indicated. The indicated values of the
correlation coefficient were applied to all interfaces comprising
the superlattice. Diffuse scattering at the Bragg condition in-
creases with correlation. Finite thickness oscillations appear
near full correlation (C =1). For clarity, the diffuse intensity
has been offset in each of the graphs, and the total intensity has
been omitted for the case of full correlation.
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specular diffraction signal R, is omitted in Fig. 7 since it
is identical for all states of correlation. The diffuse com-
ponent R, is initially featureless for C =0 but begins to
show broad peaks at the Bragg conditions as the correla-
tion is increased. As the correlation approaches unity,
the diffuse component rapidly sharpens to become an ex-
ponentially modulated version of the ideal superlattice
diffraction spectra.

E. Cumulative roughness

In the cases treated in Secs. IVA-IV D, a constant
correlation was assumed for each interface in the multi-
layer. This was done so that we might explicitly explore
the effect of roughness correlations through the correla-
tion coefficient C. In reality, however, interface correla-
tion is implicitly affected by the nature of the surface on
which it is deposited. The propagation of the substrate
roughness into the multilayer interfaces, for example, is a
recognized and well-studied mechanism by which rough-
ness correlations arise in multilayers.**** In a more gen-
eral sense, however, roughness correlations can develop
in any case where interfacial roughness is present. This is
because a layer of deposited material must, to some de-
gree, conformally assimilate the shape of the underlying
interface profile function. Up to the point at which
roughness saturates, these effects are cumulative and
their influence thus becomes more pronounced as the
number of interfaces increases.

To see this, we envision a nonequilibrium deposition
condition in which atoms contributing to the layer “hit
and stick” at the surface (gross surface mobility restrict-
ed). Figure 8 shows a multilayer in which each 10-A lay-
er is given an intrinsic rms roughness o,=1 A. In mov-
ing from the bottom of the stack upward, it is evident
that both the rms roughness and the correlation increase.
The latter occurs because the ratio of intrinsic roughness

roughness in an idealized model for multilayer growth
(wy=wp=10 A, 0,=1 A). The small intrinsic roughness of
each layer leads to much larger cumulative roughness toward
the top of the superlattice. Layer correlation also visibly in-
creases as the number of layers is increased. The figure is
mathematically accurate in that it was generated by spline
fitting through a set of 50 interface points each varying with cu-
mulative Gaussian statistics about their mean interface position.
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(constant) to cumulative roughness (increasing) decreases
as a function of interface position. Both trends are evi-
dent in published cross-section transmission electron mi-
croscopy (TEM) micrographs of Mo-Si multilayers.*>46
When this growth mode pertains, the rms roughness at
an interface, o s and the correlation coefficient Cj be-
come well-defined functions of their position within the
multilayer stack. Figure 9 shows a plot of both quantities
as a function of the conjugate layer index
[m=(M +1)—j] for the hypothetical multilayer shown
in Fig. 8. The points are described by the following func-
tional forms:

o,=Vmo,, (36)
C,=Vm/im+1), (37)
D,=V1/(m+1), (38)

where o in this case represents the rms roughness of the
intrinsic, uncorrelated component, {(x), of the interface
profile function. It is interesting to note that while the
cumulative roughness depends on the intrinsic interface
roughness, o, the interfacial correlation is independent
of this quantity. This is because correlation is enhanced
by cumulative roughness but reduced by intrinsic rough-
ness, both of which are governed by o, By substitution
of Egs. (36)-(38) into Eq. (34), we derive the expected re-
sult for cumulative roughness, in which an interface
profile function is simply the sum of all preceding inter-
face profile functions:

m
z,(x)= 3 §,.(x). (39)

I=1
If Eq. (39) is substituted into Egs. (26) and (27) using
the substitutions for a;, bj, s;, and dj given in Egs. (14),
(15), (28), and (29), respectively, the expectation values in
Egs. (7)-(9) can be evaluated to yield the coefficients
shown in Table V. The superscript ¢ in this context

signifies “‘cumulative.”

T I I § R = I
—_ ) TSR S . "%
< e P _x_x--x
o ¥ e -4 08
- ; X
i 106 8
2 3
&2 04 g
@ + Correlation, C -
5] Q
g X Roughness, o 102
Q
B
0 ] | | 1 0.0
5 10 15 20

Conjugate layer index, m

FIG. 9. Plot showing behavior of rms interface roughness o
and correlation coefficient C as a function of position within the
multilayer. In moving toward the top of the stack o,, increases
as V'm, while C,, increases as V'm /(m +1). In these expres-
sions m is the conjugate layer index: m =(M +1)—j.



2298

A.P. PAYNE AND B. M. CLEMENS 47

TABLE V. Diffraction coefficients for cumulative roughness.

q al(j) Bij, k)

t 1 exp[ —2k%03(j —k)]

s exp( —4k’odj) exp[ —2«%0d(j + k)]

d 1—exp( —4k*0}j) exp| —2«%03(j —k)]—exp[ —2k%03(j + k)]

Figures 10(a)-10(c) show R,, R, and R, for the
representative multilayer subject to cumulative roughness
effects (0¢=1.0 A). Broadening and attenuation of the
specular peaks are evident as a result of the roughness
distribution described in Eq. (36). As a result of the
evolving correlation within the multilayer, peaked diffuse
scattering at the Bragg conditions is also evident in Fig.
10. A noteworthy observation here is that partial correla-
tion of interface roughness constitutes a second important
source of peak broadening in superlattices which adds to
the broadening caused by roughness distributions and
truncation effects discussed earlier. In comparing Figs.
10(b) and 10(c) with 10(a) it is clear that in this case, par-
tial correlation is the dominant source of peak broaden-
ing, since the roughness leads to predominantly diffuse
scattering above g, ~0.5 A . Figures 7 and 10 illustrate
that partial correlation also aﬁ"ects the finite size oscilla-
tions. As the correlation decreases, the oscillations in the
diffuse intensity are obfuscated.

00 05 1.0 1.5 2.0
q. (1/A)

FIG. 10. Total (a), specular (b), and diffuse (c) diffraction
spectra for the exemplary multilayer under condmons of cumu-
lative roughness. Intrinsic roughness o,=1.0 A. Note the
severe peak broadening and enhancement of the diffuse scatter-
ing near the Bragg conditions. This is a direct result of the
roughness and correlation distributions for cumulative rough-
ness shown in Fig. 9.

V. CONCLUSIONS

A. Summary of results

We now summarize the important conclusions from
Tables I-V for the multilayer models given in Figs. 1 and
8. For the multilayer without roughness, the incoherent
and coherent scattering coefficients (a and f3) for specular
and diffuse scattering assume the limiting values of 1 and
0, respectively. Upon introducing roughness into the su-
perlattice, these coefficients take on intermediate values
as a result of the induced diffuse scattering. The total
scattering from the multilayer with correlated roughness
is equal to that of a perfect multilayer as a result of the
coherent nature of the diffuse scattering. The manner in
which the total intensity is partitioned between specular
and diffuse components, however, is strongly influenced
by the vertical correlation of the roughness. In the ab-
sence of correlation more of the incident radiation is
transmitted, and the diffracted intensity is reduced from
its ideal value. In all cases, the incoherent scattering
(coefficient a) is determined exclusively by the roughness
of each layer just as for the single surface treated in Sec.
ITF. While roughness distributions in multilayers induce
broadening of the specular Bragg peaks, roughness corre-
lations have no influence on the specular field since it re-
sults from the laterally averaged electron density modula-
tion at an interface. Layer correlation affects the
diffraction spectrum exclusively through the diffuse term
(coefficient 3). Partial correlation of interfacial roughness
leads to Bragg peaks in the diffuse scattering, although
these peaks rapidly broaden as the average correlation of
the multilayer deviates significantly from unity.

B. Peaked diffuse scattering

Figure 7 shows that peaked diffuse scattering is a direct
consequence of roughness correlations within the multi-
layer. The analysis clearly shows that correlated rough-
ness is a necessary condition for peaked diffuse scattering.
Others have raised the question, however, of whether
peaks in the diffuse intensity can result from uncorrelated
roughness simply through constructive interference at
the Bragg condition, analogous to the intensity enhance-
ment of specular component at these points.** In our
synchrotron studies of metallic multilayers, we have
found that the intensity of a diffuse peak correlates close-
ly with the intensity of the corresponding specular peak,
in support of this supposition. We have shown, however,
that peaked diffuse scattering cannot occur in the absence
of roughness correlations. Though we cannot treat
strong dynamical scattering due to the truncated Taylor
approximation employed here, we maintain that even
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strong multiple scattering of the diffusely reflected rays
would not lead to features in the diffuse scattering since it
is even less likely that third- or fifth-order reflections
would interfere coherently than for the first-order
reflections treated here. Thus, even under full dynamical
treatment, B would remain zero.

C. Roughness correlation as a consequence of growth

Despite the advanced nature of modern deposition
techniques, a thin film will invariably exhibit thickness
fluctuations on some level. These effects are generally ex-
acerbated by kinetic or chemical effects such as low sur-
face mobility or high surface energy of the adatom
species. For the idealized case of nonequilibrium film
growth, we have shown how interfacial roughness might
accumulate in multilayers through the collective action
of small thickness fluctuations associated with each layer.
We have also shown how interface correlation rapidly ap-
proaches unity for this idealized growth mode. Two im-
portant consequences result from this. First, the specular
peaks broaden as a result of the roughness distribution
given in Eq. (36). Second, peaked diffuse scattering re-
sults simply as a consequence of growth through the nat-
urally occurring correlation given by Egs. (37) and (38).
This explains how significant amounts of peaked diffuse
scattering can be observed in multilayers prepared on
smooth substrates.'®3

Since partial correlation of interfacial roughness is an
important source of peak broadening, diffraction models
should incorporate a parameter describing this charac-
teristic. This might be something as simple as { C ), the
average correlation in the multilayer: (C)=1/
M(3ZY.,C;). Whether it is possible to rigorously
differentiate roughness distributions from correlation
effects using XRD remains to be determined. In cases of
moderate correlation and narrow roughness distributions,
however, the two effects may be differentiable by inspec-
tion as suggested in Fig. 7(d). Here the third and fourth
Bragg peaks appear as a superposition of a narrow specu-
lar peak over a broad diffuse peak.

D. Implications for modeling
of superlattice diffraction

While numerical algorithms typically model the specu-
lar intensity, {p){p*), or total diffracted intensity,

2299

(pp*), neither of these quantities is typically measured ex-
perimentally in the regime of low g where the scattered
intensity is composed of both specular and diffuse com-
ponents. In a symmetric scattering geometry (6;,=6,),
the detector measures the specular intensity plus the
component of the diffuse intensity along the specular
direction. Some authors have recognized this and ac-
count for it by performing nonspecular scans of the
diffuse intensity and subtracting this component from the
specular data before performing the fitting.!* A disad-
vantage of this approach, however, is that in moderately
rough multilayers, the diffuse component constitutes the
majority of the spectrum, often rich with peaks and
features. In such cases, subtracting the diffuse scattering
results in a nearly featureless spectrum, thereby discard-
ing valuable information. An alternate, though perhaps
less appealing approach to avoid this problem would be
to integrate the diffuse scattering over the (g,,q,) plane
and add this intensity to the local origin (0,0,q,) before
fitting to a model for the total diffracted intensity, {pp*).
Since a wide detector slit perpendicular to the scattering
plane essentially integrates diffuse intensity along one
direction (g, ) in reciprocal space,’® the total diffuse inten-
sity could be calculated from the area under a rocking
curve in g¢,, corrected for geometric and refraction
effects.’* Regardless of which technique is ultimately em-
ployed, the nonuniform behavior of the specular, diffuse,
and total diffracted intensities in the regime of low g un-
derscores the importance of modeling the data against
the relevant physical quantity.
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