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Tunneling in double-layered quantum Hall systems
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We study interlayer tunneling in some double-layered quantum Hall states that contain a neutral gap-
less superOuid mode. A tunneling current less than a certain critical value will not cause any voltage
drop between the two layers. A finite voltage Vbetween the layers will induce an ac current with a fre-

quency co=eV/A. In contrast to tunneling between superconductors, the critical current here is linear
rather than quadratic in the tunneling amplitude.

I. INTRODUCTION

Quantum Hall states are known to have long-range
coherence. One naturally asks whether these states have
some properties similar to those of superconductors,
which also have long-range coherence. It would appear
that various superconducting effects, such as the Joseph-
son efFect, would be impossible for the quantum Hall
states because they are incompressible. However, it has
been shown that some multilayered fractional quantum
Hall (FQH) states' may contain gapless modes.
The dynamica1 properties of the gapless mode were stud-
ied in detail in Refs. 4, 5, 6, and 7; in particular a semi-
quantitative dispersion relation of the low-lying mode in
the presence of interlayer tunneling was obtained by
MacDonald, Platzman, and Boebinger. In the absence
of tunneling, the mode becomes gapless, corresponding to
a (neutral) superfluid mode and the system demonstrates
many superfluid properties.

In this paper, we will study electron tunneling between
layers in these systems. We predict that a small current
passing through the barrier between the layers does not
cause any voltage drop. This dissipationless current
resembles the supercur rent in a superconductor-
insulator-superconductor junction. We predict further
that when a dc voltage V is applied across the two layers,
an alternating tunneling current

J=Jo sin( e Vt /trt)

system the current depends linearly on the tunneling am-
plitude, rather than quadratically, as is the case in super-
conductivity.

The plan of this paper is as follows. In Sec. II, we
derive, using the field theory formalism of Ref. 7 the
low-energy effective theory that takes into account the
angular character of the order parameter. From the
efFective theory, the result (1.1) may be derived heuristi-
cally. We go through this derivation partly to assure our-
selves that the effects of a certain massive gauge field
(called a+ below) may be neglected. Next, in Sec. III, we
discuss the effects of dissipation and derive the tunneling
current in situations relevant to realistic experiments.
The experimentally inclined reader may wish to skip
directly to Sec. III.

II. LOW-ENERGY EFFECTIVE THEORY

We being by giving an exceedingly brief review of the
theoretical framework discussed in Ref. 7 to which the
reader may wish to turn for further details. As we have
discussed in a series of papers, the long-distance physics
of the Hall fluid may be described in terms of several
gauge potentials al, I =1,2, . . . interacting via the La-
grangian

1 a„E e"" B a&+22„el' t) a&+Maxwell terms,

(2.1)

is generated. This results from the operator c,c2 devel-

oping a long-range order in these FQH states (even in the
absence of the interlayer tunneling) and from the essential
angular nature of the order parameter. (Here c, 2 are the
electron operators in the two layers). Thus, the physics
behind this effect is basically the same as that behind the
Josephson effect. However, one crucial difference is that
the Josephson current between two superconductors is
proportional to sin(2eVt/i'). The frequency of the tun-
neling current in the two-layered Hall system is half as
much as the frequency of the Josephson current. Anoth-
er important difference, as we will see, is that in the Hall

J( I) pvk. g
1

P 2 v IA& (2.2)

where a„and P„are gauge potentials. Here K is a matrix
in terms of which the long-distance properties of the Hall
fiuid, such as the filling factor (and conductance), and the
charge and statistics of the quasiparticles, are completely
determined.

In this paper, we specialize to dime =2 and X =tn(,", )

for m odd, corresponding to a v=1/m Hall fluid in a
two-layered system. The electromagnetic current in layer
I,I = 1,2 is given by
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with the total current J„=J„'"+J„' ' coupling to the elec-
tromagnetic potential 3„. Evidently, K has eigenvalues
2m and 0, associated with a+ and a defined by
a+ =a)+a&. The Maxwell terms in (2.1) are given by

ZM= g, g + f dx, exp
qbqc 1

N=O '
Iq I a b c g b c

(2.6)

, f++, f+f +— , ,f'g+ g+ 6477 g
(2 3)

where f+„„=i3„a+,—B a+„. Note that if the two layers
are identical we expect the Lagrangian under the trans-
formation a+~a+ and n —+ —a and thus in this case
1/g+ =0.

Because e+ has a finite-energy gap, we may effectively
set f+ =0 and the g+ and g+ terms are irrelevant at
low energies. The gapless excitation described by a is
identified as the neutral superAuid mode. With conven-
tional units the last term in (2.3) would be written as

K

327T2
«—,)z)'+, (f—,o;)'

2U
(2.3')

where s. ' is the capacitance (per unit area) between the
two layers, and v is the velocity of the neutral superAuid
mode. Note f z)/2~=(n ) nz) —is the difFerence of the
electron densities in the two layers. In (2.3) we have
chosen units such that v =1. We see that g and K are re-
lated through g =K, where K may also be identified as
the compressibility of the superAuid.

The Lagrangian (2.1), however, is incomplete: it does
not include interlayer electron tunneling. As explained in
Ref. 7, this corresponds to nonperturbative instanton
effects. In the following we would like to include inter-
layer electron tunneling, or nonperturbative instanton
effects in our effective theory.

When an electron tunnels from one layer to the other,
the current J „=—J„'"—J„' ' is no longer conserved.
Indeed, we have

f d xdt B"J „=f d xdt d„e„&Ba1

(2.4)

indicating the presence of "magnetic" monopole or an-
timonopole in Euclidean spacetime coupling to the gauge
potential a . Evidently, (2.3) cannot be satisfied by a
smooth gauge potential o.o. If we insist on smooth gauge
potentials, we have to modify the current J „to be equal
to

(jp

2~ a2
(2.5)

where p= g, q, 5' )(x —x, ) is the monopole density.
Here q, =+1 are the magnetic charges and x, the loca-
tions of the monopoles and antimonopoles.

Long ago Polyakov' analyzed the influence of a
monopole-antimonopole plasma on (2+ 1)-dimensional
electrodynamics. Our problem differs from Polyakov's
only in the presence of the Chem-Simon term
a+„e„&Ba+&. The partition function of the monopole
plasma is given by

The Coulomb interaction between the monopoles (in Eu-
clidean 3-space) generated by a reflects the fact that
tunneling events are correlated: a tunneling event from
layer 1 to layer 2 is more likely followed by a tunneling
event from layer 2 to layer 1 occurring close by in space-
time. Here g denotes the fugacity for creating a mono-
pole and is determined by short-distance physics. The
partition function may be transformed to

ZM= f2)8exp i f —,'g (8„8) +gcos8 (2.7)

the well-known sine-Gordon representation of a Coulomb
gas. " Here 8(x) is a scalar field introduced to reproduce
the Coulomb interaction between the rnonopoles. The
quantization of magnetic charge leads to the angular
character of 0.

The path integral of the field theory (2.1) factorizes

Z Zgz+ )

with

iS+(a+) iS (a+,a )
Z = 2)a+e + + a e

(2.8)

(2.9)

where

1~+(a+)= f++A„e„ ii) a+i+a+ e„ i.d a+a
g++

(2.10)

and

1 2 1S (a+ a )= f +
z f+f

64m g g+
(2.1 1)

In Ref. 7, we showed that the fugacity g is related to ex-
perimentally measurable quantities, since g is essentially
the density of monopoles, or equivalently the number of
tunneling events in a unit volume of spacetime, and thus
may be estimated to be As~s/li), where lt) is the magnetic
length and 6s&s is the measured energy gap between the
symmetric and antisymmetric states in the two-layered
systems. (bs~s is essentially the tunneling amplitude. )

Polyakov showed that the correlation function
(J „J ) did not have a massless pole when the effects
of the monopole plasma were included. In the context of
our problem, this means that tunneling opens a gap for
the superfluid mode. Note that Polyakov's result (and
hence much of our work in Ref. 7) does not depend essen-
tially on the angular character of 0; specifically, it may be
derived by approximating cos8 in (2.7) by (1—8 /2). We
see that the 8 field has a gap (gg )' -(abs~s)' /lt). In
this paper we discuss the physics associated with the an-
gular character of 0.

Our problem is to calculate the tunneling current, evi-
dently (i)/Bt)( J 0) by definition, generated by an exter-
nal potential U. In contrast to Polyakov, we are interest-
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ed in the one-point function, rather than the two-point
function. The effects of the external potential may be in-
cluded by introducing into the integrand in (2.8) the fac-
tor

exp i eU J" (2.12)

and agreeing to set at the end of the calculation U,. to
zero and Uo to U.

Using (2.5) and integrating by parts we may write

U„J" = U„e" Ba q
—B„U" p. (2.13}

The effect of the first term is to add to S the term
(1/2m. )eU„e" i} ai. The second term in (2.13) intro-
duces into the monopole plasma an external charge densi-
ty B„U". The net effect is to change Z~ in (2.7) to

Z~(U)= 1 2)Oexp i J ,'g (r}„8—2U„)—+gcosO

(2.14)

When /=0 the above partition function is invariant un-
der the following gauge transformation U„—+U„+B„A,.
This is associated with the conservation of J „. The
gauge invariance is violated by the interlayer tunneling,
which results in a nonzero g.

For the case of interest, we have U; =0 and Uo = U a
constant. In this case Z is independent of U. After in-
tegrating out a+, we find the total partition function is
given by

(2.15)

plies that JT =g sin(eA' Vt) (if V is independent of time).
Notice that, as mentioned, JT depends linearly on the
tunneling amplitude g.

Incidentally, omitting the Chem-Simon term in (2.1)
we have the so-called dual representation of a supercon-
ductor. ' Thus, the manipulations from (2.4) to (2.19)
may be used to derive the Joseph son effect in a
superconductor-superconductor tunneling junction, with
the appropriate replacement e ~2e. It is satisfying to see
the Josephson effect emerge from Polyakov's formulation
of (2+1)-dimensional electrodynamics in the presence of
Dirac monopoles. To our knowledge, this derivation has
not been given before in the literature.

We would like to mention that the effective Lagrangian
(2.16) describe the low-energy dynamics of the system
and (2.17) express the physical quantities in terms of the
effective field 8. Thus (2.16) and (2.17) provide a com-
plete description of the low-energy properties of the sys-
tem.

We also like to point out that the effective theory (2.16)
is just the XYmodel in the presence of a magnetic field.
We may treat the two-layered system as a system of elec-
trons that carry a pseudospin S =—,'. The electron with

S, = —,
' corresponds to the electron in the first later and

S,= —
—,
' the second layer. In the pseudospin language,

e' -S +iS and n&
—nz-S„where S, is the pseudo-

spin operators. The interlayer electron hopping operator
c &cz+H. c. -S„-cost9. A11 the above results can also be
derived from the pseudospin picture and the related XY
model. The above formalism about the gauge field and
monopoles is just the dual representation of the XY mod-
el in magnetic field.

III. TUNNELING AND DISSIPATION

with the effective Lagrangian:

X=—,'g [(B,O —2U) —(8;8) ]+gcosO . (2.16)

Now we can
=(5/5U) lnZ(U):

calculate from ( J o)

(J 0) =(ni ni) =2—g (B,(8)—2U) .

The total energy of the system is

(2.17)

E = Id'x
I ,'g'[(a, O-)'+(a, O} ] 2g U —gcosO—] .

The low-energy properties of the system are entirely
determined by the effective theory (2.16). In the follow-
ing we are going to apply the effective theory to some
realistic situations and study the tunneling between the
layers. In particular we would like to include the effects
of dissipation and of the leads. For our problem, we are
interested only in the space-independent mode in 8(x, t).
Thus, we let 8 to be 8(t) independent of x and we in-
tegrate the Lagrangian (density) L over space to find the
Lagrangian

2

(2.18)
1 dOL—:Jd xX=—M —2U +rcosO,
2 dt

(3.1)

From (2.17) and (2.18) we see that moving an electron
from one layer to the other will cost an energy

(2.19)

Thus Vis just the difference of the chemical potentials be-
tween the two layers Equatio. n (2.19) can be written as
V=(1/2g )(n niz)+2U, which may be expected, since
the chemical potential depends on both the charge imbal-
ance n

&

—nz and the external potential U.
We now calculate the tunneling current

Jz.=(B/Bt)( J o ) ~ U U U o. From the equation of
motion we see that JT=g B,8=/ sinO. Then (2.19) im-

P= . =M(8 —2U)
5L
60

and the corresponding Hamiltonian

(3.2)

with M—=g A and r =(A where A denotes the area of
the Quid. This describes a particle of mass M moving on
a ring (of radius 1) with a potential rcosO that—tends to
keep the particle near 0=0 and with magnetic fIux 2~U
threading through the ring. In the thermodynamic limit,
both the mass M and the scale of the potential ~ go to ~
like the area A.

The momentum conjugate to 0 is
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P 2H = — PU —~cos8 .
2M M

(3.3)

[From (2.17) we see that N /2=P, where N =N, N2-
is the difference of the numbers of the electrons in the
two layers. Thus N /2 and 0 are canonically conjugate
to each other.

Heisenberg's equations of motion consist of (3.2) and

P = —7. SinO (3.4)

The corresponding Schrodinger equation can actually be
solved. In fact, however, in the thermodynamic limit, 0
becomes a classical variable because 8 is basically the po-
sition of a very heavy particle trapped in a steep well. It
is easy to estimate from (3.3) that the mean-square
derivation of 0 from its classical value scales like
(~8)'-(Mr)'"

A heuristic derivation of (1.1) may now be given. In
the absence of tunneling, states with the same N+
=N, +Nz but different N =N, —N2 are essentially de-
generate. The states ~8) —= gz e' — ~N ) all have

the same energy. A tunneling Hamiltonian Hz lifts de-
generacy and ~8) has the energy —rcos8, with r some
constant. Note the factor of 2, stemming from the fact
that under the action of Hz, as an electron hops from one
layer to the next, N changes by +2. An external volt-
age U can now be applied by adding the Hamiltonian HU
defined by IIU~N ) =eUN ~N ). In a tunneling event,
the energy changes by 2eU. The tunneling current is
defined by

J,=—e„&E )=—'e&[H, E ]&2 dt 2

1=—e &H ) =J, sin8,
2 BO

(3.5)

P = —r sin8 —r)P —gM8 . (3.6)

The phenomenological dissipative parameters g and g
have dimension of 1/time. Later, we will relate these pa-
rameters to experimentally measurable resistances. Corn-
bining (3.2) and (3.6) we obtain

~ ~0=—
M

sin8 —( i)+g)8+g U . (3.7)

where J, depends on the constant ~ and we have restored
A'. From (2.19) we see that Jz =J, sin(e Vt /i').

This heuristic derivation is the same as Josephson's
original derivation of his effect, but given here in a
different context. We have to go through the more ela-
borate discussion from (2.4) to (2.19) in order to assure
ourselves that the presence of another gauge potential a+
and of Chem-Simon terms, etc., does not affect this re-
su1t.

%'e may now incorporate the effects of dissipation phe-
nomenologically into Heisenberg's equations by respect-
ing two general principles, that dissipation terms violate
time-reversal invariance and that the angular character of
8 must be preserved. We find that (3.2) may not be
changed but that two time-reversal violating terms may
be added to (3.4) so that

In the following we will calculate g and g in a realistic
model. The low-energy properties of an isolated two-
layer system are described by the following equation of
motion:

A d 8= A gsin8,
K

(3.8)

where A is the area of the system. The difference of the
numbers of the electrons in the two layers is given by [see
Eq. (2.17)]

=2 0.A

dt
(3.9)

8= —A g sin8+ R,„V,„—
dt dt

l dOR leak at

(3.10)

It is gratifying to note that this equation agrees with Eq.
(3.7) obtained from general principles, if we identify the
phenomenological parameters g and g suitably. In exper-
iments we can easily measure the current in the leads
I =R,„'(V,„d8/dt) and —the voltage dilference between
the two layers V (using the four-terminal measurement).

From (3.10) we can obtain I and V directly as functions
of V,„and t. In the appendix we sketch the analysis. For
small V,„(3.10) has a static solution dB/dt =0 with a
current I = V, /R, „passing through the barrier. The
voltage across the barrier is V=O. Such a current is a
dissipationless supercurrent. The static solution exists
only when the supercurrent is less than a critical value
given by I, =A/-eAbs&s/l&A'. Again, note that the
critical current is linear in the tunneling amplitude or
b,s~s. When V, /R,„)I, (3.10) has only time-dependent
solutions and I and V will acquire some ac components.
When V, /R, &&I, we may treat quantum tunneling
term as a perturbation. We find

Thus the left-hand side of (3.8) is the time derivative of
the electron number in one layer (N. ote N+ =N, +Nz is
always fixed due to the incompressibility. ) The right-
hand side of (3.8) is the current of the quantum tunneling
(or, the phase-coherent tunneling). From the total energy
(2.18) and (3.9) we see that A /~=C is just the capaci-
tance between the two layers. Now let us add one lead to
each layer, and the system becomes an open system. In
this case d/dt(N /2) also contains a contribution from
the leads, in addition to that from the quantum tunnel-
ing. The current injected from the lead is given by
R,„'(V,„—V), where R,„ is the contact resistance, V,„
the voltage difference between the two leads, and

N /2
/2A = 0

dt

the difference between the chemical potentials of the elec-
tron in the two layers. %'e should also include incoherent
tunneling between the two layers. We assume the in-
coherent tunneling current to have a linear dependence
on V and to be given by —R l„'„V, which also contributes
to change of N . Combining all the above effects, we
reach the fo11owing equation of the motion:
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I, /(R,„'+Ri„I, ) eV0V= Vp+ sin t
I[V C/(R-'+R-' )]'+1/4]'"

2b= Vp+ sin+ [(R +R i )/2C]&j i~&

V,„
R,„+Rl„k

evo

(3.1 1)

+
Q(R,„CVO) +(1+R,„I,R, )~

V = + leak
0 g +g Cx

ex leak

eV0
sin t

where b, =v ga. /2 is the gap of the neutral superfiuid
mode due to the interlayer tunneling. (3.11) is valid when
the ac component in V is much less than the dc part Vp,
that is, when V, /R, ))I, or Vp/6))1. For ideal leads
(i.e., R,„=O), (3.11) reduces to V = V, and

V, eVI = +I sin t+ leak

In the above we have assumed that there is no magnet-
ic field parallel to the layers. In practice, it may be
di%cult to align the sample perpendicular to the magnet-
ic field so that the parallel magnetic field can be ignored.
In the presence of a parallel magnetic field, the quantum-
tunneling term should be modified to be

g cos[8(x )+P(x) ], (3.12)

where P(x) is a fixed function that depends on the paral-
lel magnetic field. We may average over P and (3.12) be-
comes

g* cos8, with g* =+( g cosP ) + ( g sing ) . (3.13)

Thus the effect of the parallel magnetic field is to reduce
the critical current to I, = A g', but (3.11) remains valid
in the presence of a parallel magnetic field provided that
I, is regarded as the reduced critical current.

In the above discussion we have assumed that the leads
are attached to the bulk electrons and are not connected
to the edges. In practice the leads are connected to the
edges and the transport between the leads also receives
contributions from the edge states. To be specific let us
connect two leads to the sample. The first lead connects
to the first layer on one side of the sample and the second
lead to the second layer on the opposite side of the sam-
ple. We will ignore the contact resistance. In the above
device the chemical potentials of the electrons in each
layer will in general depend on position. However, due to
the superAuidity, the difference of the chemical potentials
in the two layers, V, is a constant in the whole sample, at
least in the weak tunneling limit. First let us assume that
the voltage difference between the two leads, V, , is very
small and the tunneling current is less than the critical
current I, . In this case the chemical potentials in the two
layers are equal, V=O. The whole sample behaves like
the usual v= 1/m quantum Hall (QH) state. The two-

terminal resistance is determined by edge transport and is
given by R =v '(h /e ). As we increase V, the tunnel-
ing current I= V, v(e /h) also increases. When I)I,
or when V,„)I,v '(h /e ), the difference of the chemical
potential V will no longer be zero. In this case we sud-
denly lose the dc supercurrent. The two-terminal resis-
tance is expected to suddenly jump to Rl„k. At nonzero
V there is an ac Josephson current. Because Vis constant
in the whole sample, the frequency of the Josephson
current is well defined. In practice, the Joseph son
current may appear in a form of narrow band noise.
From the above discussion, we see that the system with
leads attached to the edge is similar to the system dis-
cussed in the last few paragraphs with R,„=v '(h/e ).

IV. DISCUSSIONS
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APPENDIX

We give here a brief analysis of (3.7) or (3.10). Rescal-
ing the time by t = ( 1/o )t ', we obtain

0= —0—T sinO+ 8', (Al)

(where the dot denotes differentiation with respect to t')
with the rescaled tunneling amplitude

T = (g+g')
M

and the driving potential

W = Ug(g+ g)

(A2)

(A3)

In this paper we studied macroscopic quantum effects
in some double-layered QH systems. We find some
double-layered systems exhibit phenomena that are very
similar to superconductors. The physical phenomena dis-
cussed in this paper apply to a much more general class
of QH states. Essentially any QH state characterized by
the matrix E will demonstrate superconducting phenom-
ena if detK=O. The tunneling supercurrent and the
Josephson effect discussed in this paper are within the
reach of present experimental technology. Before ending
this paper, we would like to remark that in the above we
only discussed the quantum tunneling between the two
layers of the same QH sample. One can also consider two
double-layer samples (labeled by a and b) coupled by
weak links. This system is more similar to the usual
superconductor-insulator-superconductor junction. We
expect a supercurrent of the form j,—jz can pass the
weak link. The frequency of the Josephson current will
be given by co=e( V, —

Vb )/fi, where V, and Vb are the
differences the chemical potentials in the two layers for
the sample a and sample b.



2270 X. G. WEN AND A. ZEE 47

Note that (for q-g) these two dimensionless quantities
scale as the inverse of the dissipation.

We first consider the case W)) T and solve for 8 (or
more properly 8) iteratively. Write 8=80+ 8, +
with Oo= 8't and 0& the solution of

8,+8, = —T sin( Wt) . (A4)

This equation becomes accurate for large time and has
the solution

(A5)

up to an unimportant phase shift.
The case 8'« T is essentially trivial, as it is dominated

by the friction term. Here the driving term cannot push
the system over the hill and can only balance the friction
term to give sin8O= W/T W.e then see that 8, decays ex-
ponentially.

Scaling back to physical quantities we obtain the re-
sults given in Sec. III.
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