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Surface-barrier and polarization efFects in the photoemission from GaAs(110)
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We have developed a theory of photoemission from III-V compound semiconductors within the
one-step model and discuss the effect of transition-matrix elements, final states, and the surface
barrier on the energy distribution of photoelectrons. As a prototype the (110) surface of GaAs is
studied, and theoretical spectra are compared with experiment in normal as well as in non-normal
emission. The specific position of the interface vacuum crystal, appearing in the calculation of the
transition-matrix elements, inHuences the shape of the spectra considerably. The energy-distribution
curves strongly depend on the escape angles of the photoelectrons as well as the incidence angles of
the radiation leading to significant intensity variations especially of the dangling-bond surface state.
Band-mapping methods prove to be misleading, in the worst cases by an error of about 100 meV in
the estimation of the valence-band energies. The corrugated surface barrier is also investigated; our
analysis favors a smooth saturated image potential barrier.

I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES)
is by far the most important experimental tool
for the determination of the electronic structure of
semiconductors. It affords knowledge about the bulk-
and the surface-derived states throughout the whole
Brillouin zone. Because the transitions take place be-
tween occupied and unoccupied wave functions the in-
tensity of the detected photocurrent encloses informa-
tion of both the valence-band and the conduction-band
structure, thus complicating the interpretation of spec-
tra without theoretical aid. Although the photoemission
experiment is easily interpreted in terms of the direct-
transition model, this detects only one part of the infor-
mation comprised in the experimental data, especially in
the case of semiconductors such as GaAs.

The usual procedure for treating experimental energy-
distribution curves (EDC's) is smoothing followed by
a deconvolution with simple profiles such as Gaussians
or Lorentzians. Subsequently the energies of max-
ima and shoulders as a function of wave vector k are
taken to obtain the dispersion relation of the electrons
E(k). A unique interpretation of the structures found
in the EDC's is quite diKcult without further theoret-
ical guesses or band-structure calculations for both the
initial-states and the final-states regime. The valence-
band structure of all III-V compound semiconductors
has been theoretically determined applying a lot of dif-
ferent approaches, whereas the conduction bands seem
to be new ground, despite the existence of new power-
ful experimental tools such as the angle-resolved inverse

photoemission spectroscopy. If a conduction-band struc-
ture calculation is not available one has to make more
or less crude approximations, such as, e.g. , free-electron
parabolas. Assuming wave-vector-conserving transitions,
i.e. , direct transitions in the reduced zone scheme, so-
called "band-mapping" methods may be applied to the
experimental data successfully. With the use of struc-
ture plots most of the transitions can be related to speci-
fied valence and conduction bands. 2 The intensity of the
photocurrent, however, is taken into account only quali-
tatively. For example, Huijser, van I aar, and van Rooy
obtained the orbital composition of the dangling-bond
surface state As located at the outermost arsenic atoms
on the (110) surface. s They notice that their findings re-
veal the shortcomings of the interpretation of experimen-
tal data with only one free-electron parabola as the final
state. However, because of the large number of final-state
bands the structure plots predict a lot of theoretically
possible transitions, even if symmetry-selection rules dis-
card a good deal of them. Due to matrix-element ef-
fects the number of experimentally observed transitions
is usually much smaller [e.g. , the work on GaAs(110),
GaAs(001), and GaSb(001)(Refs. 4—6)], which calls for
the discussion of the intensities.

Another difficulty is the separation of bulk-derived
transitions from surface-derived transitions. Especially
in the case of large unit cells this is a tough task because
of the backfolding of the bulk bands, a special exam-
ple being the spectra of GaAs(001).s This leads to a lot
of nearly dispersionless structures in the EDC's which
complicate the identification of the interesting surface-
derived peaks, also additionally often characterized by
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small bandwidths. A crucial test of a surface transition
is to cover the crystal with a small amount of an adsor-
bate, e.g. , oxygen. Because of the small escape depth of
the photoelectrons the intensity of surface-derived struc-
tures dominates compared to that of the bulk-derived
ones. The possible change in the geometry of the sub-
strate forced by the adsorbates results in a different elec-
tronic structure of the outermost surface layers: on one
hand the surface-derived peaks are shifted in energy, and
on the other hand new adsorbate-induced peaks appear
in the spectra. This may lead to a complex change of
the shape of the EDC's complicating the distinction be-
tween surface and bulk states involved in the photoemis-
sion process. One argument often quoted is the following:
surface states have to possess the periodicity of the sur-
face, whereas bulk states may, but need not, show it.
Especially if more than one surface Brillouin zone is de-
tectable one traces the structures along k~~ and observes
their dispersion leading to the desired distinction. Un-
fortunately the transition-matrix elements often suppress
the intensity of some structures in some range of detec-
tion angles so that not all of the peaks can be observed
throughout the Brillouin zones. Additionally, a compa-
rably small dispersion of the peaks makes it harder to
recognize the periodicity. ~ One further aid for the identi-
fication of surface peaks, i.e. , the absence of dispersion in
normal-emission spectra taken via scanning the photon
energy, is obscured by emissions from band edges equally
showing no dispersion.

The questions and statements raised above emphasize
the necessity of calculations of the photoemission current
within the one-step model, including correct transition
matrix elements. The comparison of theory with exper-
iment allows us to draw conclusions on the spatial dis-
tribution of both initial- and final-state wave functions,
escape probabilities of the photoelectrons and, further-
more, to predict some free parameters inherent in the
theory. The effect of surface states on the spectra may
be easily analyzed because the surface could be elimi-
nated in theory. Equipped with a computer program one
is able to study selected effects on the spectra, for exam-
ple, difFerent surface-barrier shapes may be treated.

As a prototype we choose the (110) surface of GaAs
which is partly well understood to date. There exist
reliable models for the relaxation, favored by analyses
of low-energy electron difFraction (I EED) by means of
R-factors and total-energy calculations. Moreover, ex-
perimentally and theoretically determined valence-band
structures compare very well. These are the reasons why
this surface lends itself support for testing new theoret-
ical concepts and sophisticated calculation schemes. 8 In
the first stage of our study we have analyzed the pho-
tocurrent in the case of normal emission because most of
the observed structures can be attributed to bulk tran-
sitions except one, which arises from the dangling-bond
surface state. Therefore, the interpretation of the spec-
tra is quite easy. While surface states are resonant with
bulk states in the center of the Brillouin zone, they be-
come more surface located in the rest of the k~~ space. For
instance, some of them are lying in the bulk band gap and
are strongly located at the first few layers. In the second

stage, i.e., the case of non-normal emission, we have con-
fined ourselves to study polarization effects on the EDC's.
The electron density of the dangling-bond state is clearly
located at the outermost surface layer and directed to
the vacuum at an angle of about 45' with respect to the
surface normal. The intensity varies drastically if the di-
rection of the incident radiation and the escape angle of
the detected photoelectrons are changed. s io

In a previous paper on GaAs(110) (Ref. 4) we have
shown that all peaks in the experimental EDC's in nor-
mal emission could be explained using structure plots,
i.e. , for lower photon energies the direct-transition model
yielded an agreement from very close to a few 0.1 eV.
The one-dimensional density of states showed to be less
important. The direct comparison of the theoretical and
experimental intensities was encouraging, but there still
remained clear differences, demonstrating that the con-
formity within the energy positions did not establish a
similar quality of the matrix-element calculation. In the
integration of the matrix elements we had neglected the
boundary condition of the final state, i.e., the final-state
wave function was extrapolated into the vacuum region.
Sufficient convergence of the integration was assured by
the localization of atomic orbitals, into which the initial
states are expanded. The correct boundary, however,
was incorporated in those parts of the calculation where
the individually weighted final-state bands, which con-
tribute to the outgoing I EED wave, were summed up.
In this paper we especially investigate the effect of those
surface properties on the matrix elements. The integra-
tion is separated into a crystal and vacuum part and
is carried out with the correct representation of the fi-
nal state within the respective region. This procedure
increases the necessary CPU time significantly. Addi-
tionally, we discuss the inBuence of several shapes of the
surface-barrier potential on the EDC's.

The paper is organized as follows. In Sec. II we give
a short explanation of the theoretical framework, espe-
cially the calculation of the initial states, the final state,
transition-matrix elements, and the inclusion of the cor-
rugated surface barrier. Subsequently we report some re-
sults for emission along the surface normal, before turn-
ing to the case of non-normal emission. In the latter
we treat escape angles corresponding to values of the
wave-vector component parallel to the surface near the
symmetry point X'. We finish the discussion with a
study of the effect of the surface barrier on the energy-
distribution curves in non-normal emission. In the ap-
pendixes sketches of our computer-program package for
the photoemission calculations and the estimation of the
matrix elements are given.

II. THEORY

In this section a short summary of the theory we
adopted for the photoemission from III-V compound
semiconductors is given.

A. Photoemission

The starting point is the "golden-rule" formulation of
the photoemission process as derived by a lot of authors;
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see, for example, Feibelman and Eastman. ~ Within the
one-step model the differential photocurrent I(E,8, p)
may be written as

I(E ~ &) ~ V E»~ ) l(BLEED(k[[)IDI@'(k~~)) I

k~~
= 2mE»„/5 sing &cosy'

islll (p j (2)

The dipole operator may be written as the inner product
of the vector potential A and the momentum operator
p, D=A p.

Using Dirac's identity the photocurrent can be ex-
pressed in the form

I(E, 8, (p) oc —QEk;„Im ) M(i) G,~ (E + ill) M(j)',

where M(i) denotes the transition-matrix element be-
tween the time-reversed LEED state and initial state C, .
Because the initial states may be nonorthonormal the
Green s function G of the semi-infinite crystal is given in
a conjugate basis set, which we denote by a tilde. The
parameter g represents the hole-lifetime broadening. To
simulate many-particle efFects an optical potential is in-
troduced. Its imaginary part, ImV~~q, determines the
Bnite lifetime of the excited states. We use the following
energy dependence:

ImV, p, (E) =
I ( )( ]

+a, (4)

which has been applied successfully in the photoemission
theory4 ~s and in a recent theoretical analysis of total
current spectra (TCS) from GaAs(110). ~ The plasmon
energy is represented by p, the real part of the optical
potential is set to zero.

x 6'(E —E, —her),

where the sum runs over all initial states 4, with energy
E, Th. e final state O'LEED is the time reversal of a LEED
state, i.e. , the wave function one would use to describe a
low-energy electron-diKraction experiment. ~~ Its energy
is E; + hu with hu denoting the photon energy. The
escape angles 8 and p and the kinetic energy E»„deter-
mine the surface parallel component of the wave vector
by

0- 15r

and for diagonal elements we write

H ) )(k) = I—) —K I )[9 ) )(k) —1]. (6)

Here, a and P label the orbitals of the basis atoms l
and m, . The overlap matrix is denoted S. The parame-
ters K~p only depend on the angular momentum of the
orbitals so that we are concerned with three difFerent
values, i.e. , K„, K», and K„„. The remaining quan-
tities I I, and I I, represent the orbital energies. The
ll EHT parameters are determined by fitting the bulk
valence-band structure to that calculated by Chelikowsky
and Cohen. ~s Additionally, we have calculated the charge
transfer via Mulliken's population analysis~r yielding a
transfer of 0.297 electrons from Ga to As. This agrees
quite well with the Phillips ionicity, which for GaAs is
0.310.~s Therefore, the dispersion of the electronic states
as well as the wave functions themselves seem to be de-
scribed correctly within our approach. The EHT scheme
may be easily extended to self-consistency, which, how-
ever, is not our purpose in this paper. In fact we have per-
formed a self-consistent calculation of the valence bands
along those lines. The parameters of a slightly enhanced
basis set converged in the self-consistency loop to values
comparable with the fitted quantities used here. The
small differences are attributed to shortcomings of that
procedure enforced by the EHT parametrization. Thus,
we believe that the quality of the wave functions should
not suffer from the further fit to a standard band struc-
ture; our valence bands should represent an acceptable
approximation.

In Fig. 1 the resulting bulk-valence-band structure is

B. Initial states

We calculate the initial states by the empirical tight-
binding method (ETBM) as formulated in the extended
Hiickel theory (EHT). Our basis set consists of the 4s and
the 4p atomic orbitals of gallium and arsenic, ~s and we
take into account interactions including orbitals located
at third-nearest-neighbor atoms. The EHT formula for
nondiagonal elements of the Hamiltonian matrix, i.e., for

(nl) P (Pm), reads

H~)p~(k) = — (I~( + Ip~) g~(p~(k),

X U, K

FIG. 1. Valence-band structure of GaAs calculated within

the EHT scheme. The energy bands are shown along the high-

symmetry lines of the bulk Brillouin zone. At band edges and

points of high symmetry the group representation is speci-

fied. Additionally, along the direction Z (I'—K, U—A) some

bands are labeled with numbers. The energy zero refers to
the valence-band maximum.
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shown. It compares very well with that calculated by
Chelikowsky and Cohen and that of Cardona, Chris-
tensen, and Fasol. z . The relevant direction of high sym-
metry for emission normal to the (110) surface is the
line I"—Z—X. The uppermost band dispersing down from
I'is to Xs possesses Zz symmetry, while the others show
Zi symmetry. For better identification they are marked
with increasing numbers from the valence-band rnaxi-
mum down to lower energies.

The electronic structure of the semi-infinite solid is cal-
culated within the Green's-function approach applying a
highly convergent renormalization scheme proposed by
Lopez Sancho, Lopez Sancho, and Rubio. zz This "layer-
doubling" procedure enables us to determine the Green's
function of the whole truncated crystal by means of trans-
fer matrices, the Green's function given in the basis of
layer Bloch sums

] y, kll, cx, t), which are indexed by the
crystal layer p and the orbital o. of atom species l. A
determination of the bulk resolvent is not necessary. ~3

As our basis set consists of nonorthonormal atomic wave
functions we are forced to introduce a conjugated ba-
sis, which, however, does not enter the calculations
explicitly. ~4 Because of the good convergence behavior we
are able to treat surfaces with large unit cells within mod-
erate computer time. For example, with a hole-lifetime
broadening of g = 0.05 eV no more than seven iterations
are needed to give the Green's functions of the bulk, the
ideal surface, and of the reconstructed surface. The Final
interactions between two stacks of renormalized layers
are reduced to less than 1% of the initial layer interac-
tions. Our tight-binding model has proven its suitability
for GaAs(ill)2x2, 2s GaAs(ill)2x2, and GaAs(001), zs

essentially reproducing the experimental peak positions
in a band-mapping procedure.

There exist a lot of relaxation models for the (110)
surface of GaAs which are quite similar. As in our re-
cent study of the photoemission current of GaAs(110)
(Ref. 4) we use the one proposed by Duke et at. ,27 which
is confirmed by a LEED R-factor analysis. The result-
ing surface-band structure compares very well with that
derived by Zhang and Cohen applying the self-consistent
local-density approximation in a slab geometry. There
exists one interesting deviation between other theoreti-
cal surface-band structures and ours. In our work the As
surface state is lying at —0.05 eV in the center of the sur-
face Brillouin zone, whereas in other sophisticated slab
calculations its energy is distinctly lower, e.g. , —0.8 eV
to —0.4 eV. s As in the case of GaSb(110) (Ref. 30) the
dangling bond is found near the VBM in experiment, 4

but shows only a weak structure in the EDC's due to
its resonant behavior. At this point an advantage of the
semi-infinite model over a slab calculation, where reso-
nant states localized on opposite surfaces cannot be de-
coupled, is revealed. Clearly, the better agreement of A5
with experiment is more suitable as the basis of a calcu-
lation of photoemission intensities even if it is not so well
founded like a self-consistent calculation.

C. Time-reversed LEED state

The initial states may be very well described within
a localized orbital basis. For the description of the fi-

where the first term represents the incoming (0,0)-LEED
beam, whereas the, remaining sum runs over all back-
scattered beams with amplitudes yz enumerated by sur-
face reciprocal-lattice vectors. The latter may not leave
the crystal depending on energy and escape angles. g is
a vector parallel to the surface plane, g = (z, y). The
x axis points into the [110] direction, whereas the y axis
points into the [001) direction. A mirror plane of the
(110) surface is formed by the x-z plane. This system
of coordinates is used throughout in this paper. The
wave-vector component perpendicular to the surface tcz
is given by

2m(E —C gh)
ll

+ g (8)

the energy E taken relative to the VBM. If the radicand
is negative, Kg is purely imaginary describing damped
plane waves in the direction towards the vacuum.
corresponds to the lattice vector g = (0, 0). The photo-
emission threshold C'tg, e.g. , the energetic difFerence be-
tween the vacuum level and the VBM, is set to 5.25 eV
in accordance with theoretical and experimental estima-
tions.

In the crystal region, (z & zo), the final state is ex-
panded into solutions 4; of the bulk Schrodinger equa-
tion,

BLEED(kll~ E) = )
The expansion coefBcients t, and yz are Gxed by the con-
dition that the final-state wave function and its deriva-
tive normal to surface are continuous across the surface
(z = zo). In the considered energy range 27 surface
reciprocal-lattice vectors are taken into account leaving
the mismatch in both the wave function and its deriva-
tive less than 2%. Because the final state is totally
symmetric3~ wave functions with Z& symmetry do not
couple to the outgoing wave.

The bulk states 4, are computed within the empir-
ical pseudopotential method (EPM) applying the local
potential of Cohen and Bergstresser, 32 which has been
evaluated by Gtting to optical data near the fundamental
band gap. The wave functions are given in a plane-wave
expansion,

e;(k&'~) = ) ck
' (k~'~) exp[ —i(k~'~' + a) r]

nal state of photoemission, i.e. , the time-reversed LEED
state, a plane-wave basis is more appropriate because of
its similarity to free electrons.

In the vacuum region, (z & zo j, the potential vanishes,
assuming a steplike surface barrier, and the final state
may be written as

i EFD(kll & E) exp(ckll ' g + aKoz)

+ ) p" exp[i(kll + g) g —iz'z],
8

(7)
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with k~'& = (k~~, A:&l). In the computation 137 bulk
reciprocal-lattice vectors G are taken into account. To
include the surface in the calculations we have to follow
the concept of Heine's complex band structure. ss Because
we need the wave functions for given energy and k~~ we
utilize a simple computational scheme by Pendry, which

determines the coefficients n&i'l and the components of
the complex wave vector k&~' directly. s4

In Fig. 2 the complex band structure for the symme-
try direction Z together with the expansion coefficients
t; of the final state Ci,EED is shown. Because of the
nonvanishing imaginary part of the optical potential the
band gaps, which would occasionally occur, are bridged
over. As in the photoemission calculations presented be-
low the parameters of the energy dependence are cho-
sen as a = —0.3 eV, b = 2.5 eV, c = —1.5 eV, and
y, = 17.0 eV, cf. Eq. (4). E.g. , at lower energies bands 5
and 6 behave like imaginary bands of the first kind con-
necting real bands. ss At higher energies the imaginary
part of k~ generally slightly increases because of the high
damping above the plasmon energy. Furthermore, the
bands are similar to free-electron parabolas, but possess
difFerent slopes. As expected earlier4 conduction band 7
couples very strongly to the outgoing wave as can be seen
by the respective expansion coeKcient. The correspond-
ing wave function describes electrons propagating normal
to the surface as it becomes evident from the plane-wave

expansion. The dominating contribution arises from that
plane wave with the shortest umklapp perpendicular to
the surface; the remaining are by far smaller, a result
which is sometimes stated.

A problem worth mentioning arises by the use of two
different Hamiltonians, one for the valence-band states
and the other for the conduction-band states. In other
calculation schemes, based on the computer program
PEOVER, the initial and the final states are calcu-
lated by the layer-KKR method. The problem is to
get the appropriate KKR potential in the case of co-
valent binding, if there is any. An example avoiding
this difficulty is a computer program calculating the ini-
tial states in the tight-binding approach and the final
states via the layer-KKR method, which is applied suc-
cessfully to layered crystals. To analyze the question
whether the EPM and the ETBM Hamiltonian repre-
sent the same operator, we have compared the bulk-
band structure and the total valence-charge density de-
termined within both approaches, EPM and ETBM. We
find a quite good agreement of the band structures;
the pseudopotential bands show less dispersion than the
ETBM bands, which we attribute to neglecting non-
local parts of the pseudopotential. The charge densi-
ties compare quite well, too. One has to exclude the
core region keeping in mind that in the EPM case the
charge density is determined by the pseudowave func-
tions instead of the still unknown true ones. The former
are quite smooth in the core region, whereas the latter
show rapid oscillations, as they do in the ETBM case. is

Additionally, the Hamiltonian operators may be com-
pared directly by transforming the EPM-Hamiltonian
matrix into a tight-binding representation. ss The quan-
tity H~ip~(k)/S~ip~(k) shows a very similar behavior in
the reciprocal space for both calculation methods. This
confirms our EHT formulas, Eqs. (5) and (6): for the
nondiagonal elements H/S is constant by definition in
the EHT case and shows to be nearly constant in the
EPM case. If one uses the original EHT formula for the
diagonal matrix elements, which reads H~i~i = I i, —
the agreement between both approaches is not as good
as with the use of our formula, which, however, intro-
duces four additional parameters I i to be fitted. As we
see, this total agreement justifies the application of those
Hamiltonians in our photoemission calculations.

D. Transition-matrix elements

9
X z r z

Re k
X 0 2z/a 0

Imk

FIG. 2. Complex conduction-band structure of GaAs for
the symmetry direction Z calculated within the EPM scheme.
In the left and the middle inset the real part of k~ and its
imaginary part are shown. Only bands with damping less
than 2n/a are presented. Zq states are specified by dashed

lines, Zp states by solid lines. In the right part the expansion
coefBcients t; of the photoemission final state are drawn, la-
beled the same way as the corresponding bands. Energy zero
refers to VBM.

Because of the small escape depth of the photoelec-
trons the spatial variation of the electromagnetic field is
neglected in the energy range concerned. However, its
diffraction at the surface is included via Fresnel's formu-
las. The transition-matrix elements of Eq. (3) have to be
calculated between the time-reversed I EED state C I EED
and layer-Bloch sums indicated by the layer p, k~~, and
the orbital a located at atoms of species l,

M(p) k(), n) t) = (4 i EED ~D~p) k(() a) t)

The integration has to be extended over the whole space.
Because the final state is differently expanded in the
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vacuum and in the crystal region, cf. Eqs. (7) and
(9), the total matrix element is divided into two terms,
M„(p, kii, cr, l) and M, (p, kii, ot, l), where the quadrature
is restricted to the vacuum (v) and to the crystal (c),
respectively.

Firstly, we treat the crystal part of the matrix element.
Inserting the expressions for the final state and the Bloch
sum results in a summation over all reciprocal bulk lattice
vectors, final states, and layer unit cells. The assumption
of translational invariance parallel to the surface results
in the conservation of the parallel component of the wave
vector k~~ modulo in-plane reciprocal-lattice vectors. The
remaining quadrature is a Fourier transformation of the
atomic orbital @~i restricted to the specified volume,

F i(zo, k) =
~ x f

—oo,zp]

e'"' C i(r —R) dr .

This is solved analytically; however, the derivation of the
resulting formulas is straightforward but tedious. Exam-
ples are shown in Appendix B. In our previous work4
we had to require that the plane wave with its complex
wave vector does not increase stronger than the atomic
orbital decreases in order to arrive at convergence. As
could be seen in Fig. 2, rapidly increasing final states do
not couple strongly to the outgoing wave, and therefore
this has been a principal but no practical shortcoming
in the calculations. Due to the surface cutoff at z0 this
requirement is no longer necessary.

To treat the vacuum part of the matrix element we
can use the previous results. The only differences are
that now the sums occurring from the expansion of the
Anal state and the layer-Bloch sums run over the recipro-
cal surface vectors instead over bulk reciprocal ones and
that the integration is over the vacuum half-space. The
latter can be solved immediately: the Fourier transform
of the atomic orbital restricted to the vacuum is just that
over the whole space minus that restricted to the crystal
volume. The transition-matrix elements in the approxi-
mation of neglecting the surface have been evaluated by
Gadzuk. ss

The Fourier transforms depend on the location of the
atomic wave function perpendicular to the surface. This
leads to a strong modification of the transition-matrix el-
ements of surface-located Bloch sums compared to those
of bulk-located Bloch sums. As an example we show
in Fig. 3 the Fourier transformed 4s orbital of gallium,
where the quadrature is restricted to the crystal accord-
ing to Eq. (12). For small values of zo the Fourier trans-
form equals nearly to zero, whereas for large values of
zo lt becomes also constant reaching the bulk value at
zo —2.5a/4, a = 5.632 65 A. being the bulk lattice con-
stant (the layer spacing is 1.42a/4). In the intermedi-
ate region, —2a/4 & zo & 2a/4, the real part increases
rapidly from zero to the bulk value while the imaginary
part shows a distinct maximum at zo = 0. It is evident
from our analysis that a change of the parameter z0 ef-
fects the resulting EDC's considerably, which we shaH
show below.

Because of the small escape depth photoemission spec-
troscopy is very sensitive to surface transitions. In the-

10-:
9-'

(f) 8;
7-:

6
5-:

4

V)c 2..
G)

0

(Abs

—4 —3 —2 —1 0
z (units of a/4)

2
I

3
I

5

FIG. 3. Fourier transform of a gallium 4s wave function
located at the origin z = 0. The quadrature is restricted
to the half-space (z & zan. The wave vector chosen is k =
(0.2, 0.2, 0.8 —0.3i)2n/a. The real part is denoted "Re," the
imaginary part by "Im," and the modulus by "Abs."
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FIG. 4. Modulus of transition-matrix elements vs crystal
layer. The final-state energy is 16 eV, k~~ being zero. The
incidence angles of the radiation are 8A = 45' and pA ——

270' (p polarization). The interface plane solid vacuum lies
at zo = 3.19a/4. The orbital type is shown on the right.
Ga and As curves are labeled with squares and diamonds,
respectively. The value of each curve at layer 40 represents
its approximately zero ordinate.

ory this feat;ure can be seen by plotting the modulus
of transition-matrix elements with respect to the crys-
tal layer as done in Fig. 4. First of all, one observes an
exponential-like decay of the matrix elements. At the
surface region, i.e., the outermost six layers, strong devi-
ations from this global behavior due to the surface cutoff
and the relaxation occur. Note that matrix elements of
s orbitals are much smaller than that of p orbitals.

The transition-matrix elements are a substantial part
of the theory because they govern the intensity of the
photocurrent. The numerical effort is considerable but
far-going approximations, which allow calculations of in-
tensities without taking into account transition-matrix
elements or the surface, e.g. , angle-resolved initial state
spectra4o or the theory derived by Humphreys, Srivas-
tava, and Williams4i have to pay with a rather limited
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range of applicability in describing the spectra. In the
latter the transition-matrix elements show nearly no ef-
fect on the EDC's contrary to our findings.

E. Surface barrier

In photoemission spectroscopy the excited electrons
are propagating through three difFerent kinds of regions.
Firstly, they have to pass the bulk with the strong poten-
tial giving rise to the band structure. Secondly, at the in-
terface region between the solid and the vacuum the elec-
trons may be scattered back from the surface barrier and
additionally feel the long-range Coulombic image state
potential outside the crystal. In the third region far out-
side the crystal the potential is very small compared to
that of the former regions and therefore may be asymp-
totically neglected, i.e., it is set to zero as the starting
value in the integration of the Schrodinger equation from
outside towards the interior of the solid.

At higher kinetic energies the effect of the surface bar-
rier may be neglected but at lower kinetic energies the
photoelectrons are infiuenced strongly. Therefore, the
shape of the barrier potential may be evaluated by com-
paring theoretical EDC's calculated for a variety of bar-
rier shapes with experimentally determined spectra.

In the interface region the crystal potential is not peri-
odic perpendicular to the surface, consequently no Bloch
condition can be employed. By application of the propa-
gator formalism this difficulty has been overcome. 4~ Both
the wave function and the potential are given in a mixed
representation, i.e. , a Fourier decomposition parallel to
the surface with the Fourier coefBcients depending on
the coordinate perpendicular to the surface z. Then we
get for the potential V in the interface region

V(g, z) = ) Vs(z) exp(ig g), (13)

g being a vector parallel to the surface. In a similar way
the wave function @ is written for fixed energy E and k~~,

@(g,z) = ) P (z)exp[i(k~~ + g) g]. (14)

P(z, z') = P(z, z")P(z", z'), Vz",

P(z, z) =1,
(16)

(17)

1 denoting the unit 2n x 2n matrix. The propagator
matrix can be calculated by direct integration of the
Schrodinger equation. In our theory the application of

Taking into account n surface-reciprocal-lattice vectors
g a vector % may be introduced, the first n components
given by the coefficients Ps and the second n compo-
nents by their derivatives with respect to z. Thus, the
Schrodinger equation becomes a first-order system of 2n
coupled differential equations. The propagator matrix
P(z, z') is defined by the relation

C (z') = P(z', z) C (z)

and thus satisfies the equations

the propagator formalism infiuences only the expansion
coefficients t; and ps of the time-reversed I EED state.
Firstly, we compute the propagator P from the vac-
uum region far enough outside the crystal to the third,
unrelaxed crystal layer. Subsequently the coefBcients
are determined by the usual matching condition. The
transition-matrix elements are calculated in the way de-
scribed before. In principle, one has to calculate also the
matrix elements between the initial states and the true fi-
nal wave function given in the mixed representation, i.e.,
including the transition region composed of the first two
layers and the surface barrier. This problem might be
tackled in the future. Here, we replace for the calcula-
tion of the matrix elements the transition region by an
ideal separating plane at position zo, which is treated as
a fit parameter.

The corrugated barrier potential is determined by the
Fourier coefficients Vs(z) of the mixed representation.
For g g 0 these decrease rapidly, whereas for g = 0
it increases to the step height with increasing z out-
side the crystal. In the interior the surface potential
fits to the known bulk pseudopotential used in the EPM
calculations. A lot of difFerent models for the barrier
shape have been suggested for metals, 4s but in the case
of semiconductors only a little work on this topic has
been published. In a self-consistent calculation within the
nonlocal-density approximation of the density-functional
theory Manghi has calculated the electronic structure of
the GaAs(110) surface and has given a detailed analysis
of the barrier shape. 44 As in the case of metals one ob-
serves a saturated image-potential barrier with a nearly
linear ascent.

In order to reproduce the barrier shape determined by
Manghi we have used the following parametrization of
the barrier. For g = (0, 0) the Fourier coefficient reads

V (z)
~ 4(z(~ —z) ' z & z„

1 t( )2+C& Zv +Z+Zc. (18)

III. EXPERIMENT

In this section a short summary of the experiment is

given. We rely on data from an experiment described in a

The adjustable parameters are z„and z„ the boundaries
of the barrier towards the vacuum and towards the out-
ermost surface layer, respectively, and z; is the pole of
the image potential. The values of a, b, and c are fixed by
continuity at z, and smooth continuity at z„. For non-
vanishing surface-reciprocal-lattice vectors we assume a
decay like a Gaussian with parameter A,

Vs(z) = Vs(z, ) exp[ —A(z —z,) ], z & z, . (19)

The imaginary part of the optical potential is taken
as spatially constant throughout the whole bulk crys-
tal and decays like a Gaussian with the same parame-
ter A. Using this parametrization we are able to repre-
sent a lot of different shapes; for example, we have stud-
ied a sharp step and very smooth interpolating forms.
The main attributes that remain unchanged are the long-
range Coulomb image potential and the nearly linear in-
terpolant in the intermediate region.
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recent paper. 4 Only the main features are repeated. The
experimental spectra have been taken with synchrotron
radiation in the energy range from 10 eV up to 30 eV
and optional with unpolarized He I radiation. The energy
resolution has been chosen to 100 meV and the angle
resolution has been better than 0.5'. In normal emission
the angle of incidence is 45' with respect to the surface
normal, the dominant component of the vector potential
A as well as the plane of incidence lying in the mirror
plane of the (110) surface. In non-normal emission the
EDC's have been taken at various angles and polarization
conditions, For comparison with theory the experimental
data have been slightly smoothed after subtracting the
inelastic background.

xpt.

3.94

3.69

IV'. DlSCUSSEON AND R,ESULYS 3.44

A. Normal emission

In the analysis of normal-emission spectra from
GaAs(110) one is concerned with the high-symmetry line
Z of the bulk Brillouin zone. Because the final state is
totally symmetric only bulk states with even parity,
i.e., Zi symmetry, couple to the outgoing wave. Using
p-polarized light, the vector potential lying in the mir-
ror plane of the surface, only Z~-symmetry initial states
contribute to the photocurrent, whereas with s-polarized
light only the odd states are detected Bec.ause the ex-
perimental data have been taken with p-polarized light
(pA = 270', A denoting the vector potential) we confine
our analyses to that case. In all theoretical EDC's pre-
sented in this subsection the surface barrier with a shape
determined by Manghi is included

At first, we discuss the effect of free parameters in the
theory on the calculated EDC's before we compare our re-
sults with the experiment. As it is evident from Fig. 3 the
coordinate zo of the interface vacuum crystal regarded
relative to an atomic plane considerably influences the
Fourier transforms of the atomic wave functions, which
are an essential part of the transition-matrix elements.
As one example we show in Fig. 5 25-eV spectra for var-
ious values of zo, see also Eq. (12). The salient feature
is the ratio of the intensity near the VBM to that at
—2.8 eV, being the energy of the Pals point. At smaller
values of zo, i.e. , 2.94a/4 and 3.44a/4, the latter peak is
dominating the EDC's. At large values the VBM shows
the by far highest intensity, whereas at the intermediate
value 3.69a/4 both transitions possess nearly the same in-
tensity. As in experiment the intensity at initial energies
less than —4.5 eV is mostly suppressed. The comparison
with the experimental EDC reveals that the theoretical
spectrum for zo = 3.69n/4 results in the best agreement.
Note that this value for zo coincides nearly with that
of the half-step height of the saturated image potential
barrier, or in other words, it lies in a distance from the
uppermost atomic plane somewhat greater than one-half
of the interlayer spacing, as is evident from Fig. 10. The
correspondence between theory and experiment is quite
good. A11 relevant features are reproduced by the theory,
except the strong intensity at energies between —2.0 eV
to —0.8 eV, which are due to transitions from initial state

I I I I I

-4 -2

Energy (eV)

2.94

PIG. 5. Theoretical energy-distribution curves for various
values of zo compared with an experimental spectrum. The
former are indicated by zo in units of a/4, the origin located at
the third, unrelaxed crystal layer, the latter is labeled "Expt."
The photon energy is 25 eV and p polarization is assumed.
Initial energy refers to VBM.

3 into Gnal states 9 and ll. This lack may be attributed
to the uncertainties in the EPM conduction-band struc-
ture. Because of the large computer time necessary for
the computation of one spectrum we did not regard it
worth fine tuning zo for best agreement.

As a second example we analyze the polarization de-
pendence of the theoretical EDC's. Using p-polarized
radiation the photons impinge in the direction of the un-
occupied gallium-derived dangling-bond surface state Cs
onto the surface (&pA = 90'). Under p-polarization con-
ditions they point into the direction of the occupied dan-
gling bond As (pA = 270'); in both cases the vector
potential A is lying in the mirror plane of the (110) sur-
face. In Fig. 6 we show the theoretical EDC's calculated
with zo = 3.69a/4. In the energy range from —2.8 eV
up to the VBM one observes only small changes due to
the polarization at 17-eV photon energy. Near the VBM
a small maximum occurs attributed to the surface state
As, its energy being —0.05 eV. Contrary to expectation
the emission seems to be more pronounced in the case
of p polarization where the Geld vector A is nearly per-
pendicular to the dangling-bond orbital. This underlines
the shortcomings of a purely atomic point of view of the
photoemission process. At about —4.0 eV the spectrum
for p polarization shows a distinct minimum, whereas in
the other case, i.e. , p-polarized radiation, a maximum oc-
curs. The peak at —5.6 eV, which is doe to transitions
from initial state 3 into Gnal state 7, cf. Figs. 1 and 2, is
lower for p polarization. Emissions from the band edge
Z;„at —4.0 eV visible for photon energies above 21 eV
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are stronger in the case of p polarization than for p po-
larization, which may be connected to final states with
nonvanishing parallel wave-vector component. The ini-
tial state is mainly built by the p, orbitals of arsenic and
gallium, contributions from p& orbitals are smaller by a
factor of about 2.

In Fig. 7 we present a complete series of theoretical and
experimental EDC's taken at various photon energies.
The calculations have been performed with zo = 3.69G/4
and p-polarized radiation. One observes that emissions
at —6.8-eV initial energy, referring to the X3 point, are
almost suppressed over the whole photon-energy range
in theory as well as in experiment. The initial states at
that energy are mainly built by the s orbitals of gallium,
leading to comparably small transition matrix elements,
cf. Fig. 4. In the experimental EDC's the transitions from
initial states 2 and 3 into final state 7 dominate, which
we attribute to the strong coupling of that final state to
the outgoing wave. Especially at 19- and 20-eV photon
energy the intensity at about —2.0 eV is emphasized.
At higher excitation energies, i.e. , from 21.2 eV up to
23 eV, it is suppressed. This feature is well reproduced
by the theory. At 28-eV photon energy the spectra show
at the VBM one dominating peak and additional weak
shoulders and maxima at the energies of the bulk band
edges. This is explained by final-state effects: at that
energy a lot of direct transitions near the center of the
bulk Brillouin zone take place leading to this immense
intensity. Furthermore, due to the strong damping the

conservation of A:~ is not as exact as at lower final-state
energies, thus one observes only significant structures at
the energies of band edges.

Although theory and experiment compare well, some
differences are present. As an example, the main inten-
sity at 21.2-eV photon energy arises from the peak at—4.5-eV inital energy in the experimental EDC, whereas
in theory the main maximum lies at —2.8 eV. On the
one hand the conduction-band structure includes some
uncertainties, which are due to the pseudopotential pa-
rameters T.hese have been evaluated by fitting optical
data in the energy range near the fundamental band gap,
whereas we are concerned with higher energies. However,
in favor of that calculation a conduction-band structure
calculated recently with the layer-KKR methodi4 difFers
only slightly in the VUV energy range. On the other
hand, the influence of the matrix elements in dependence
of the detailed surface properties seems to be important.
Generally, however, it can be stressed that the overall
agreement between theory and experiment has improved
considerably in comparison with the former calculation. 4

B. Non-normal emission

In the center of the surface Brillouin zone surface states
are resonant with bulk states leading to transitions with

I (eV)

m (eV)
28.0

25.0

25.0 24.0

24.0 23.0

22.0

22.0
21.2

21.2

20.0

Q 19.0

E. 18.0

19.0

~ ~ ~ ~ ~ ~ I ~ I I ~ ~ ~ ~ ~ ~ S ~ ~

-8 -6 -4 -2 0 -8 -6 -4 -2 0
Energy (eV) Energy (eV)

FIG. 6. Theoretical energy-distribution curves for p- (left)
and p-polarized (right) radiation and normal emission. On the
right the photon energy is given.

-8 -6 -4 -2 0 -8 -6 -4 -2 0
Energy (eV) Energy (eV)

FIG. 7. Comparison of theoretical (left) and experimental
(right) energy-distributions curves taken at normal emission.
The photon energy is noted at the right of each experimental
EDC; p polarization is assumed.
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TABLE I. Measurement arrangements for studying the
polarization dependence of spectra taken at the non-normal
emission presented in Fig. 8. Listed are the azimuth p of the
detector as well as the azimuth yA and the polar angle 8A, of
the incident radiation.

Arrangement

270
90'
90'

270'

PA

90
90

270'
270

32
64'
32
64'

comparably small intensity in the EDC's, as is evident
from the results quoted in Sec. IV A. If the parallel com-
ponent of the wave vector becomes larger some of these
resonances are dispersing into the bulk band gaps and
thus have to be located at the first few surface layers.
Especially the dangling-bond surface state As is strongly
located at the outermost crystal layer, its charge density
extending into the vacuum region. Therefore, the inten-
sity of the photocurrent shows a strong dependence on
the position of the detector and on incidence angles of
the radiation, too.s

The experimental spectra have been taken with unpo-
larized Hei radiation, and no inelastic background has
been subtracted. For a fixed polar angle of the detec-
tor there have been four difFerent measurement arrange-
ments, which are listed in Table I. In the geometries 2
and 3 the excited electrons are detected in the direction
of the unoccupied dangling-bond surface state Cs, in the
remaining geometries they are leaving the crystal in the
direction of the occupied surface state As. At incidence
angles yA of 90', A being the vector potential, the ra-
diation impinges nearly perpendicular to the axis of its
charge-density distribution onto the sample. In theory
the vacuum-crystal interface plane lies at zo = 3.69a/4.

Theoretical and experimental energy-distribution
curves are shown in Fig. 8. The first remarkable fact
is that in theory as well as in experiment emissions from
the dangling-bond surface state As are dominating only
in the spectra taken in arrangement 4. One expects that
in arrangement 1, where the vector potential of the in-
cident radiation is aligned along the wave-vector com-
ponent k~~ and points along the direction of the charge
distribution of the dangling-bond surface state As, the
highest intensity should be observed. In the other mea-
surement arrangements only a comparably weak struc-
ture is found at that energy. Additionally, one notices
that in the theoretical spectra for the geometries 1 and
3 a distinct maximum at —6.1 eV can be observed. This
behavior also exists in the experimental EDC's, though
the comparison with the theoretical ones is rendered more
difficult due to the inelastic background. The experirnen-
tally determined spectra taken at the geometries 2 and
3 are very similar, with the exception that the profile in
the energy range from —2.0 eV up to the VBM differs
slightly. We find the same in the corresponding theoret-
ical EDC s including the peak at —2.0 eV, which is due
to a bulk transition.

Altogether theory and experiment compare quite well.

Theory Experiment

I ~ ~ I ~ ~ 4 I ~ I ~ I ~ ~ ~ ~ I ~ j I

-8 -6 -4 -2 0 -8 -6 -4 -2 0
Energy (eV) Energy (eV)

FIG. 8. Comparison of theoretical (left) and experimen-
tal (right) photoemission spectra taken with Hei radiation
near the point X, the polar angle of the detector being 16'.
The measuring arrangement is given at the right, cf. Table I.
Additionally, the dangling-bond surface state A5 is indicated.

Exceptions seem to be the intensity ratios of the struc-
ture at —6.1 eV and transitions near the VBM, the latter
being more pronounced in theory. At initial energies from
—5.0 eV to —2.5 eV emissions are comparably weak in
both theory and experiment.

The theoretical results presented above cannot be in-
terpreted using only a single free-electron parabola as
final state. 4s This may be seen at once applying a very
simple theory of photoemission by writing the dangling-
bond wave function

I
iIIgb) as a superposition of p„and

p, orbitals,

e&b) = cy I py) + c, I p~)

The final state
I @y) is approximated by

(r I @f) = exp(t'k r),

(2o)

(21)

where k lies here in the second bulk Brillouin zone due
to an umklapp process. The intensity of the photocur-
rent is proportional to the square of the transition-matrix
element M, which reads

IM I'=I & kl'4 lc (k
I p, )l'+ Ic.(k I p.)l'

+2 Rec„' c,(k I p„)'(k
I p, )).

(22)

In that equation it is remarkable that the in-
tensity between the arrangements 1 and 4 as
well as in 2 and 3 varies with the same factor
I A~ kg + Ay ky lz/I &~ k~ —Ay ky lz Provided equal
polar angles, A„being a positive chosen amplitude fac-
tor. An analysis of the absolute intensity of the theo-
retical EDC's reveals that this approximation does not
hold as it is also obvious from the experiment. Although
the bulk conduction band 7 is coupling very strong to
the outgoing wave even in non-normal emission one has
to describe the Qnal state of photoemission as well as
the transition-matrix elements correctly by including the
whole set of contributing conduction-band states. For
example, one has to consider the boundary conditions at
the surface. Thus, the statements of Huijser, van I aar,
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only the energy range from —2.0 eV up to —1.5 eV is
affected by the different barrier shapes, i.e. , the smooth
and the steplike barrier. An exception is the energy range
from about —6 eV up to —4 eV for the measurement ar-
rangement d. The remaining parts of the spectra are left
nearly unchanged. In geometries c and d the dangling-
bond surface state As shows large intensity. In case c
the smooth barrier increases the photocurrent in the en-
ergy range mentioned above with respect to the steplike
potential shape. In the other case, d, one observes the
opposite behavior.

For normal emission we have performed similar cal-
culations, including a variety of smooth barrier shapes
as well as a one-step barrier. In contrast to the case
of non-normal emission we found more subtle changes
in the EDC's confirming that surface-located states may
be more affected by the barrier shape than bulk located
ones. Both ascent and corrugation lead to significant
changes in the spectra.

To conclude, the behavior of the intensity with poten-
tial shape is not clear, often ambiguous, and could not
be embraced in simple terms. Thus, it may be neglected
in a first examination as long as the direct effect on the
matrix elements is disregarded (zo ——oo). The latter are
quite important, as we have shown in Sec. IVA. How-
ever, there are some typical examples, as shown by the
EDC's for arrangements c and d in Fig. 11. We found
that the surface barrier shows an efFect on the EDC's also
at other excitation energies, i.e. , in the range hu & 20 eV.
One observes changes in the intensity of significant struc-
tures, for example, surface states are afFected in non-
normal emission. The comparison between theory and
experiment does not approve the determination of the
parameters describing the barrier, but the overall best
agreement is given by the chosen parameter set. Surely,
the steplike barrier is not a good approximation, as is
also evident from a TCS analysis. i4

In this paper we have presented new calculations of
energy-distribution curves examining some aspects of the
photoemission from GaAs(110). Our theory has been
developed further and now includes the correct bound-
ary condition of the final state at the surface, transition-
matrix elements with surface corrections, and the effect
of the surface barrier.

We have illustrated that the truncation of the solid
leads to a significant effect on the transition-matrix ele-
ments, which arises from the different expansion of the
final state in both half-spaces, e.g. , crystal and vacuum.
Small changes in the coordinate of the interface plane
show distinct effects on the energy-distribution curves,
allowing a determination of this important parameter in-
herent in our theory. The value giving the best agreement
between theoretical and experimental spectra can be as-
sociated with the half-step height of the saturated image
potential barrier.

The energy-distribution curves strongly depend on the
incidence angles of the radiation. In the case of non-
normal emission the spectra also depend drastically on

the escape angles of the photoelectrons, although the
corresponding wave vectors are equivalent in the surface
Brillouin zone. Especially surface states with a directed
charge distribution are concerned, e.g. , the dangling-
bond As shows the most intensity if the escape direction
of the photoelectrons as well as the incidence direction of
the radiation are chosen to be aligned along the orienta-
tion of its charge distribution.

The surface barrier has to be taken into account to irn-
prove the agreement between experiment and theory. Al-
though the determination of the specified potential shape
fails due to the remaining differences between the spec-
tra, a smooth saturated image potential barrier is favored
by our analysis.

Our analysis shows how the computation of energy-
distribution curves may close the gap between the exper-
iment and usual band-structure calculations. It is pos-
sible to study selected efFects on the theoretical spectra
taking into account the intensity as well as the energy
position of the structures.

The still remaining differences between the theoret-
ical and the experimental spectra recommend further
completions of the photoemission theory presented here.
Firstly, the transition-matrix elements have to be calcu-
lated with the true final-state wave function within the
surface-barrier region. Secondly, the photon field is not
spatially constant at the surface as assumed in this pa-
per, and thus has to be calculated microscopically. As
found for the layered crystal 1T-TiS2 it may inHuence the
photoemission spectra considerably. 4~ Thirdly, one has to
look for a still better description of the conduction-band
structure, as it seems to be responsible for deviations of
the energy position of the theoretical transitions from the
experimentally determined ones.
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APPENDIX A: COMPUTER PROGRAMS

For the computation of the intensity of the photocur-
rent we have developed a package of several computer
programs. The approximately 14000 lines of source code
are written in ANSI-FORTRAN 77, allowing us to run the
package on a lot of different machines and different oper-
ating systems without any changes in the source codes.

As a first step of the calculation we compute a spline in-
terpolation of the Fourier coefficients Vz(z) in the range
of the surface barrier. In the second step the complex
bulk-band structure in the conduction-band regime is
calculated. Additionally, the propagator matrix is deter-
mined by direct integration of the Schrodinger equation
using subroutines developed by Shampine and Gordon
utilizing an Adams method with variable step size. Fi-
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nally, the expansion coefficients t; and Ps are calculated
by the wave-function-matching procedure. In the last
stage transition-matrix elements and the Green's func-
tion of the semi-infinite solid are computed. All these
quantities are subsequently combined to yield the pho-
tocurrent. Because of the large amount of necessary com-
puter time most of the data are stored in disk files and
thus have to be computed only once.

In the last stage of our analysis the programs sketched
above were running on a CRAY YMP-832 computer.
The computation of the final state requires 35-sec execu-
tion time per energy and parallel component of the wave
vector and 2.5 MWords (1 Word =8 Bytes) of storage.
The evaluation of the intensities needs approximately
2500 sec per EDC.

APPENDIX B:FOURIER TRANSFORMATION
OF ATOMIC ORBITALS INCLUDING

THE SURFACE

for angular momenta l = 0, 1 and 0 denoting the solid
angle. Im k~ is less equal to zero because the final state
is decaying towards the bulk, i.e. , in the —z direction.

As a first step we introduce the Fourier transform of
the Heaviside step function e(zp —z) allowing us to
extend the integration over the whole space, for which
we have to pay by an additional integral. With a =
(k!!,ki + s), s being the conjugate variable to z, one gets
immediately

+OO ]
ds —exp( —iszp) J(a),

e

I(k) =
270 QQ

where J(m) is the Fourier-transformed Slater orbital
without surface, i.e., zp = +oo, which is already known. s

For orbitals with s symmetry we have

(n+ 1)!

1
x ds exp( iszp) . —

RSK

X p —gg -("+2) —p+ gp; -("+2)

with r = v/tc r Applying th.e binomial theorem one
arrives at

[ re+1]

I(k) = (n+1)! ) ~ [

A"+' '" K(p),

In this appendix a very short sketch of the calculation
of the Fourier-transformed orbitals is given. The atomic
orbitals used in the LCAO scheme are linear combina-
tions of Slater orbitals. Thus, only the latter are involved
in the calculation of the Fourier transformation and we
are concerned with integrals of the form

Zp

I(k) = dxdy dz exp(ik. r —Ar) r" Yi [A(r))

gir. A —ir j
—(A+ i~)-["+'l

]
—. +(iz A+ i~j

Spherical harmonics for complex argument have been dis-
cussed by Olver. 4s Writing the total integral I(k) as

I(k) = Ii(k) —I2(k),
we arrive at

[n/2]

Ii(k) = —2n! ) ] i

A"
&2&+ 1)
x (—1)"K(n + 1,p, cr)

[(ttt+2) /2]

Iz(k) = —2(n+1)! ) ] ~

A"+z 2"

x(—1)"K(n+ 2, p, a),
with K(n, p, cr) defined as

K(n, p, o)

3
4'

+OO

ds — (A + r ) "r" exp( —iszp).
SK K

and square brackets denote the maximum integer less
equal to its argument. This remaining integral can be
solved by the residual theorem. The poles of the inte-

grand ere e, = 0, ee e = —hz d. it/kii + Re, where the

first is of order 1 and the latter are of order n+ 2. The
calculation of the residues is straightforward; in the cases
of sz and ss the extended Leibniz product rule is used.
Finally, one arrives at expressions which can be easily
transferred into efficient FORTRAN source code. A short
form of the result is

[
el+1

]

I(k) = (n+1)! ) ]
[A"+' 2"

x (—27ri) [Res(si, p)+ Res(ss, p)]
for zp ) 0 and

[re+1]

I(k) = (n+ 1)!) ~

[A"+'„; &2p+»
x 2iri Res(sz, p)

for zp & 0. We note that the terms with the residue for
si give just the result for z0 ——+oo; the remaining ones
represent the cutofF due to the surface.

The Slater orbitals with p symmetry are treated in
the same way, the expressions a little more complicated
because of the Fourier transformed J (m), o 6 (2:,y, J ),
which read

n!Y (A(~))

where K(p) is defined as

ds exp( —iszp) —(ie) "(A + rc )
2

s

The poles of the integrand are si, s2, and s3, the same
as for orbitals with s symmetry. Thus, the remaining
task is to evaluate the residues of K(n, p, o') which is'
straightforward.
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