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Density of states of a two-dimensional electron gas in a long-range random potential
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The thermodynamic density of states and the density of states as obtained from the activation
energy of the conductivity are calculated taking into account both linear and nonlinear electron
screening. In the linear screening regime the density of states in a strong magnetic 6eld is negative,
and it is determined by electron-electron interaction. Linear screening fails when the filling factor
is close to an integer. In the nonlinear screening regime the density of states is positive. The
crossover between these regimes is shown to be very sharp. The quantitative results are obtained by
computer modeling. They are in a good agreement with recent magnetocapacitance measurements
and previous measurements of the activation energy in the regime of the quantum Hall e8'ect.

I. INTRODUCTION

A. Long-range potential and screening

The long-range potential and electron screening play
a very important role both in GaAs/Gaq Al As struc-
tures and in silicon metal-insulator-semiconductor struc-
tures (see the review ). In silicon structures the source
of the long-range random potential is not known for sure,
but in the modulation-doped GaAs/Gaq Al As struc-
tures the long-range random potential is caused by fluc-
tuations in the density of the remote ions. The energy
scheme of a simple heterostructure is shown in Fig. 1.
The layer with ionized donors is usually thin enough to
consider it as a plane. This layer is separated from the
two-dimensional electron liquid (2DEL) by an undoped
spacer layer. Thus, the electrostatic model of a hetero-
junction with a wide spacer is a plane condenser with a
2DEL as one plate and with a thin layer of the randomly
distributed donors as the other plate. The distance be-
tween the two plates is the spacer width s. The fluctu-
ations in the density of charged donors create a random
potential Fg(r) in the plane of 2DEL. We assume here
that the spatial distribution of the charged donors C(r)
is random, and that it is not correlated. Thus, (C(r)) = 0
and

where () represents averaging over different configur-
ation of the donor density. It has been shown2 that in
order to take into account correlation in the charge distri-
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The Fourier transform of Eq. (1) will take the form

(C(q~) C(q2)) = C(2~)'~(q~ + q2).

By using Eqs. (1) and (3) one can show that (Fb) = 0
and that the dispersion of the bare potential is

(FP(r)) = 2qrC
dq
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where qm;„=1/L. In the limit of large size I -+ oo, this
expression for the mean-square potential diverges accord-
ing to

where

(Eq~) = W ln —,I
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e~
W = v'2qr —vC.

bution one should replace C with some effective reduced
density.

The random potential created by fluctuations in the
donor density Fb(r), called the bare potential, can be
written in the form

ez C(r')d r'
Fg(r) =-

Q~r —r'~z + sz

Expressed as a Fourier integral this potential becomes

FIG. 1. Energy diagram of a GaAs heterostructure, where

the region occupied by the 2DEL is shaded.

Here r is the dielectric constant, s is the distance be-
tween the donor plate and the 2DEL plate. For a
GaAs heterostructure, with a donor concentration of
C = 1.0 x 10 cm, one obtains ~ = 9.2 meV. Thus,
the fluctuations in the bare potential of a macroscopic
2DEL are very large.
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(9)

where

6 lA
qs —270 ~ (10)

In Eq. (10) n is the electron density and Ey is the chem-
ical potential of the 2DEL.

These results are well known for the case of free
electrons. s However, Eqs. (9) and (10) are valid in the
general case of interacting electrons, both with and with-
out a magnetic field4 if the following conditions are sat-
isfied:

The redistribution of the electron density is small, i.e. ,

linear screening.
A smooth bare potential. The relevant values of q in

the integral in Eq. (9) should be much smaller than q, .

A simple derivation of this statement is given in Sec. II.
The derivation of the dispersion of this potential is sim-

ilar to the derivation of the dispersion of the unscreened
potential, and it gives

This equation is valid, when 2~q, (s )) 1, which is usually
satisfied for structures with a large spacer width.

It is apparent that linear screening dramatically re-
duces the dispersion of the potential. For an ideal 2DEI,
without a magnetic field, q, does not depend on the elec-
tron density, and it is given by q, = 2/a, where a is the
Bohr radius. s For GaAs a —10 nm, and, thus, for a
spacer s = 40 nm the factor 2~q, ~s is about 16.

I inear screening is very effective in reducing fluctua-
tions in the potential, but it is not valid when changes
in the electron concentration, brought about by the fluc-
tuations in the bare potential, are not small relative to
the average concentration; in this case Quctuations in
the long-range potential are of the order of W. Lowering

To understand this divergence one should consider
the following argument. The average charge fluctuation
within an R x R square is QCRz. If R & s, then the po-
tential created in the plane of the 2DEL by this charge
fluctuation will be damped exponentially. Otherwise, if
R ) s, the charge fluctuation will generate a potential
of order ez/CRz/rcR = ezvC/K. Thus, all harmonics
with wavelengths greater than s give similar contribu-
tions to the dispersion of the potential. This results in a
logarithmic divergence in the integral of Eq. (6) at small
q.

The effect of electron screening is to remove the diver-
gence in the dispersion of the potential, If one considers
the case where the concentration of electrons is large rel-
ative to the changes in the concentration brought about
by fluctuations in the bare potential, then the potential
will be screened linearly. This linear screening can be ac-
counted for by replacing q by q+ q, in the denominator
of the integrand in Eq. (3), giving

the electron concentration will result in a metal-nonmetal
transition, which is an example of a breakdown in linear
screening. In a strong magnetic field linear screening
breaks down each time the filling factor is close to an in-
teger value (or a fractional value in a clean sample). The
study of these two phenomena is the main topic of this
paper.

B. Metal-nonmetal transition
without a magnetic Beld

Without a magnetic field, the long-range potential of
the impurities is the driving force of the metal-nonmetal
transition. 5 7 On the metallic side of this transition, at
high electron concentration, the mobility of the 2DEL,
in structures with large spacer layers, is not controlled
by the remote impurities. One reason for this is eflective
linear screening, but another reason is that the transport
cross section in a long-range potential contains a small
factor 1/(2qfs) due to small-angle scattering (qf is the
Fermi wave vector; see Das Sarma and Stems). Experi-
mental data confirms this picture. The data show~ that
at high densities the mobility of the 2DEL is almost inde-
pendent of the spacer width, but near the transition the
dependence is very strong. This is important evidence
that the transition is driven by the long-range potential.

At large s weak localization effects can be neglected, 5

and the transition can be described in terms of nonlinear
screening and percolation. The advantages of these ap-
proaches is that they are exact in the limit of large spacer
width s.

The concept of the nonlinear screening of a random
potential has been developed by Shklovskii and Efross
during the early 1970s in connection with the theory of
compensated semiconductors. Efros4 io has generalized
this theory to two-dimensional systems with and without
a magnetic field. Below are given the order of magnitude
estimates, which follow from this theory. The main idea
is that the entire 2DEL screens each harmonic of the im-
purity charge distribution independently. The average
excess density of impurities in a square of area R x R is
given by QCR /R . If the density of electrons is much
greater than this excess density, n )) v C/R, then the
harmonics with wavelength R will be screened linearly.
If n (( v C/R, then the R wavelength harmonics are
not screened efFectively, and the 2DEL density becomes
strongly inhomogeneous on a scale of order R. This fail-
ure in screening results from the fact that, in the process
of screening an entire harmonic, the most the electron
concentration can increase at a point is twice its aver-
age concentration. Thus, since the excess density of the
short-wavelength harmonics is large, the 2DEL cannot
balance them. This point can be stated very simply
in terms of a nonlinear screening length R, = ~C/n,
Harmonics in the impurity distribution with wavelengths
R && R, are screened linearly, while those with wave-
lengths B (& R, are screened very poorly.

For large electron density, R, (( s, and all significant
harmonics in the bare potential are screened linearly. If
the electron density is lowered, the nonlinear screening
length becomes larger, and, eventually, for small enough
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electron density, Rc becomes of the same order as s. Then
the density becomes strongly inhomogeneous on the scale
of order s. At small densities, R, )) s, and fiuctuations
include all harmonics with wavelengths between s and
A, . To obtain quantitative results one should solve a
system of nonlinear equations; these equations are given
in Sec. II.

The metal-nonmetal transition occurs when percola-
tion through the 2DEL disappears. The corresponding
electron density is called the percolation threshold n„
and it is of the same order of magnitude as the electron
density in which the transition from linear to nonlinear
screening occurs. Thus,

where P is a numerical coefficient. An estimate by Efross
gives P = 0.1. A computer stimulation by Nixon and
Daviesii roughly confirms this number. Our result (see
Sec. IIIC) is P = 0.11.

C. Linear and nonlinear screening
in a magnetic Beld

where G(B) is the thermodynamic density of states
(TDS) of the 2DEL in a magnetic field B, which is re-
lated to the chemical potential Ey and the energy density
HN by the following equation:

G '(B) = dEg/dn = d2HN/dn2. (14)

These equations allow one to determine the reciprocal
screening wavelength q, if one knows the energy density

Linear screening in a magnetic Geld is an interesting
problem. At zero temperature the compressibility, in the
free-electron approximation, is either zero or infinite, be-
cause the density of states is either zero or infinite.

A self-consistent screening theory has been proposed
by Das Sarma and co-workers, iz i and separately by
Murayama and Ando, i5 which takes into account broad-
ening of the Landau levels due to disorder. We believe
that this theory should be applicable if the resulting
width of the Landau levels, due to disorder, is larger
than the energy of the electron-electron interaction. Oth-
erwise, the electron-electron interaction will provide the
compressibility that is needed for screening; this is the
case for structures with high mobility.

A new approach to linear screening has been proposed
recently, 4 which emphasizes the electron-electron interac-
tion. For a given level of disorder the smallest fractional
gaps are smeared out, so that the energy density H~(v)
of the 2DEL is a smooth function of the filling factor
v, within the intervals between the remaining singular-
ities. Here v = n/np, N is the Landau level number,
and np = eB/2mhc. It can be shown (see Sec. II) that
within these intervals the Thomas-Fermi theory of linear
screening is applicable, and that

Q2

q, = 27r G(B), —

as a function of n.
In the case when only the lowest Landau level is oc-

cupied, one can use the approximation of Fano and
Ortolaniis for the energy density

Hp(v) = v'2'
~

—
~

np g(v),
t'ez l
(rp

where

g(v) 0 6267v 0 7821x l +0 55x 0 4632: /

(15)

(16)

and x = v(l —v). This is a self-consistent approximation,
which completely ignores fractional singularities. For this
approximation both the TDS and the screening length
are negative. This theory has been confirmed ' by
experimental data on the magnetocapacitance of GaAs
structures, obtained in the ultraquantum limit by Smith,
Wang, and Stiles. i9 The data show a very good quan-
titative agreement with the theory, without any fitting
parameters. A negative TDS in Si structures has been
reported, but no quantitative agreement with the theory
has yet been achieved. zP A possible reason for this is the
mixing of different Landau levels.

An interesting experiment has been performed recently
by Eisenstein, Pfeiffer, and Westzi on a double quantum-
well GaAs structure. They measured the penetration of
an external electric field through one quantum well into
the other. The ratio of the penetrated Geld to the applied
field is 1/(2q, d+ 1), where q, is given by Eq. (13), and d
is the distance between the wells. Thus, by measuring the
ratio of the penetrated field to the external field, they can
find q, . Their experimental results are shown by a dashed
line in Fig. 9. Eisenstein, Pfeiffer, and West~ have found
a good agreement with the theory based on Eqs. (15) and
(16) in the filling-factor range 0.2 & v ( 0.7. However,
near integer filling factors the penetrated field increases
dramatically. Below this increase is explained in terms
of nonlinear screening.

In a strong magnetic field, the random potential gener-
ated by the impurities is screened by the highest occupied
Landau level only; the lower levels are completely occu-
pied and, thus, cannot respond to the random potential.
Nonlinear screening theory, in this case, is very similar
to nonlinear screening without a magnetic Geld, but the
total electron density must be replaced by the density of
electrons in the highest Landau level only.

There are many experimental manifestations of non-
linear screening in a magnetic field. It has been observed
that the photoluminescence spectra of a 2DEL in a mag-
netic field 'z ' s have a width that varies very strongly
with the filling factor. If the filling factor is ciose to a
half integer, this width is small, but if the filling factor is
close to an integer, the width is large. Such a strong vari-
ation in the photoluminescence width can be explained
in terms of screening. When the filling factor is close
to a half integer, linear screening will be applicable, and
fiuctuations in the potential will be small. In the other
case, when the filling factor is close to an integer, nonlin-
ear screening will be applicable, and fIuctuations in the
potential will be large.



2236 A. L. EFROS, F. G. PIKUS, AND V. G. BURNETT

The transition from linear to nonlinear screening also
manifests itself in the recombination of electrons and
holes. For example, Dahl et al.~4 recently observed a
sharp suppression of optical recombination near filling
factor v = 1. This can be explained in terms of the
above transition because, for id = 1, fluctuations in the
smooth random potential will be large, and this will sep-
arate electrons and holes.

In the regime of the nonlinear screening a density of
states can be obtained from the activation energy E of
the resistivity p» in the regions of the plateaus of the
integer quantum-Hall effect (I/HE). 2s One can define an
activation density of states (ADS)as

G, (E ) = (dn/dE (. (17)

It has been observed, experimentally, zs that this ADS is
very large and relatively constant in the regions between
Landau levels. This result has been interpreted in terms
of a so-called "background" density of states. It is in
contradiction to a one-electron theory of the density of
states, because all one-electron theories give an exponen-
tial drop in the density of states between Landau levels.
We explain here the background density of states in terms
of nonlinear screening. It appears as a sharp broadening
of the Landau level, when the filling factor is close to an
integer.

r —r'
27re2+ n' (r)d r +f n'(r)Hj, (r)d r
q, e (2o)

Minimizing this expression with respect to n'(r) gives the
equation

2vrezn'(r) ez n'(r')
+ +g+- 'r' = 0.

rcq, K [r —r'f

It can be written in the form

2' eon'(r)F r
qs

where

F(r) = Eb+—,d'r'e2 n'(r')
r —r'

(21)

(22)

(23)

is the resulting potential energy of the electrons. Equa-
tions (21)—(23) are just the equations of linear screening
theory; they are valid at [n'~ (& n

If n « n„then nonlinear screening applies. In this
case, screening is very weak, and the random potential
tears the 2DEL into pieces. The solution of this electro-
static problem can be found by minimizing total energy
of the system

II. EQUATIONS AND SCALING RELATIONS
FOR LINEAR AND NONLINEAR SCREENING

IN A MAGNETIC FIELD

To find the density of electrons in the highest Landau
level N(r) = n + n'(r), where n is the average electron
density in this level, and n' the local redistributed elec-
tron density, one should minimize the following expres-
sion for the energy of the system:

n'(r)n'(r')dzr der'

+ H(N(r))d r —Zyf N(r)d r (24)

with respect to N(r). To do this one must impose the
condition that the density of electrons in the highest Lan-
dau level cannot be negative. This is equivalent to letting
N(r) = ( (r) and minimizing

+ n'(r)Fi, (r)d r —Ey n'(r)d r H~(( (r))d r —Ef ( (r)d r (25)

with respect to n'(r). The external potential Fi,(r) is
given by Eq. (2). The first term in Eq. (18) describes
the Coulomb interaction of the redistributed charge. The
second term represents the difference in energy of a real
electron liquid and a uniformly charged background. If
it is neglected, the screening will be perfect.

For ~n'~ (& n, one can expand the energy density
H)v[n+ n'(r)] in terms of n'(r) to obtain =0,

('(r') d2„

(26)

within the class of real functions (. In the nonlinear
screening regime the third term is small relative to the
random potential (see below), so it can be neglected. As
a result, one gets

H~[n+ n'(r)] = H~(n) + n'(r)dHN(n)

1d'Hiv(n)
„

which can be expressed as

ez d2r'
( — ( (r'), +Fi, —Ef =0.

r —r' (27)

By using the Grst three terms of this expansion and Eqs.
(13) and (14), one can write Eq. (18) as F(r) —Ef = 0, (28)

This condition is satisfied if either the electron density is
zero, or
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where Eq. (23) has been used. By considering the second
variation of Eq. (25) one can show that the condition for
this extremum to be a minimum is

F(r) —Ef & 0, (29)

where n(x) is a dimensionless Gaussian random function
with the correlator

(o.(x)o.(x')) = b(x —x'). (32)

As a result, it is apparent that the dimensionless chemical
potential e depends on only one dimensionless parameter
g = sn/~C, which we call the dimensionless density.
Thus,

ez C
(33)

where s is an unknown function of g. Equation (33) is a
general relationship between the chemical potential Ey,
the spacer s, the average impurity density C, and the av-
erage electron density n, which was derived by neglecting

which applies to the entire 2DEL. Thus, the minimiza-
tion of the functional of Eq. (25) results in the following
electrostatic problem. The plane of the 2DEL should be
divided into metallic regions and dielectric regions. In
the metallic regions the electron density must be nonzero,
and the resulting potential must be equal to the chemi-
cal potential, while in the dieleetrie regions the electron
density must be zero, and the resulting potential must
be greater than the chemical potential.

Note that the metallic condition Eq. (28) is the re-
sult of neglecting the third term in Eq. (25). It means
that we assume "perfect" screening in the metallic re-
gions. Actually, screening in these regions is described in
terms of linear screening theory, and an order of magni-
tude estimate of the Huctuations in the random potential
is given by Eq. (11). To obtain an estimate for the ran-
dom potential in the dielectric regions one can use Eq.
(7), substituting R, instead of L Comp. aring these two
expressions one finds that the random potential in the
metallic regions is much smaller than in the dielectric
regions if q, s && 1. This is the main parameter of the
theory.

One can obtain a scaling relation which connects the
chemical potential Ef with s, n, and C. This can be
done by writing Eqs. (1), (23), and (28) in the following
dimensionless variables:

ez C ez C
F(r) = 6(x), Ef = —s

(30)

N(r) = p(x)n, C(r) = n(x)n, r = xR„R,= ~C
n '

where n is the average electron density. Substituting
these relations into Eq. (23), one obtains

n(x') d2x' +, , (31)
p(x') d2x'

( g
2 /x —x'J

(x —x~)+
~

'"
[

the third term in Eq. (25).
An analytic solution of the above problem is difficult to

obtain. The nonlinear screening problem has been solved
analytically for only a few symmetrical bare potentials;
there are exact solutions for a single antidotzs and a one-
dimensional strip. 2~ There is no analytical solution for a
periodic external potential, zs and, obviously, there is no
analytical solution for a random potential.

III. COMPUTER MODELING A 2DEL
SUBJECTED TO A RANDOM POTENTIAL

A. Computer model

We have solved the above problem by performing a
computer modeling. In our model both the plane of the
electron liquid and the plane of the impurities are approx-
imated by finite square lattices, each of size I x I; note
that modeling an extended 2DEL with a finite square
2DEL is justified if the size of the square is much larger
than the nonlinear screening length R, = y C/n. The
random functions 8(x), a(x), and p(x) become discrete
functions on these square lattices. Our program erst gen-
erates the random function o.(x) at all points in the im-
purity lattice, by using the correlator of Eq. (32), and
then it sets the total impurity charge equal to zero; this
is done to reduce the variation of our results for difer-
ent arrays, and, as a result, it makes the 2DEL easier to
model. From this charge distribution the dimensionless
bare potential 8g(x) is calculated on the lattice of the
2DEL. The program then finds the distribution of elec-
tronic charge for a given e. This is done by going through
each point in the lattice and determining if the potential
there is less than, or greater than, e'. If it is less than s,
a small charge is added to the lattice point, while if it
is greater than e a small charge is subtracted from the
lattice point, with the restriction that the electron con-
centration be non-negative. The change in the potential
at all points in the lattice is then calculated. The pro-
gram then proceeds to the next point and repeats this
procedure. Note that each time the program adds, or
subtracts, a charge to a point it also adds, or subtracts,
the same amount of charge to a background density; this
background density is uniform and equal to the negative
of the average electron density. Thus, the total charge of
the system is always zero. This process continues until
all points that have a potential greater than e have no
electronic charge, and all points that have an electronic
charge have a potential, within a given accuracy, equal
to the chemical potential. The total electronic charge is
then calculated, and averaged over many configurations
of the impurity charge distribution n(x). We use peri-
odic boundary conditions when calculating the potential.
It means that the charge distributions of both the impu-
rities and the electrons are periodic (of period L, where
I is the side length of the finite 2DEL of our model).
The potential at a particular lattice site is determined
by considering only those charges of the periodic charge
distribution that are within a square, of size L x I, cen-
tered about the lattice site. This periodic condition is
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implemented in the program, when it calculates the po-
tential at a lattice point. If the x (or y) component of the
lateral distance between two lattice points 6x (or b.y) is
greater than L/2, it is replaced by L —b,x (or L —Ay).

Approximating the two-dimensional continuum by a
lattice is justi6ed if the lattice constant is smaller than
s, because harmonics in the impurity charge distribution
with wavelengths smaller than s are damped exponen-
tially, see Eq. (3).

B. The dependence of the chemical potential
on the concentration

CO

0
C4

+ + + t +

OOOOO
D 0 0 0 0
k 4 k k 4

00000

=2 L= 100
=2 L= 150
=3 L= 100
=3 L= 150
=4 L= 100
=4 L= 150

Computations were performed on a Cray Y-MP8, at
the San Diego Supercomputer Center. The time required
to find the concentration depended greatly upon the
chemical potential. As the magnitude of Ef decreased
the computation time increased. For a dimensionless
Fermi energy of e = 0.001, the computation time, for
an array of size 150 x 150, was about an hour.

Two typical plots of the potential 8(x) are shown in
Fig. 2. Note that in the metallic regions 8 = s and
that in the dielectric regions 8 & e. These pictures look
like a flooded mountain system, in which the water level
corresponds to the chemical potential.

Figure 3 shows the dimensionless chemical potential
s(rl), as defined by Eq. (33), plotted against the recipro-
cal dimensionless electron density rl, for three values of
s and for two difFerent values of array size. Note that the
chemical potential is negative in our model at all densities
and that it decreases as the electron density is decreased,

0 10 20 30 40 60
Reciprocal den8ity g

FIG. 3. Chemical potential e vs reciprocal concentration
as given by computer modeling at different s and L (in

units of the lattice constant). Below q = 20, the points for
different 8 and L are indistinguishable, so only one point is
given at these g

because, for low densities, screening becomes weak and
fluctuations in potential become large. When 1/rl ( 25,
all points with a different s, and a difFerent number of
lattice sites, form a universal curve. This conGrms the
scaling relation as given by Eq. (33). At smaller rl, devi-
ations appear. These deviations are probably connected
with the size efFect, which occurs at smaH g.

In the range of rl shown in Fig. 3 the dimensionless
function s(rl) appears to be linear in rl . With good
accuracy it obeys the equation

(34)

An important point is that in the scale used in Fig. 3 this
function becomes zero at g = 2.4, and it looks like a
phase transition.

To understand this behavior we introduce an effective
charge density C,ir, which is located in the plane of the
2DEL and produces the same bare potential as the donor
distribution C(r) that is in a plane at a distance s from
the 2DEL. The Fourier transforms of these two densities
are related by

Thus,

Since C,ir(r) is connected linearly with C(r) it is also
a random Gaussian function. It follows from Eqs. (1)
and (36) that (C,ir(r)) = 0 and

FIG. 2. Dimensionless potential 8(r) obtained from com-
puter modeling at a spacer width of s = 3 (in units of the
lattice constant), an array size of 100 x 100 sites, and at a di-
mensionless chemical potential of (a) s = 0.2 and (b) s = 0.5.

At large electron densities Ef tends to zero, because
C,ir(r) is neutralized by the electronic charge and by the
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homogeneous background charge, which has a sign oppo-
site to the electrons. However, the electron density N(r)
has a definite sign (in our computer program it is taken to
be positive), while C,ir(r) fiuctuates around zero. Thus,
the positive charge fiuctuations of the remote impurities
can only be screened by the homogeneous negative back-
ground density of the 2DEL. It follows then that the elec-
tron density required to completely screen the impurities
will be greater than g(C2&). The condition of complete
charge neutralization is

C,ir(r) ~ N(r) —n = 0,

~~

Q

0
10

c5
O

~ 10

o o~

0

8=2, L= 100

0

CE

Co/4 = C/8ns . (40)

The wavelength of the harmonic function was taken to be
s, because this harmonic gives the main contribution to
the mean-square potential. It is not important, however,
for the estimate given below. For the function of Eq.
(39), complete charge neutralization is possible at a finite
value of n One can. show that Eq. (38) is satisfied if
N(r) = Co —C,g and n = Co. Making use of Eq. (40)
one finds that in dimensionless units this condition of the
complete neutralization becomes

nths 1
/th = —0.4.

C
(4I)

This is very close to the value of the apparent threshold.
By magnifying the region below the apparent thresh-

old in Fig. 3, one can see an exponential tail in the plot of
the chemical potential (see Fig. 4). This can be explained
in terms of the Gaussian fluctuations of C,g. For large n,
there are a small number of regions where C,g & n. The
fraction of the 2DEL occupied by these regions is propor-
tional to exp( —4m') [see Eq. (37)j. These negatively
charged dielectric regions are surrounded by positively
charged clouds, while the rest of the plane of the 2DEL
is relatively neutral. Neglecting numerical coefBcients,
one can estimate the function s(g) (see the Appendix)

where n is the density of the uniform background, which
is just the average electron density. Since N(r) & 0, Eq.
(38) is fulfilled, at all r, only if n exceeds the maximum
value of C,g(r) Th.e maximum value of the Gaussian
random function C,ir(r) over an infinite plane is infi-
nite. Thus, complete neutralization never occurs and the
chemical potential will be nonzero for any finite electron
density. We show, however, that at high electron densi-
ties the chemical potential is exponentially small. This
is mhy the behavior shomn in Fig. 3 looks as if there is a
phase transition at a threshold density of rlth 0.4.

One can estimate this apparent threshold value by the
following mean-field method. We assume that C,g(r) is
a harmonic function,

(2~x'I (2~y&
C,g = Co cos

~

cos
i(s) Is)

Then we choose the amplitude Co in such a way that the
square average as taken from Eq. (39) is the same as the
square average for the random function of Eq. (37). One
obtains

10 -s

0.0 O. i 0.2
Deneity Hquared

FIG. 4. Dimensionless chemical potential e vs square of
the dimensionless concentration g, in the region of high elec-
tron density. Those results obtained by computer modeling
are shown by circles, while the dependence of Eq. (42) is
shown by the dashed line.

and show
2

e = g
'e-4 & . (42)

A plot of Eq. (42) is shown, with a trial numerical coef-
ficient, in Fig. 4, by a dashed line.

C. Activation energy and activation density
of states

where s~ is a function of il = sn/~C.
Our computer model has been extended to determine

the function s~(rl). For a particular chemical potential
s, and dimensionless concentration rl, our program finds
the energy, which is less than the potential energies of
half the lattice sites but greater than the potential ener-
gies of the other half. This energy is then averaged over
many configurations of the impurity distribution to give
the percolation level of the extended system, for the cor-
responding chemical potential. The program then sub-
tracts the chemical potential from this percolation level
to obtain the activation energy. This process is repeated
for several different chemical potentials to obtain the ac-
tivation energy as a function of the dimensionless con-

If there is percolation through metallic regions, the
conductivity of a 2DEL, without a magnetic field, will be
metallic. Otherwise, the conductivity of the system mill
be due to the activation of electrons from energies near
the chemical potential to the percolation level, where the
percolation level is the energy, for which an equipotential
contour can be made that extends from one end of the
2DEL to the other. The activation energy E is defined
as the difFerence in energy between this percolation level
and the chemical potential.

The activation energy obeys the same scaling relation
as the chemical potential, namely,
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FIG. 5. Dimensionless activation energy s vs dimension-
less concentration g as obtained by computer modeling. These
results were obtained for s = 2, 3, and 4 (in units of the lattice
constant), and for a 100 x 100 array size. Due to the scaling
relation, Eq. (45), the points for difFerent values s form a
universal curve.

centration g.
A plot of the dimensionless activation energy s~ versus

the reciprocal dimensionless electron concentration g
is shown in Fig. 5. At rl

i ( &z it obeys the equation

~.(n) = —
I

—-88
i14 i, rl ) (44)

ch rl~C)
le~ s )' (45)

where I is the number of the highest completely occupied
Landau level.

Comparing this result with Eq. (34) for the dirnensionless
chemical potential one can conclude that the dimension-
less percolation energy is approximately —0.54 indepen-
dently of q. Note that random bare potential is statisti-
cally symmetric with respect to zero energy. For such a
potential the percolation energy is zero. Electron screen-
ing violates the symmetry of the potential in such a way
that the percolation energy becomes negative.

The point where s = 0 is the threshold of the metal-
nonmetal transition without an applied magnetic field.
At this point the dimensionless electron density is il—
0.11 [see Eq. (12)]. In the case of no applied magnetic
field, one can use this plot to find the dependence of the
activation energy on the electron density.

In the ease of a strong magnetic field one can use Fig. 5
to find the activation energy in the regime of the plateaus
of the quantum Hall eEect as a function of the applied
magnetic field or electron density. Note that in this ease
q is the dimensionless density of the highest occupied
Landau level rather than the total density. If the total
density nq is fixed and g changes due to the magnetic
field, one can find the magnetic field dependence of the
activation energy. The value of B corresponding to a
given value of g can be found from the equation

8-

B-

m
m
m

2-

0
7.2 7.4 7.B 7.8 8.0

8 (Teela)

FIG. 6. Plot of the activation energy E vs the applied
magnetic field B for an electron density of 3.5 x 10 cm
and three spacers s = 20 nm (circles), s = 30 nm (crosses),
and s = 40 nm (squares). The solid lines are just to guide the
eye.

A plot of the activation energy versus the applied mag-
netic field at three different spacer widths, obtained by
the above method, is shown in Fig. 6. By using Fig. 5
and the definition of the ADS [see Eq. (17)], one can
determine the dimensionless activation density of states
(DADS), contributed by the highest occupied Landau
level of the 2DEL, as a function of the activation energy

The results are shown in Fig. 7. Note that so far
it has been assumed that only the highest Landau level
contributes to the ADS. This is not a good approxima-
tion, when E is midway between two Landau levels. In
this case both the highest and the second highest occu-
pied Landau levels should contribute equally to the ADS.
In the future we are planning to model two-level screen-
ing. In this paper we approximate two-level screening in
the following way. First each e in Fig. 7 is multiplied
by e v C/K giving E, while the corresponding DADS is
multiplied by e2/(sr) to give the ADS from the highest
Landau level. The combined ADS is obtained by invert-
ing the plot of the ADS vs E~ obtained above, and then
shifting it in energy by an amount equal to —hu, where
ku is distance in energy between Landau levels. This in-
verted and shifted plot, which is just a plot of the ADS of
the holes in the second highest Landau level vs E, can
then be added to the original plot of the ADS vs E to
give a new plot, which is a sum of the ADS of the holes
in the second highest Landau level and the ADS of elec-
trons in the highest Landau level. This plot of the total
ADS will be symmetric with respect to the energy point
midway between the highest and second highest Landau
levels.

The ADS of a 2DEL in a strong magnetic field has been
measured as a function of the activation energy by Weiss
and eo-workers. zs Their results for a GaAs-Al Gai ~As
sample with an electron density of n = 1.8 x 10 cm are
shown in Fig. 8(a). A plot of the ADS vs E, obtained
from Fig. 7 by using the parameters s = 30 nm, C = n =
1.8 x 10i cm, and r = 12.56, is shown in Fig. 8(b).
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FIG. 7. Dimensionless ADS as a function of the dimen-
sionless activation energy r, obtained from Fig. 5.
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One can see that our theory gives a quantitative explana-
tion of the apparent density of states between the Landau
levels.

Using Eqs. (17) and (44) we can write an analytical ex-
pression for the ADS in the middle between two Landau
levels,

D. The thermodynamic density of states

To fit the experimental data obtained by Eisenstein,
Pfeiffer, and West i we consider both linear and nonlin-
ear screening. Since the characteristic energies of these
two regimes are very diferent, we can use an extrapola-
tion formula

dH e2~C
(47)

0.1—

where the energy density H is given by Eqs. (15) and
(16). In the region of linear screening s(rI) is close to zero,
and disorder does not play any important role, while in
the nonlinear regime the first term is small as compared
with the second. That is why we can obtain a good ap-
proximation without taking into account any interference
of the linear and nonlinear screening.

By using Eqs. (13)—(16) and (47), we can find q, and
then use this q, to find the penetration ratio I/(2q, d+1).
We use the values s = 70 nm, d = 30 nm.

Figure 9 shows the experimental results of Eisenstein,
PfeiKer, and West (dashed line) and our theoretical re-
sults (solid line). One can see that our extrapolation
explains the sharp transition from a negative to a posi-
tive density of states, and that it gives a nice quantitative
description for a wide range of v. We cannot explain the
absence of symmetry with respect to the point v =

z in
the experimental plot. It looks like the approximation
Eq. (15) is not good enough at v ) z. Note that the
structure in the experimental data near fractional v can-
not be described by our theory, since the corresponding
singularities are not included in the energy density [see
Eq. (15)].
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FIG. 8. Plot of the ADS vs the activation energy E . (a)
Experimental data by Weiss, Klitzing, and Mosser (Ref. 25)
at n = 1.8x10 cm for the filling factor close to v = 2. (b)
The solid line is the theoretical plot as obtained from Fig. 7 at
s = 300 A. , and n = 1.8 x 10 cm as described in Sec. III.
The dashed lines are the ADS of the lower and higher Landau
levels. Note hen was determined for v = 2.
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FIG. 9. Plot of the penetration field (2q, d+ 1) i vs the
filling factor v, where the dashed line gives the results of
Eisenstein, PfeifFer, and West and the solid line gives the re-
sults of our computer stimulation.
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IV. CONCLUSIONS

We have demonstrated the important role of the long-
range random potential created by the remote impurities
in the structures with two-dimensional electron liquid.
Due to the logarithmic divergency this potential is very
large, but it can be substantially suppressed by electron
screening. In a strong magnetic field the 2DEL becomes
incompressible at some filling factors, and this gives rise
to a sharp increase of the random potential. The density
of states between the Landau levels, as obtained from
the activation energy of conductivity, becomes very large
and almost energy independent. It has been interpreted
before as a "background" density. But actually this back-
ground density strongly depends on the filling factor, and
it is absent in the regime of the linear screening. Magne-
tocapacitance data are also very sensitive to the crossover
from the linear to nonlinear screening regime, because
electron density becomes strongly inhomogeneous. We
have proposed here a system of nonlinear equations which
describes the distribution of electron density and we have
found out some important scaling relations for thermo-
dynamic functions. This system is exact in the limit of
a very smooth potential. Actually, this means that the
spacer width is large. We have solved this system by
computer modeling. The results are in a good agreement
with experimental data.
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ative charge. In the same approximation, the average
concentration of charge in these dielectric regions is

(C,g —n)cu(C, p) dC,g

~(C,g)dC, g
S A

(A3)

Since the dielectric regions are far apart, and small,
the energy density of the 2DEL is, approximately, the
sum of the interaction energies of each dielectric region
with its respective negative-charged cloud. The aver-
age charge within a dielectric region of size a is ebCa2,
while the net charge surrounding this dielectric region
has the same magnitude but opposite sign. Thus, the
interaction energy of the dielectric region with its cloud
is —e2(6Ca ) /Ka. To estimate the energy density of the
2DEL, this should be divided by the square of the average
distance between dielectric regions l to give

(e6Ca~)2
mal ( 4)

The value of t can be estimated from the condition
as/l2 = cue. As a result,

$/2 —47I'g

K A8
(A5)

C,g(r) = C,„~1 ——
28

(A6)

The parameter a can be estimated by the following
argument. At rl )) 1, the dielectric regions are centered
around the local maxima of the random function C,g(r).
Near one of these local maxima, the spatial dependence of
the effective impurity concentration has, approximately,
the form

APPENDIX

u)(C,g) =

where b, = C,s/2o, and o' = (Ce&) = C/8+s . {In
the following derivation numerical coefficients in preex-
ponential factors are ignored. ) If rl = ns/v C )) 1, one
can show that the fraction of the plane of the 2DEL,
where C,g(r) ) n, is

~C 4 „.0= e (A2)

Since this fraction is small, these regions will form small
dielectric islands, which are surrounded by clouds of neg-

Here we derive Eq. (42) for the chemical potential at
high electron densities. The distribution function for the
effective impurity charge is

(A8)

Putting this result into Eq. (A5), one obtains

H(n) = —— e
e2 /3 2

K 85n4 ( 9)

When finding Ey = dH(n)/dn at g )) 1, one only has
to difFerentiate the exponential term in Eq. (A9). Thus,
one obtains Eq. (42).

At r = a, the effective impurity concentration C,s(a)
must be equal to the average electron density n. Since
C „—n is of the same order as 6C, this condition at
r = a takes the form

g Cmax

C .„n+6C'
which to erst order in bC gives
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