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Impurity-screening effects on electronic states of the two-dimensional system
under a quantizing magnetic field
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Single-particle energy levels and wave functions for a two-dimensional electron system, confined to an
annular film (the Corbino geometry) in the presence of a perpendicular magnetic field are exactly deter-
mined in the symmetric gauge. For the ideal system, free of impurities, the problem is shown to be ex-
actly solved. The behavior of the electronic states in some models of impurity potentials is examined.
The inhuence of the impurity screening on the eigenstates for the case of semiconductor inversion layers
is analyzed. It is shown that the screening effects are quite important because screening will be reduced
in the presence of magnetic fields. Landau levels are determined as a function of several parameters,
namely, the strength of interaction, the screening length, and the distance of the electron from impurity.
Wave functions, radial densities, and matrix elements are calculated.

I. INTRODUCTION

One of the most interesting aspects of the two-
dimensional electron gas (2DEG) confined to semicon-
ductor interfaces is its behavior in the presence of a
strong perpendicular magnetic field. The Landau quanti-
zation causes the electrons to move in cyclotron orbits
parallel to the surface and leads, in an imperfect medium,
to the remarkable quantized Hall effect (QHE). ' The
electrical transport measurements have usually been car-
ried out on a rectangular device (Hall bar) and a circular
sample (Corbino disk). Despite the fact that the Hall
geometry is appropriate for measurements of both the
longitudinal and Hall resistivities, the Corbino disk has
been used to measure the longitudinal conductivity. Very
recently, a new method has been established to measure
the Hall conductance with a Corbino disk. Instead of
the expected plateaus of the QHE, the Hall conductivity
shows oscillations as a function of the magnetic field,
which are attributed to inhomogeneities of the electron
gas. This is experimental evidence of the differences be-
tween the geometries of the Hall bar and Corbino disk.
On the other hand, theoretical investigations of the in-
teger QHE have been carried out both in the Hall-bar
geometry and in the Laughlin-ribbon geometry, in which
the Landau gauge becomes appropriate to describe the
essentials of the phenomenon. Even though, by general
principles, the energy spectrum of the electron gas in the
presence of a quantizing magnetic field must be the same,
the solution in the symmetric gauge yields a different
form for the wave functions. These functions exhibit the
physical characteristics of those corresponding to the cir-
cular classical orbits instead of the solution given by the
Landau method.

The effect of impurities on the QHE has been studied
exhaustively since its discovery. ' The accuracy of the

QHE in dirty systems such as metal-oxide-semiconductor
(MOS) and GaAs-Ga Al, „As heterostructures consti-
tuted a challenge for specialists in the search for the
correct explanation of the effect. Prange has solved the
problem of a single 6-function impurity potential and
shown that there is one bound state per Landau level and
all the remaining states are extended. The nature of the
electronic states of the system in the presence of a general
random-impurity potential and under an applied magnet-
ic field has been clarified by a number of authors. ' It
can be shown that there must exist at least one extended
state at the center of each Landau level and that the oth-
ers are localized. '" The existence of a mobility gap is
fundamental to the gauge arguments of Laughlin and
Halperin. The effect of repulsive and attractive scatter-
ing potentials on the quantum Hall plateaus has been in-
vestigated by Haug et al. '

We examine the behavior of the electronic states in the
presence of impurity potentials and consider smooth-
potential models that represent approximately real sys-
tems. This is well understood in the case of zero magnet-
ic field. The theory of bound states of a charged impuri-
ty, for instance, has been developed from the seminal pa-
per of Stern and Howard' concerning the electronic
properties of semiconductor inversion layers. ' They also
considered the screening of the carriers but neglected in
their calculations the finite thickness of the electron lay-
er. Martin and Wallis' eliminated this restriction but
neglected the effect of screening. However, Hipolito and
Campos' include both effects and found that screening
effects do indeed lower the electron binding energies.
More sophisticated calculations of bound states, which
treat screening in a self-consistent manner, were
developed by Vinter' and Takada' (see Ref. 15 for a de-
tailed account). The screening is important because it
weakens the potential in the long-wavelength limit.
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Stern and Howard' found a necessary condition on
the strength of the impurity potential in order to have
bound states. However, in the presence of a perpendicu-
lar magnetic field, all states are localized due to the Lan-
dau quantization —even for repulsive impurity
potentials —thus leading to new features in the problem.
It should be emphasized that in real systems, there are
ionized acceptors in the depletion layer of the p-type
semiconductors which are negatively charged and thus
constitute repulsive centers. On the other hand, there are
ionized donors that form attractive centers in the insula-
tor or at the semiconductor-insulator interface. Further-
more, the detailed effects of screening in the magnetic-
field case have not been worked out. The inclusion of the
finite-thickness correction effectively softens the short-
range divergence of the bare Coulomb interaction and
will be complementary to the screening smoothing of the
potential.

In this paper we investigate, within a single-particle
picture, the eigenfunctions and eigenvalues of the elec-
tron in a two-dimensional annulus. First, in Sec. II, we
consider the ideal system, free of impurities, and the
problem is shown to be exactly solved in the symmetric
gauge. We compare our exact results with those in the
linear-oscillator approximation obtained by an expansion
of the effective one-dimensional potential around its
minimum. We also discuss the effect of the sample edges
on the energy levels. This solution, without taking into
account these edge effects, was obtained 40 years ago by
Dingle. In Sec. III we examine the behavior of the
eigenstates with some model potentials. We start by in-
troducing the simple phenomenological impurity poten-
tial Vain(r), with Vo representing the strength of the at-
tractive or repulsive interaction. This potential arises
from the solution of the two-dimensional Poisson equa-
tion for a uniform density of space charge and reproduces
the potential from charged impurities at semiconductor
interfaces in special limits. ' After this we consider a
more realistic potential model consisting of an un-
screened point charge at some distance from the interface
in a semiconductor inversion layer, such as that found in
MOS field-effect transistor (MOSFET) devices. It is
shown how the potential lifts the degeneracy of the Lan-
dau levels. In Sec. IV, the influence of the impurity
screening on the Landau states is analyzed for the case of
typical Si02-Si interfaces. We point out that the study
presented here has obvious limitations. A complete
theory of screening of an electron moving in a screened
field of an isolated impurity and subjected to an external
magnetic field must involve a self-consistent determina-
tion of the effective potential and the corresponding
electronic-density modulation using Schrodinger s and
Poisson's equations. This is a rather trivial matter in the
absence of a magnetic field but a difBcult task when a
magnetic field is present. We use the screened potential
given in Ref. 14 which was determined self-consistently,
although for the case of zero magnetic field. Then we in-
vestigate how the spectrum and the corresponding eigen-
functions of this scree.~ed impurity potential depend on
the magnetic field and the screening parameter. We as-
sume that the dielectric constant v is the same in the

semiconductor and the insulator so that the image charge
effects are neglected.

II. IDEAL ANNULAR FILM

Let us consider an idealized model in which nonin-
teracting electrons are confined to a disc free of impuri-
ties shown in Fig. 1. In a magnetic field B=Bpz=V X A
the Hamiltonian of an electron of charge —e is given by

2

H= „p+—A + V,„,(r),2'
where V,„, is some external potential including the
confining potential. In the symmetric gauge where the
vector potential A&=Bor/2, the Schrodinger equation
can be written as

2m' dr r dr r2 382 2im*c

4=e' R (r),
where m is an integer. The resulting radial equation is

d2R 1 dR
r dr

m r
r

+m+ +V,„,(r) —2E R(r)=0,

(4)

where r and E are expressed, respectively, in units of
a =(A/m *co)' and %co with co=eBO/m*c. In the ideal
case, V,„,(r) =0, we set

R(p)=p e ~ 'F(p), (5)

where p=r /2, and we find that the function F satisfies
the confluent hypergeometric equation. ' The general
solution is then

4'(r, O)=e™e~~ [Cp &F, (m E+—,', m+1;p—)

+Dp™,F, ( E+—,', —m+1;p)],—
(6)

FIG. 1. Annular film of the Corbino geometry.

Bpe+ 2r %+V,„,%=E% . (2)
8m c

We can separate variables in the usual way and seek solu-
tions in the form
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E=(n+m+ —,'), (7)

where n is an integer. The wave functions form rings
around the origin and the states are thus localized. We
note that in the Landau gauge these states are extended
and form strips along a line in the plane.

Using R (r) =r '~ y(r) in Eq. (4), we get the required
radial differential equation

where, F, (a, b;x) is the confluent hypergeometric func-
tion and C and D are constants to be determined from the
boundary conditions. Obviously, the nonedge-sample sit-
uation can be recovered from our solution by requiring
D =0 because of the divergent behavior of the second
solution. In this case, the solutions are the associated
Laguerre polynomials L„+ (p) and the discrete and de-
generate energy levels are given by

then imposition of the boundary conditions leads to the
same quantitative results for the energy spectrum as are
found using the Landau gauge. The overall require-
ment that the wave function vanish at the edges wiH lift
the previous degeneracy of the energy levels. Then the
spectrum will depend essentially on r for
r2 —a & r & r, . This same behavior occurs for the
inner-edge region. The eigenvalue E„approaches the
value given by Eq. (7) for (r2 —r )))a and increases
monotonically as r increases. As a result, a quasicon-
tinuous band is formed at the edges. The physical prop-
erties of the edge states for the electron gas in the Corbi-
no disk have been discussed by Halperin.

III. ANNULAR FILM
WITH IMPURITY POTENTIALS

r 2

y"(r)+ 2E —m—
4

(m ——')

(8)

In the presence of an impurity potential, the degen-
erate bulk energy levels are split, whereas the energy
spectrum at the edges are pratically unaffected. Neglect-
ing edge effects now, we consider the potential given by

which, in the absence of external potentials, looks like a
one-dimensional Schrodinger equation for the harmonic
potential with a centrifugal term that remains even for
m =0, in contrast with the usual 1(l + 1) term in the cor-
responding hydrogen equation. By expanding the total
potential of Eq. (8), with V,„,(r) =0, in the neighborhood
of its minimum, given approximately by r =2ma, the
solutions of the radial equation are then the eigenstates of
a one-dimensional harmonic oscillator centered at a ra-
dius given by r . Furthermore, the eigenvalues are those
from the harmonic oscillator (n+ —,'). Even though the
linear-oscillator approximation gives exactly the correct
energy levels, the wave functions are only approximate.

If we take V,„,(r) as the confining potential given by
infinite walls at r =r, and r =r2, the boundary conditions
on 4 at the edges of the sample lead to a system of two
linear homogeneous algebraic equations for the
coefBcients C and D. The energy eigenvalues are calcu-
lated with the condition that the associated determinant
must be zero, i.e.,

F (r, ) F+(r, )

F (r2) F (rz) (9)

where

F+(r)=r &F&(m E+—,', m+ ,';r —/2)—
and

F (r)=r™&F&( E+—,', —m+ ,';r—/2) . —

Thus, the confining potential drastically changes the situ-
ation as compared with the unconfined system. The main
result concerning the energy spectrum has already been
extensively discussed by several authors. ' ' ' For an
exact solution, the basic problem in the numerical calcu-
lations in the accurate determination of the conAuent hy-
pergeometric functions. However, if we use the
harmonic-oscillator approximation described above,
which, as is well known, gives the correct energy levels,

r
V,„,= —2i,e ln (10)

which comes from the solution of the two-dimensional
Poisson equation and is similar to the potential from an
infinite string of charges with density k. L is a charac-
'teristic length scale which is taken here as equal to a
The general properties of the two-dimensional Schrodin-
ger equation for this potential in the absence of a magnet-
ic field were studied by Atabek, Deutsch, and Lavaud.
The spectrum was determined as a function of the cou-
pling parameter —2A, e and found to be purely discrete,
while the wave functions behave like those of the har-
monic oscillator. In the presence of a magnetic field, one
can also study the influence of a repulsive potential be-
cause there are only bound states induced by Landau
quantization.

The radial differential equation was solved numerically
by fourth-order Runge-Kutta and Numerov methods. In
order to determine the accuracy of our numerical pro-
cedure, we first solved the Schrodinger equation with the
analytically solvable potential a /r +f3 r, where a and
/3 are arbitrary parameters. The agreement between the
analytical and numerical results were quite good and we
are confident that for potentials that diverge more slowly
than the centrifugal potential, which appears in the radial
equation, these methods work very well.

In Fig. 2, radial densities r~R„(r)~ for the ground
state and first excited states are plotted for three values of
the dimensionless coupling parameter I = —2k,e /Ace.
Their shapes are similar to the harmonic-oscillator wave
functions, and the e6'ect of the repulsive or attractive po-
tential is indicated by the localization length and the
height of their maxima. The corresponding Landau lev™
els are shown in Fig. 3 as a function of the coupling pa-
rameter I . We observe that the degeneracy of the energy
levels given by Eq. (7) is lifted by the inclusion of the im-
purity potential. An important feature is that the ener-
gies of all the states are decreased as I becomes more
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potential expressed as
r

3m 1 I
~o 4 2&o

1/2 0.2

with xo = —I ++I +4m . For I =0, we recover the
results of the ideal case. In Fig. 4, we show the Landau
levels as a function of the coupling parameter for the first
excited state (n =0 and m =1) for the exact (solid line)
and approximated (broken line) solutions. Note that in
the regions where the potential is repulsive (I'(0), the
results from both calculations cannot be distinguished in
the scale of the figure.

We also calculate the eigenstates and eigenvalues for a
single unscreened impurity of charge Ze located at a dis-
tance d from the interface of the insulator-semiconductor
inversion layer. In this case, the external potential is
given by

(12)

0.0

LLJ

-0.2

-0.4

0.8

p 0.4

LLJ

0.0

8 12
d(units of am)

In the absence of the magnetic field and for an attractive
impurity in the plane of the 2DEG the solution is easily
obtained and the eigen values are an infinite set of
(2n —1)-fold degenerate levels

-0.8
I

-0.4 0
Z

0.4 0.8

E„=—(e /2aaii)/(n —
—,')

with az =A ~/m*e . With the magnetic field, the spec-
trum is determined as in the preceding case. We assume
that if the magnetic field is large enough, the spectrum of
the states of the system will still be characterized by a
Landau-level structure. However, each Landau level will
be broadened by the e6'ect of the random-impurity poten-
tial. One considers here mainly the strong magnetic-field
limit where only the first Landau level is occupied and
virtual inter-Landau-level transitions are allowed. This is
the necessary condition for describing true localization in
the presence of an electric field. Figure S shows the re-

2.0

FIG. 5. (a) Landau ground-state energy for the unscreened
impurity model potential [Eq. (12)], with Z = —1, as a function
of the distance d from the interface. (b) Landau ground-state
energy for the same model potential as a function of Z for
d =0.01a

suits for the ground-state energy as a function of both the
distance d and the renormalized interaction energy
Z = (Ze /ica )/(fico/2). The results for the Landau ener-

gy levels and matrix elements for the average position
(r) and (r ) are displayed in Table II. At large dis-
tances the energy values tend towards the free-system re-
sults and at d =0, the behavior of the Landau levels is
quite similar to the logarithmic potential. Furthermore,
the overall physical description of the electronic states is
the same as in the preceding case and no qualitative
difFerences are found.

O.O

TABLE II. Energies and matrix elements of the lowest Lan-
dau levels for the unscreened impurity model potential [Eq.
(12)] for a number of values of the parameters Z and d. The en-

ergy is expressed in units of Ace and the distance in units of a

z (r) (r')
-0 0 -4.0 -2.0 0

t'

I

2.0 40

FIG. 4. Comparison between the energy of the Landau level
(n =O, m = I) as a function of the coupling constant I for the
logarithmic potential [Eq. (10)], obtained through the exact
solution (solid line) and by using the harmonic-oscillator ap-
proximation (broken line). Note that for I (0, the results are
the same.
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0.796
1.249
1.904
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2.517

3.182
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0.889
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0.371
5.236
7.811
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1.00 IV. EFFECTS OF SCREENING
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We now discuss the important effect of screening of the
impurity charge on the Landau levels. A t' ds mentioned in
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ing constant using the potential model of Eq. (13) for both at-
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TABLE III. Energies and matrix elements of the lowest Lan-
dau level for the screening impurity model potential [Eq. (13)]
for a number of parameters Z, s, and d. The energy is given in
units of Ac@ and the distance in units of a

d =i.o

Z

2.0
2.0
2.0
2.0
1.0
1.0

—1.0
—1.0
—1.0
—1.0

0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
2.0

0.0
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1.0
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0.0
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2.0
2.0
2.0

1.360
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0.686
1.000
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0.438
0.470
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1.530
1.370
1.475
1.637
0.938
1.017
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1.243
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1.968
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0.2
r (units of afn)

Z=2

12

cracy of the semiconductor. The dimensionless screening
constant s =so ranges from 1 to 10 in a large class of
semiconductors at B =10 T. In the absence of screening,
Eq. (14) reduces to Eq. (12).

Without loss of generality we concentrate on the effects
of impurity screening in the lowest Landau level. In Fig.
6, we plot the energy for an attractive charge (Z = 1) as a
function of the impurity displacement d for a number of
values of the screening constant s. In particular, as s =0,
we recover the results for the unscreened potential as dis-
cussed in Sec. III. For small distances, we find that the
energies are lowered by 25 —35% for s between 0 and 1,
showing that screening effects must be important. As we
increase the distance the energy goes down and at very
large distances all the curves approach the free-impurity
value of 0.5%co. Figure 7 shows how the energies vary
with the screening constant for several values of the dis-
tance from the interface. For large values of the screen-
ing constant, the impurity potential is completely
screened out and the free value of the energy is obtained.
We see that the energy decreases with increasing distance
from the impurity center and screening constant. These
results are complementary to those of Stern and Ho-
ward, ' and Hipolito and Campos, ' where the binding
energies are evaluated in the zero-magnetic-field case. In
Fig. 8, we present a comparison of the lowest Landau-
level energy for both attractive and repulsive potentials
and the impurity located at a distance equal to the mag-
netic length from the interface. We observe that the en-
ergy degeneracy is lifted by both potentials. In Table III,
we present the energies of the lowest Landau level and
corresponding matrix elements for different values of s, d,
and Z. As expected, we find that as long as d and/or s go
to infinity we recover the ideal conditions. Obviously,
this also occurs if Z goes to zero. The screening effects
are observed through the localization length related to
( r & and the height of the maxima of the wave functions
associated with the parameters. These effects are quite
similar to those arising from the variation of the position
of the impurity relative to the 2DEG. For repulsive po-
tentials the electron orbit radius decreases as s increases

FIG. 9. Electron wave function for the excited state
(n =m = 1) with eigenvalue E=2.588 for the potential model
of Eq. (13).

due to the screening of the repulsive core. In Fig. 9, we
show a typical wave function for the excited state
n =m =1 with eigenvalue E=2.588, (r & =1.116,
( r &

=2. 132, and parameters given by Z =2, d =s = l.

V. CONCLUSIONS

In this paper we have calculated single-particle states
of the 2DEG in the presence of a quantizing magnetic
field. We have used the symmetric gauge and the role of
edge effects in the Corbino disk has been worked out.
Our exact results were compared with those arising from
the harmonic-oscillator approximation. We have dis-
cussed the inhuence of charge impurities on the electron-
ic states. The study was restricted to isolated attractive
or repulsive Coulomb centers, i.e., the case of very small
impurity concentrations, since the general impurity ran-
dom potential has already been widely considered in the
literature. Without loss of generality, we restricted our-
selves to the 2DEG at the insulator-semiconductor inter-
face built in MOSFET's. We showed that screening
effects are important and lower the energies of the Lan-
dau levels. Our discussion complements, by the presence
of a magnetic field, the previous studies of Stern and Ho-
ward and Hipolito and Campos about the bound states of
electrons in inversion layers.
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