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The optical-phonon modes of a circular wire are studied by means of the generalized Born-Huang
equation. Its eigensolutions are found to be confined bulk and interface modes for almost all wave vec-

tors parallel to the wire axis. At particular wave vectors hybridization of the two mode branches occurs.
The eigenfrequencies and displacement eigenfields are derived for confined and interface modes. Three
branches of confined modes exist, two TO and one LO. For modes confined to the wire the radial wave

numbers are quantized, and determined by the zeros of Bessel functions of the first kind and of their
derivatives. The twofold TO degeneracy is removed from reasons of symmetry. The displacement fields

may be understood in terms of superpositions of linearly polarized plane waves with wave vectors form-

ing a cone around the wire axis. For modes confined to the surroundings of the wire radial wave vectors
remain continuous. Two types of interface modes are found. The dispersion of their frequencies with

wave-vector components parallel to the wire is given in terms of modified Bessel functions. The same

dispersion relations are obtained from electrostatic matching conditions. The Frohlich interaction is

studied for confined LO and interface modes. The corresponding interaction Hamiltonians are given in

explicitly quantized form.

I. INTRODUCTION

Optical-phonon modes of layered structures like semi-
conductor superlattices and quantum wells have been ex-
tensively studied during the past. ' " Recently, by lateral
structuring after growth or by applying particular growth
techniques, some laboratories were able to create systems
with an artificial microstructure in two or three dimen-
sions. ' ' Examples are single quantum wires and dots as
well as arrays of such structures. Although the material
quality and interface perfection do not yet reach those of
thin layers, confinement efFects of electron states have
been observed. ' Similar e6'ects are expected for optical-
phonon modes of wires and dots. In addition, interface
modes should occur, and hybridization should take place
of the two mode branches at certain wave vectors. Ex-
perimental evidence for phonon confinement was found
by Fasol et al. ' and for surface phonons by Watt et al. '

Theoretically, optical-phonon modes of wires were treat-
ed by various authors by means of macroscopic' ' or
microscopic ' calculations. Stroscio et al. ' ' con-
sidered rectangular wires. Besides confined LO modes,
surface modes were calculated. Constantinou and Rid-
ley' ' treated circular wires, and also considered LO
and interface modes only. Knipp and Reinecke
developed a method for dealing with interface modes of
arbitrarily shaped wires and applied it to the elliptical
and rectangular cases. ' In microscopic calculations
rectangular wires were considered. Modes located at the
corners were reported by Ren and Chang, and hybridi-
zation efF'ects were stressed by Zhu.

In the present paper we will develop a complete macro-
scopic theory of optical-phonon modes of quantum wires
which includes LO and TO confined modes as well as in-
terface modes. The Frohlich interaction Hamiltonians
will be given in explicitly quantized form for both

confined LO and interface modes.
Our analysis relies on the dispersive dielectric continu-

um (DCC) theory of optical-phonon modes of hetero-
structures developed in Ref. 24. In this approach the rel-
ative ionic displacement field is governed by a generalized
Born-Huang equation which accounts for the dispersive
elastic forces by means of spatial derivatives up to second
order. The accompanying electric field is expressed in
terms of the displacements by using rigorous macroscopic
relations. In this way the generalized Born-Huang equa-
tion becomes a macroscopic eigenvalue problem. The
operator of this equation represents the macroscopic
counterpart of the microscopic dynamical operator of lat-
tice theory. As it holds for the latter, the macroscopic
dynamical operator has to be hermetic. It turns out that
for this property to be valid, the displacement eigenfields
must be either free of bulk and sheet vortices (LO
confined modes), or free of bulk and sheet sources (TO
confined modes), or must have neither bulk sources nor
bulk vortices (Fuchs-Kliewer modes). The Hermiticity
condition determines the eigensolutions of the macro-
scopic dynamical operator uniquely. There is no freedom
for the displacement eigenfields to be adjusted to any par-
ticular boundary conditions at the interfaces; the bound-
ary behavior follows automatically, just as in microscopic
theory. It agrees with macroscopic electrodynamics, but
does not correspond to any particular mechanical bound-
ary conditions. This is consistent with the fact that mac-
roscopic mechanics, unlike macroscopic electrodynamics,
does not impose any restrictions on the relative ionic dis-
placements. The field which enters the elastic continuum
theory is that of the center of mass of the ions of a unit
cell rather than that of their relative displacements. Set-
ting mechanical boundary conditions leads either to the
loss of Hermiticity of the dynamical operator —then the
conditions are poor —or it does not afFect Hermiticity, in
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which case the conditions are needless. This applies to
macroscopic theories which include spatial derivatives of
the relative displacement field up to second order. The
role of mechanical boundary conditions changes if
higher-order derivatives are taken into account, either in
the elastic or the electric forces. "' ' Then one may
put mechanical boundary conditions without necessarily
losing Hermiticity, and achieve better agreement with
microscopic theory. This implies, however, numerical
calculations of eigensolutions, i.e., the loss of the advan-
tage of macroscopic theories which provide explicit
analytical expressions for eigenfrequencies, displacement
eigenvectors, and Frohlich interaction Hamiltonians.

Of course, there are limitations of the DDC theory.
For instance, this theory fails to give unique answers if
modes of different branches are degenerate at certain
wave vectors Q, . For GaAs-A1As superlattices such de-
generacy takes place between GaAs confined modes and
GaAs-like interface modes. Although the DCC theory
does indicate that confined and interface mode displace-
ment fields will hybridize at the degeneracy points Q„ it
neither specifies the particular form of hybridization nor
removes the frequency degeneracy. The reason for this is
the lack of any specific short-range forces across the in-
terfaces. If one includes such forces in the DCC model,
finite splittings and definite hybrid solutions may be de-
rived by means of perturbation theory. Hybridization
represents an interesting theoretical phenomenon, but it
does not result in dramatic changes of eigenfrequencies
and eigenvectors, if treated correctly. As microscopic
calculations by Ren, Chu, and Chang for (GaAs)7-
(A1As)7 superlattices demonstrate, its neglect may be a
reasonable approximation for almost all wave vectors.
This is not surprising since perturbations of short-range
interactions at interfaces should only weakly affect collec-
tiue lattice excitations like confined or interface modes.

Another noticeable error of the DCC theory arises in
the case of LO displacement fields of GaAs-A1As super-
lattices with wave vector Q=(q=0, k~0) approaching
zero parallel to the superlattice (SL) axis. While micro-
scopic displacements tend smoothly to zero at the inter-
faces in this case, macroscopic displacements decay sud-
denly. In the DDC theory this happens independently
of wave vector, i.e., also for Q=(q~0, 0). For such Q
the microscopic theory yields almost sudden displace-
ment changes at interfaces, just as predicted macros-
copically. The observed alteration of microscopic
confined LO modes with k means a wave-vector disper-
sion which may only occur if the confinement is not com-
plete, as it happens obviously in microscopic theory. In
macroscopic theory, on the contrary, confinement is per-
fect; thus no k dispersion may take place. The relative
ionic displacement fields which apply for (q, k~O) are
also valid for (q~0, 0). The occurrence of sudden
changes of relative displacements in a continuum theory
is neither unexpected nor does it indicate any unphysical
behavior. It means that finite changes of relative dis-
placements take place on a length scale defined by the in-
teratomic spacing. Macroscopically, this spacing
is taken to be zero; thus discontinuities arise.

In summary, the dispersive dielectric continuum

theory represents the simplest complete macroscopic
theory of the optical-phonon modes of heterostructures.
It avoids the failure of the nondispersive dielectric con-
tinuum model in determining unique displacement
eigenfields of confined modes. Without dispersion these
modes are degenerate, and any linear combination of
eigenfields is allowed. Thus the macroscopic theory of
optical-phonon modes of hetero structures cannot be
based on the nondispersive dielectric continuum model;
dispersion has to be included. The dispersive dielectric
continuum theory reproduces well all main features of
polar optical-phonon modes of heterostructures. It is
qualitatively correct without any exception. Quantitative
deviations from the true microscopic results arise from
the continuum character of the theory. They are small in
most cases, and remarkable but still tolerable in a few
other cases. The theory yields confined modes and inter-
face modes, and indicates the Q vectors where hybridiza-
tion of both may take place. Analytical expressions are
obtained for eigenfrequencies and eigenfields in the entire
mode spectrum. The orthogonality and completeness of
modes may be demonstrated explicitly. " Eigenfrequen-
cies of confined modes are close to microscopic values,
and the dispersion of interface modes is exactly that by
Fuchs and Kliewer —also in good agreement with mi-
croscopic theory. Electrostatic potentials are close to
those from microscopic calculations for all modes and
wave vectors. Thus reliable Frohlich interaction Hamil-
tonians are provided both for confined LO and interface
modes. The displacement fields of all modes exhibit the
correct symmetry, provided the assignment of microscop-
ic and macroscopic modes is done properly, i.e., accord-
ing to the number of nodes. The actual displacements of
confined and interface modes are in reasonable agreement
with those from microscopic theory, although the
changes at interfaces are less steep in microscopic than in
macroscopic theory. This discrepancy represents an ar-
tifact of any strict continuum theory since here the in-
teratomic spacings are set equal to zero.

Originally, the dispersive dielectric continuum theory
has been developed in the case of superlattices. In the
present paper we will use it in order to investigate quan-
turn wires. We consider a single circular wire since the
latter represents the simplest theoretical case from which
one may proceed in order to understand rectangular
wires and arrays also. The paper is organized as follows:
In Sec. II we set up the eigenvalue problem. Its solutions
are classified in Sec. III. Confined modes are treated in
Sec. IV, and interface modes in Sec. V. The electron-
phonon interaction is considered in Sec. VI. Section VII
concludes the paper.

II. THE EIGENVALUE PROBLEM

We take an infinite wire, made of a certain zinc-
blende-type material (1). The infinite space around it is
assumed to be filled with another zincblende-type materi-
al (2) or vacuum (see Fig. 1). The macroscopic theory of
optical-phonon modes deals with the mechanical dis-
placement field u(x, t). In the limit of long wavelengths,
u(x, t) turns into the relative displacements of the two
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FIG. 1. Geometry of a circular quantum wire.

atoms of a unit cell at a lattice position x which is
thought to be continuously varying. The mechanical
displacement field results in an electric polarization field
P(x, t ) given by

the neglect of retardation (or polariton) effects. This ap-
proximation breaks down for phonon wave numbers Q at
the crossings of phonon and photon dispersion curves,
i.e., at Q=coT/c, with c being the light velocity. Such
wave numbers are extremely small, even much smaller
than wave numbers of phonons excited in common Ra-
man experiments which are of the order of magnitude of
photon wave numbers and, therefore, small compared to
the extension of the first Brillouin zone (BZ). This means
that for phonons which show up in common Raman ex-
periments, the neglect of polariton effects is well justified.
The same applies to the majority of phonons which take
part in free-carrier scattering. Thus Maxwell's equations
read approximately

P(x, t ) =N(x)e*(x)u(x, t ),
VXE(x)=0, (3)

where e*(x) means the dynamical charge and N(x) the
density of unit cells of the material at position x. For x in
material j, j=1,2, we set e*(x)=e.* and N(x)=N, . The
same notation scheme will also be applied to other ma-
terial parameters. The polarization field P(x, t) is con-
nected with an electric field E(x, t ) and a dielectric dis-
placement field D(x, t ). The four quantities u(x, t ),
P(x, t), E(x, t), and D(x, t) are governed by the coupled
set of Newton's and Maxwell's equations. With u(x),
P(x ), E(x), and D(x) being the time Fourier transforms
of these fields, Newton's equation reads

[coT(x)—cT(x)V X V+cL(x)VV —co ] u(x)

—[e*(x)/M(x)]E(x) =0 . (2)

Here, coT(x) means the TO frequency and M(x) the re-
duced mass of the two atoms of a unit cell; cT(x), cL (x)
denote certain velocities. The latter describe elastic (or
long-range mechanical) forces being responsible for the
wave-vector dispersion of optical phonons. Equation (2)
holds in the entire space with the exclusion of the wire
boundary. In particular, it cannot be applied across this
boundary in order to prove the continuity of the displace-
ment fields and their first derivatives there. These fields
may have discontinuities at the wire interface. This does
not mean, however, that infinite elastic forces will occur
since Eq. (2) does not hold there. It rather indicates the
transformation of elastic forces into short-range mechani-
cal forces. If, in contrast, acoustic modes of long wave-
lengths are considered, the mechanical displacement field
which enters is that of the center of mass of the two
atoms of a unit cell. No short-range forces exist, and the
second derivatives of the displacement field describe elas-
tic forces everywhere. An equation of motion analogous
to Eq. (2) holds also at the wire interface. Thus the con-
tinuity of the acoustical displacement field and of certain
components of its first derivatives may also be derived
there. From a microscopic point of view, the discontinui-
ties of the relative displacement field u mean that finite
changes take place on a short-range distance. Macro-
scopically, the short-range scale is taken to be zero; thus
finite short-range changes of u become abrupt.

For the electric-field vectors P(x), E(x),D(x), one may
use equations which follow from Maxwell's theory with

V D(x)=0.
In addition, one has

u(x+ Gae, ) =u(x),
where 6 means a large integer, a the lattice constant, and
e, a unit vector parallel to z. Normalization is required
with respect to the periodicity slab (PS), —Oo &x & ~,—Oo (y ( ~, 0 (z (Ga. One has

f d xu*(x) u(x)=1 . (7)
ps

(ii) From physical reasons, the eigenvalues co are ex-
pected to be real; thus the operator D of the eigenvalue
problem has to be Hermitian. Apart from the wire
boundary, D is identical with the dynamical operator

D =coT(x) —cT(x)V X V X+cT(x)VV —[e (x)/M(x)]E

of Eq. (2). On the wire boundary, D is not given by D.
Its actual values are unknown there, but one may assume
them to be finite. Then the Hermiticity condition be-
comes

f d x[w' Du uDw*]=O, —
PS

(9)

with u, w being two arbitrary displacement fields. The in-
tegral in (9) extends upon a periodicity slab with the ex-

4mP(x)=D(x) —e„(x)E(x) .

Here, e„(x) means the purely electronic part of the
dielectric function. Equations (1), (3), (4), and (5) may be
used in order to express E(x) as a certain linear function-
al P[u(x)] of the relative displacement field u(x). Later
we will determine E explicitly. Here its existence su%ces.
It means that (2) represents an eigenvalue equation for co

and u. Optical-phonon frequencies and displacement
fields are the solutions of this equation —more strictly,
solutions which obey the following additional require-
ments.

(i) The eigenfields u are normalized. We use periodic
boundary conditions with respect to a certain periodicity
length Ga parallel to the wire axis which is taken parallel
toz, i.e., we set
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cept of the wire boundary. The exclusion of this surface
does not change the value of the original Hermiticity in-
tegral since D remains finite. The Hermiticity condition
guarantees also that eigenfields of different eigenvalues
are orthogonal and that a complete set of orthonormal-
ized vector fields may be formed from eigenvectors.

The dynamical operator D exhibits full translational
and rotational symmetries with respect to the wire axis.
Thus its eigenvalues are highly degenerate, and the eigen-
functions of a certain eigenvalue may be subjected to an
arbitrary unitary transformation. One may remove this
arbitrariness by demanding the eigenfunctions to form
basis sets of irreducible representations of the translation-
al and rotational symmetry groups of D. These represen-
tations are one dimensiona1 and are characterized by a
wave vector q for the translational group and an integer

m =0,+1,+2, . . . , +co

for the rotational group. In order to fulfill the periodicity
condition (6), the wave number q has to be taken as
(2n. /Gct )I, with I being an integer varying between —

—,'6
and —,'6 —1. In general, eigenfrequencies and eigenfields
for different values of q, m will differ. For given q, m, still
different eigensolutions exist corresponding to different
phonon branches t. We write co, q

and u, q(x). By
definition, the eigenfields u, (x) are of the general form

u, q(x)=u, (r)e" (10)

where r, y, z are the cylinder coordinates of x.

III. CLASSIFiCATION OF EIGENSOLUTIONS

[ co, T c,T—(q +K,zm)
—.co, q]VXu, q=0, x in 1 (16a)

[~2T c2T(q'+K, 'T ) co,—]V Xu, =0, x in 2 (16b)

[~IL c1L(q +KtL ) cot q ]V u, q
=0, x in 1 (17a)

[coqL c2L(q—+K,Lm) co, q—]V.u, q=0, x in 2 . (17b)

For a certain eigensolution cot~q and uf~q these equa-
tions have to be fulfilled simultaneously. We assume the
four bulk dispersion curves

2 — 2 2 ~2jT/LQ
—

Mj T/L Cj T/L

to be free of any overlap, i.e.,

coi Tg&co2Tg&coiLg&co2Lg (19)

is required for any relevant wave vector Q of the first
bulk BZ. This means that for a certain eigenvalue co,
only one of the square brackets in Eqs. (16) and (17) may
be equal to zero. Let it be the first one, i.e., let us assume

must either vanish or be eigenfunctions of the Laplacian
operator A. In both cases, one may write

b, VXu, = (q—+K,2T )VXu,

AV u, = —(q +K,L )V.u, q, (15)

with —(q +KtT ) and —(q +K,z ) being the eigenval-
ues. By combining equations (12) and (13) with (14) and
(15), one obtains the set of equations

The various optical-phonon eigenmodes of a wire may
be characterized by the vanishing or nonvanishing of the
sources and vortices of their displacement eigenfields
u, q(x). For a superlattice this has been demonstrated in
Ref. 24. Here we apply the analysis developed in Ref. 24
to a wire. Conditions for sources V u,~q and vortices
V X u, follow by applying the operators V. and V X to
the eigenvalue equation (2), using simultaneously the elec-
trodynamic equations (1), (3), (4), and (5). The latter re-
sult in

with

—[e*(x)/M(x)]V E=co~(x)V u

[~iT+c 1TK ~tmq ]V Xu)mq(x)=0, xin1 (12a)

[cozT+czTE —co, q]VXu, q(x)=0, x in 2 (12b)

[&IL +c IL~ Mtmq ]V'ugmq(x) =0,

[&2L +C2L ~ Mtmq ]V'ugmq(x) =0~

xin1
X ln2

(13a)

(13b)

Here the LO phonon frequencies co L have been intro-
duced by means of the relation mjf cojT+cojp j=1,2.
Equations (12) and (13) mean that VXu, q

and V u, q

co&(x)= [4ire* (x)N(x)]/[e (x)M(x)]

being the lattice plasmon frequency. With the except of
the wire boundary at r =R, one gets

2 2 2 2 2
co, &=co,T

—c,T(q +K,T ) .

Then VXu, may differ from zero in material 1 and
must vanish in material 2, while V.u, has to be zero in
both materials. The index t of this mode is set equal to1'. Later we will demonstrate that uiT&~q will be zero
in material 2 by itself, i.e., u, Tz will be confined to ma-
terial 1. It represents the material-1-like transverse
confined mode of radial wave number E &T . In a similar
way, one finds three other branches of confined bulk
modes being the material-2-like transverse (t =2TK) and
the material-1- or -2-like longitudinal branches
(t =1LK,2LK).

There is still another way of satisfying the system of
equations (16) and (17). Vortices and sources of the dis-
placement fields u, may be set equal to zero in both
materials. Since u, may have discontinuities on the
wire boundary, nonvanishing sheet vortices and sources
may exist on this surface. Then u, q(x) may differ from
zero despite the vanishing of bulk vortices and sources.
The corresponding modes are termed "interface modes"
and labeled by t =I. Their eigenfrequencies col will
differ in general from those of confined bulk modes.

The behavior of the displacement fields of confined
bulk modes u, , t =jT/I, j=1,2, at the wire boundary
follows from the Hermiticity condition (9). One finds
that the normal components of the displacement fields of
transverse modes are continuous, and the parallel com-
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TABLE I. Classification of optical-phonon modes of a cylindrical heterostructure. IF means inter-
face.

1TO 2TO 1LO 2LO

V' X Qtmq ln 1

V X lltmq in 2

VXu, on IF
V Uimq on IF

%0
0
0

WO

0

0
%0

0
0

%0
0

0
0

WO

0
0

WO

0
0
0

%0
0

WO

0
0
0
0

WO

WO

ponents jump. For longitudinal modes the normal com-
ponents jump, and the parallel components are continu-
ous. This means that transverse confined bulk modes are
free of both bulk and sheet sources, but have bulk and
sheet vortices, while longitudinal confined bulk modes are
free of bulk and sheet vortices, but have bulk and sheet
sources. Table I summarizes the results of this section.

IV. CONFINED BULK MODES

LO modes

According to Sec. III, the displacement fields of
confined LO modes obey the equations

V X u jLKmq 0, X in 1,2

—(q +Kl )V uLx. , x in jEV.U.jLKmq
0, xin jMj.

(20}

(21)

u~lrc q(x)=CJlx qAJ(r)v~Lz q(r)e'

with

(22)

A, (r) = [5~,8(R r)+5 ~0(r —R )]— (23)

expressing the confinement of modes with j=1 to the
wire, and with j=2 to its surroundings, while CLK
denotes a normalization constant. By using (22), the
upper part of Eq. (21) becomes

r

a' 1a+— + KL
Qr r Br

m
r2

V UjLK q=0, I in j
(24)

The displacement eigenfields u LK which solve these
equations are not unique. By adding an arbitrary vector
field having no bulk sources and vortices, i.e., an interface
mode displacement field, one obtains again a solution.
However, displacement fields of eigenmodes are also
governed by the eigenvalue equations (16) and (17). This
causes the interface mode part to be zero provided the
confined LO mode eigenfrequency co,LK q

differs from
that of any interface (IF) mode eigenfrequency col q

for
the same values of m, q. Later we will see that this condi-
tion holds for almost all q, except for particular ones
where the disPersion curves cojLKmq and colmq cross. Such
values of q will be excluded from the consideration which
follows (see Ref. 24 for a more comprehensive discus-
sion). Then the displacement eigenfields u.Lx are of the
general form

Equation (24) is solved by Bessel functions J (KJI r)
and Y (K~I r) of the first and second kind. ' Since
Y (K I r ) diverges for r ~0, only J (K&L r ) is allowed
for j= 1, i.e., for modes confined to the wire. One gets

V u1LKmq(x) C Al(l'} m(K1L (2Sa)

with c being an arbitrary constant. For modes confined
to material 2, i.e., to the wire surroundings, any linear
combinations of J (K&I r) and Y (K2I r) may be tak-
en as solutions of Eq. (24). Thus one obtains

V u~Lx. (x)=bA~(r)[J (K~L r) +pY (K21 r)]
i(,mq+qz) (2sb)

u lx (x)=V[/ Lx (r)e' + '), x in j . (26)

By using V u, l x. from (2S) and setting
c = —(K,L~+q }, b = —(K&I~+q ), one arrives at the
following equation for Q,L& q(r):

1 8 2 m
r2 r Br r2q + I.x q(r)

J (K„r)'
= —(q +KJL )

'

J (K )+PY (K ) . (27)

It is solved by

J (KL r), j= 1

&)+BY (K21. &), j=2 . (28)

This solution determines the radial part v~Lx. q(r) of
ulL& q(x) from (22) by means of Eq. (26). In performing
the vector operation V, we use the set of cylindrical unit
vectors e„e„,e, . One gets

v, lx q(r)=J' (K&L r)e„+i J (K,I r)e+
+1Lm r

+i J (K„r)e, ,
+1Lm

(29a)

where b and /3 are certain constants.
The vortex equation (20) means that uJLx (x) may be

expressed as a gradient of a scalar function

Q~Lz q(r)exp[i(my+qz)],

as follows:
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TABLE II. Zeros of Bessel functions J (z) and their derivatives J' (z).

ZKm
I

ZKm

K=1
K=2
K=3
K=4

2.4
5.5
8.5

1 1.8

3.8
7.0

10.1
13.3

5.1

8.4
11.6
14.8

6.4
9.8

13.0
16.2

3.8
7.0

10.2
13.3

1.8
5.3
8.5

11.7

3.1

6.7
10.0
13.2

4.2
8.0

11.4
14.6

v2LK (r)= [J' (K2L r)+pY (K2L r)]e„ This means that the radial wave number K,L is quan-
tized according to

+i [J (K2L r)+pY' (K2L r)]e~m 2Lm K,L =(zK /R ), K= 1,2, . . . , 00 (30b)

+. q [J (K )+pY (K )] where zK means the Kth zero of the Bessel function
K2L

' J (z) (see Table II). Outside the wire, the vanishing of
the parallel component at the interface means

(29b)

J (K]L R)=0. (30a)

In order to fulfill the Hermiticity condition, the parallel
components of v LK .(r) must vanish on the wire inter-
face. For fields within the wire, i.e., for j =1, this yields
a cond~t~on «r K ~L . It reads

[J (K2L R )+PY (K2L R )]=0 . (31)

Relation (31) fixes the coefficient p but does not result in a
quantization of the radial wave vector K2Lm. The latter
remains continuous. The normalization constant C&1&
of the in-wire eigenfield u, LK from Eq. (22) becomes

2
1 + 1Lm —1

q'+K]L [Jm —](K]LmR)][J +](K]LmR)]

1/2

(32)

2 2 2 2 2
~jLKmq KgL CjL(q +KjLm ) (33)

Since the quantized wave numbers E,l depend on m,
the degeneracy of LO frequencies which takes place for
homogeneous and isotropic systems is removed in the
case of a wire as long as its interior is considered. Out-
side the wire, the LO spectrum remains continuous. The
LO mode displacement fields (29) and eigenfrequencies
(33) inside the wire agree with those obtained by Constan-
tinou and Ridley in Ref. 19.

where 0 means the volume ~R Ga of a periodicity part
of the wire. Eigenfields u2Lz q

outside the wire are to be
normalized in the sense of Dirac's 6 function depending
on the radial wave-number differences K21mq E2Lmq.
The normalization integrals may be taken by means of
formulas given in Ref. 30. This yields explicit expres-
sions for the normalization factors C2Lz q. %'e do not
write them down here.

The eigenfrequencies cujL & q
of the longitudinal

confined modes are given by

(q +KT )VX—uTK, xin j
(AV XujTKmq 0, x lil J'+J

By using the same arguments as in the case of LO modes,
one arrives at the conclusion that the general form of
u TK q(x) reads

ujTK (x) cjTK Aj(r)v 'TK (36)

m
1TKmq(r) 1TKmq K m (K]Tsm r )e

K, T, r

+iJ' (K]T, r )e (37)

The radial parts vjTK q(r) in (36) may be determined in a
similar way as in the LO case. One finds that two trans-
verse modes exist. They will be labeled by T, and T&.
Modes confined to the wire or to its surroundings are to
be treated separately.

(i) Within the wire, one obtains

TQ modes

The displacement fields ujrz q
of transverse confined

modes obey the relations

1T Kmq( ) C]T Kmq m(K]Tpm
P

Pl+i J (K T )e
K)Tp r

V u, TK (x)=0, x in1, 2 (34) (38)
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From the Hermiticity condition it follows that the nor-
mal components of transverse modes have to be continu-
ous on the wire interface. This yields

K, Tsm =K,L =(ZKm/R ) .

For K&T one has

(40)

J (K T, R)=0,
J' (K, Tp R)=0.

(39a)

(39b)

The quantization condition for K, z-, is the same as that
for LO modes. Thus one obtains

K1T =(zK /R ),
where zK means the Kth zero of J' (z)
(E=1,2, . . . , ~ ) (see Table II). The normalization fac-
tors of the corresponding eigenfields u, T K in (36) are,&

Kmq

given by

1 1

& [ Jm 1(K1T—sm R )J +1(K1Tsm R ) ]

1 q 1

q +K1Tp J (K1Tp R ) —J,(K, Tp R )J 1(K1Tp R )

1/2

The quantized wave numbers K]T /p q
result in eigenfre-

quencies co», /p& q
of transverse confined modes given by

the relation

2 2 2 2 2
1TslpKmq ~1T c 1 T(C K1Ts/pm ) (44)

Due to the different values of K&T, and K,Tp, the de-

generacy of the two transverse modes which takes place
for homogeneous isotropic materials is removed in the
case of a wire for modes confined to its interior. Further-
more, since K, z, and K, T depend on m, there is also
no mode degeneracy with respect to m. This behavior
may be easily understood. As shown in the Appendix,
confined bulk modes of branch t represent superpositions
of linearly polarized plane waves of polarization e, (q&')

and wave vectors forming a cone around the wire axis
(see Fig. 2). The two polarization vectors eT(p') and

S

eT (1p') in Fig. 2 which give rise to T, and T confined
P

modes have nonequivalent directions with respect to the
wire axis, i.e., no symmetry transformation of the wire
exists which transforms eT (y') into eT (q&'). For q~0,

S Jj

in particular, eT (y') becomes tangential to the wire sur-

face and perpendicular to the wire axis, while eT (qr') be-

[J (K~T, R)+PY (K2T, R)]=0,
[J' (K2T R )+pY' (K2Tp R ) ]=0 .

(45)

(46)

Orthogonality. Eigenfields of different confined modes
are orthogonal. This may be shown explicitly by using
the above-derived expressions for u~bz~q. b =L, T„T2.
One has

comes parallel to the wire axis. In the same limit, el (y'),
giving rise to LO confined modes, becomes perpendicular
to the wire interface.

The m degeneracy which holds in the case of a homo-
geneous isotropic material follows from the full spherical
symmetry of the system. Its removal in the case of a wire
is due to the transition from spherical to axial symmetry.

(ii) Outside the wire, no radial wave-vector quantiza-
tion takes place, as in the case of LO modes. The radial
parts of displacement eigenfields may be obtained from
expressions (37) and (38) by replacing J (K,T, &p r) there
by

[Jm (K2 Ts)pm r )+PY (K2T, )p r ) ] .

The factor p follows from the condition that the normal
components of the displacement fields must vanish at the
wire interface. This yields

Z

(uj'b'K'm'q'~ jbKmq ) ~j'j ~b'b~K'K~m'm~q'q (47)

FIG. 2. Construction of eigenmodes with cylindrical symme-

try.

where 5K K has to be replaced by 5(K'R KR ) if—
J =J =2.

Example. In Fig. 3 we plot the confined LO and TO
mode spectra at q =0 for the particular case of a GaAs
quantum wire, and modes confined to its interior. The
velocity parameters c&L and c,T are both taken equal to
2900 ms '. A wire radius R =100 A is assumed. Figure
3 demonstrates that the confined frequency spectrum
consists of multiplets of levels with ~m~=1, 2, 3, . . . ,
each multiplet corresponding to a certain value of K.
Sublevels with m =0 behave extraordinarily. While they
are located within the same X multiplet for TO modes,
they belong to the (K —1) multiplet for the LO and TO,
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In a first step we specify ur q(x). Owing to its general
form (10) and due to the vanishing of bulk vortices, ur
may be expressed by a scalar potential

gr q(r)exp[i(mqr+qz)]

as
E
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0-
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ur (x)=V[gr (r )e' q'+q'], r&R . (51)

The vanishing of bulk sources of ur (x, co) means that
the Laplacian applied to

(r )exp[i(m y+qz ) ]

vanishes. In cylindrical coordinates this condition reads

3 22Q-

3
4, c 2

-3
-220

1 8 g m

jr 2 r i)r r2q + gr q(r)=0, rXR . (52)

FIG. 3. Eigenfrequencies of confined optical-phonon modes
0

at q =0 for a GaAs quantum wire of radius R = 100 A.

modes. The reason for the particular behavior of m =0
modes is that they are the only ones which may have
nonvanishing angular averages of polarization charge
densities. Sublevels within a given multiplet, i.e., with
the same radial quantum number K but different axial
quantum numbers m, are spaced by several cm ', corre-
sponding to about 0.5 meV, while equivalent sublevels of
different multiplets, i.e., with the same m but different K,
have spacings several times larger. This means that the
effect of radial confinement exceeds that of axial multi-
plicity by about half an order of magnitude. Typically,
levels with equal m and with K differing by 1 have spac-
ings around 10 crn ', corresponding to about 2 meV.
Such small frequency distances are obtained in spite of
the assumed small wire radius of 100 A. If radii of
several 1000 A are taken, the frequency quantization
turns out to be negligibly small.

If taken to be valid in the whole infinite space including
r =R, Eq. (52) defines the modified Bessel functions
I (qr ) and K (qr ). ' These functions have positive
values and are nonzero for all r; I (qr) remains finite at
r=0 and diverges at r= ~, while K (qr) is infinite at
r =0 and approaches zero at r = oo. In our case, Eq. (52)
holds only for r (R and r )R. At r=R, gr (r) may
have discontinuities. The normalization of the displace-
ment fields means that 1trr q(r) has to remain finite for all
values of r, in particular, at r =0 and r = ~. Two solu-
tions of Eq. (52) exist with such properties. They read

br (x)=A (r)Z (qr)e' q+q', j=1,2
with

(53)

Zi (qr)=I (qr), Z2 (qr)=K (qr) . (54)

b (x)=C.A (r)V[Z (qr )' ++ '], j = 1,2

with normalization factors

(55)

The normalized vector fields b (x) attributed to br. q(x)
by means of Eq. (51) are

V. INTERFACE MODES

According to Sec. II, the displacement fields ur (x) of
interface modes are characterized, first, by the vanishing
of bulk sources and vortices:

Ci= R 1
1/2

2&Iql I (qR)I'(qR)

R —1
1/2

K (qR )K' (qR )

(56)

(57)

V.ur (x)=0, r AR

VXur q(x)=0, r&R,
(48)

(49)

and, second, by the occurrence of discontinuities on the
wire boundary r =R. By using these properties, the ei-
genvalue equation for IF modes becomes

Here, E ([ur (x)]) means the electric field connected
with an IF mode displacement field ur (x). It
represents a linear functional of ur (x), which may be
determined as follows.

[coT(x)—co ]ur q(x) — E ([ur (x)])=0,
M r

r&R . (50)

Note that K' (qR) is negative for all q. The b q(x),
j=1,2, may be considered to form a set of orthonormal-
ized basis functions within the space of vector fields hav-
ing no bulk sources and vortices but sheet sources and
vortices on the wire interface at r=R. Thus any IF
mode displacement field uI may be written as

urmq(x) g &irmqbrmq(x) ~

J

with UI. as arbitrary complex Fourier coefficients.
In a second step we calculate the electric field

E q([ur q(x)]) connected with an IF mode displacement
field ur q(x). Since it represents a linear functional
E[urm (x)] of ur~ (x), one has
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E[ul (x)]=g Uli qE[bi q(x)],
J

(59)

holds, which gives zero because of Eqs. (51) and (52). The
vortices of E[bl ~(x)] are always zero owing to
Maxwell's equation (3). Thus, E[b. (x)] represents a
vector field of IF-mode type by itself. As such, it may be
linearly composed of IF-mode basis vectors b1 and

b2mq. One has

E[b (x)]= gE", b, (x), (60)
J

with E ' as the Fourier components of E[bl ~(x)].
The latter are determined by the sheet sources of
E[b. ~(x)],

p [E„(x)E[b (x)]}= 4~e*—N C qZl (qR)5(r —R),
(61)

and by the vanishing of its sheet and bulk vortices, i.e.,

7'XE[bi (x)]=0 . (62)

The two conditions (61) and (62) result in the following

system of equations for E.'
e, C1Z', (qR ) e2„C—2Z2 (qR ) E,

C1Z1 (qR ) —C2Z2 (qR ) E2.

where E[bi ~(x)] means the electric field due to the par-
ticular displacement field b (x). The bulk sources of
E[b. (x)] vanish since

E[bl (x)]= 4~—e "N V. b (x)

I' (qR )K (qR ) e2
(qR)=—,, a=

I (qR )K' (qR )

Finally, the electric E[ul (x)] of an IF-mode displace-
ment field ul ~(x) becomes

(66)

(IlU., li) =
1/2

UIj mq (6&)

where p =X M means the reduced mass density of ma-
terial j, and M abbreviates QM, M2. The eigenvalue
equation becomes

~'](Il U ~lj)+ g ~,„el,'~~, '(Il U Ij')=o .

(69)

In matrix form it reads

4me *N.
E[ul ~(x)]= g M, Ul. b., (x) . (67)

JJ ~1 oo ~2 oo

Since the m.atrix M. ' is symmetric, the operator E turns
out to be Hermitian on the subspace of IF modes, as it
should be.

Expression (67) for 2 ~ ( [ul ~ ] ) will be used in order to
specify the eigenvalue equation (50). As is commonly
done, mass renormalized displacement components
(I l

U
~ lj ) are introduced instead of Ul . These are

defined as

Z~' (qR )= ( —1)l4me'N~ Cl .
(

By solving it, one arrives at

4me*N.

E'1~E2~

(63)

(64)

2
601 T +C01p 1+ay

Qag
1p 2p

adam
601 Q)2P 1+ay

Qm
602 T +C02p COP 1+ay

with

M(m, q)= 1
1

1+ay (q ) Qa2) (qR )

Qa2) (qR )

aq (qR )

(65)

(rl U , ll)
(IlU l2) 0

The two eigenvalues co1 and co& of Eq. (69) for given
m, q are

1
~l

2
( [~1L +~2T+ qa(~2L +~1T)]—[ [(~1L 2T)+a9 (~2L ~1T )]2 1+ay )

+ a9 (~2L ~1L )(~2T ~1T) I (71)

The lower ( —) sign corresponds to I= 1, and the upper
(+ ) sign to I=2. The components (I l

U
q lj ) of displace-

ment eigenfields are easily obtained from (70) and (71).
By using them, the eigenfields ul themselves become

' 1/2

ul (x)=
Pj

(rlU, li)b, ,(x) . (72)

The Hermiticity of the dynamical operator in Eq. (69)
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causes the 2X2 matrix(I~U ~j) to be unitary, with the
exception of a certain factor which becomes 1 for normal-
ized displacement eigenfields. Thus one has

p (II U, I
j)(I'I U, IJ)=&»',

J

y(I~ U, ~j)(I~ U-, ~j ) =S,,I

(73)

(74)

Equation (73) means orthonormalization of eigenfields in
the sense

Discussion of eigenmodes

First we consider the limit qR ~ Oo. It holds that

lim g (qR)=1.
qR~oo

(83)

(82) are the same as those obtained previously from Eq.
(70). Thus Eq. (82) represents an implicit form of the
more explicit dispersion relation (71). Originally, this re-
lation has been derived by Ruppin and Englman in Ref.
31.

p(x)
ulmq ~ ul mq

and Eq. (74) means completeness in the sense
1/2 1/2

p(x) p(x')
ui (x)uI (x)

=gb~ (x)b (x').
J

(75)

(76)

The dispersion relation (82) becomes

', (co)+@2(co)=0. (84)

It is independent of m, and coincides with that of a single
heterostructure possessing a plane interface. This is plau-
sible since qR —+ ~ means that IF modes do not feel the
curvature of the wire surface. The total number of
different IF modes amounts to 2 in the limit qR ~~.
For qR ~0, on the other hand, one gets

IF-mode eigenfields are orthogonal to the eigenfields of
any type b =L, T„T of confined bulk modes. One has lim g (qR)=

for m=0
(85)

(uI ~u„z )=0, b=L, T„T (77)

Dispersion relation from electrostatics

The dispersion relation (71) of IF-mode eigenfrequen-
cies may also be obtained in a somewhat different way by
using electrostatic equations only and by putting mechan-
ics into the dielectric functions e.(co) of the two materials

j= 1,2. For e (co), one has

CO~p
e (co)=e,„ 1+ (78)

2 m
gr2 r Br2+ — —

q + &p' '=0, r&R. (79)

Its finite solution reads

qi, (r)=c'~'(r)I (qr)+c2A2(r)K (qr) (80)

with c &, c2 as unknown coefficients. The latter follow
from continuity conditions at the wire interface; the
parallel component of EI and the normal component of
Dl~q have to be continuous there. This yields

The radial part of the scalar electric potential @I (r) of
an IF mode obeys the equation

The singularity for m =0 modes is due to the fact that, in
this case, the wire surface carries a nonvanishing net
charge. For m&0 the charge vanishes. The two eigen-
frequencies coIOO for m =0 become ~,oo

=co, T and
co2oo=cozL, , as long as ~2L, & ~,T. The first of these modes
is confined to material 1, and the second to material 2. If
~2L, &cu&T, the meaning of the two modes is reversed.
For m&0, the dispersion relations, and thus the eigenfre-
quencies, are the same in the two limiting cases qR ~0
and qR ~ 0 . This represents a particular property of a
cylindrical heterostructure. It becomes understandable if
one realizes that q —+0 means independence of eigenfre-
quencies of the wire radius R. This includes large R, i.e.,
wires having an almost plane surface. Thus it is not
surprising that, with the except of m =0, eigenfrequen-
cies of plane heterostructures apply also to cylindrical
heterostructures in the limit q —+0. Regarding all values
of m, the total number of different mode frequencies
amounts to 4 at q =0. For finite q, the dispersions of IF-
mode eigenfrequencies and vectors follow from the q
dependence of g (qR). This function is plotted in Fig. 4
for the four lowest values of m.

Another case which needs particular consideration is
that of a freestanding wire, i.e., a wire embedded in vacu-
um. In this case the IF-mode branch with I=1 becomes
the surface mode branch I=5, and that with I=2 disap-
pears. Forco, =—cps ', onegetsfromrelation(71)

I (qR)c& K(qR)c2=0, —
(81)

CO 6) + CO '",„+~ (qR)
(86)

e, (co)I' (qR )c, —e2(co)K' (qR )c2=0.
The corresponding secular equation reads

e, (co)+g (q)e2(co) =0. (82)

By using expression (78) for e (co), one may easily demon-
strate that the eigenvalues colloq which follow from Eq.

As a practical example, we consider a GaAs wire em-
bedded either in AlAs or vacuum. In the A1As case,
GaAs-like and A1As-like IF modes exist. The corre-
sponding dispersion curves are plotted in Fig. 5. The
eigenfrequencies of the surface mode branch belonging to
the vacuum case are shown in Fig. 6. Since e& »1 for
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FIG. 4. Functions q (q) determining the dispersion of IF
modes.

400

FIG. 6. Wave-vector dispersion of IF modes for a freestand-
ing GaAs quantum wire.

CxaAs, one gets co@ -=co,L for m%0, i.e., surface modes
are almost degenerate with respect to m, and exhibit
practically no q dispersion. For m =0, co~oo=co, T holds
at q=0, and co+Oq CO]z fOr all other q except for very
small ones.

VI. ELECTRON-PHONON INTERACTION

0

We consider the electron-phon on interaction of
Frohlich type. The interaction Hamiltonian differs for
confined and interface modes.

Con6ned modes

10

We restrict ourselves to modes confined to the wire,
i.e., to the material with j=1. No Frohlich interaction
exists for confined TO modes since their electric field
E& mmq vanishes. For confined LO modes the dielectric
displacement field D&LK q

becomes zero. The electric
field E&LKmq is given by

280
E)1/~q(x) 4qre ] &] +]u/I //yyq(x) (87)

278

E 276

By means of (22), (26), (28), and (29), the electrostatic po-
tential y, lx q(x) due to E,Lx q(x) may be expressed as

y)Lx~q(x) =4qre( e) N, —(e, uU~~q) . (88)
iq

o~ 274

~ 272

270

268
0

0

ike

Any displacement field uI of confined LO type represents
a superposition of eigenfields u, lx q(x). One has

uL(x) g UILKmqulLKmq(x)
Kmq

(89)

The normal coordinates U&LK may be replaced by an-
nihilation and creation operators B1LK-q and BILK-q
defined by the relation

1/2

U&ZKmq =2
2P &~ &ZKmq

B1LKmq (90)

FIG. 5. Wave-vector dispersion of IF modes for a GaAs
quantum wire embedded in A1As. The Frohlich interaction Hamiltonian HF equals to the
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1.0 tential multiplied by —e. One gets

0.5

0
e

0.0
0

CL

qiL&~q
( 2+K2 )i/2

(r)=
1Lm

' 1/2

8(R —r )
27Ti6Ct) 1p

(92)

X
~1 oo ~1LKmq

J (K,L r)

[ —J,(K,I R )J +,(K,L R )]'~

—0.5
0.0

1.0

0.5

O
0

0.0
0

CL

I

0.2
I

0.4 0.6
(r/R)

K=O

1

0.8
I

1.0 1.2
In Fig. 7, we plot yilz q(r) for various radial and axial
quantum numbers E,m.

Interface modes

The relation between the electric field E[ur (x)] of an
IF mode and its displacement eigenfield ut (x) is less
simple than for confined longitudinal modes. This is due
to the nonvanishing vortices of ur q(x) which make the
dielectric displacement field D[uI (x)] differ from zero.
We use a relation between E[uI (x)] and uI q(x) which
follows from the eigenvalue equation (50) observing rela-
tion (72). It reads

/ 2 2

)] ~ 4m.M JT Imq]

j Joo JP
—0.5

0.0
I

0.2
I

0.4 0.6
I

0.8
I

1.0 1.2 X(IlU qlj)b q(x) . (93)

FICz. 7. Electrostatic potentials of LO modes confined to the
wire. Various radial and axial quantum numbers K, m are
shown.

real part of the total potential due to the displacement
field uL (x), multiplied by —e. It has the general form

With the regard of expressions (55) for bj q(x), this field
may be derived from an electrostatic potential yt q(x).
If the normal coordinates (Il U

q lj) are replaced by an-
nihilation and creation operators BI and BI* defined
by means of the relation

' 1/2

HF = g [ p, (r)exp[i(m y+ qz ) ]B,
tmq

(IlU, lj)=2
2Mcol

Bl q
(94)

+y, q(r)exp[ i(my—+qz))B,+ (91)

with t =IIK and y, q(r) being the radial part of the po-

one arrives at an interaction Hamiltonian HF of the gen-
eral form (91) with t =I and the radial part of the poten-
tial pl (x) given by the expression

R a~a)Imq

r

" (IlU, lj)
col cO

I (qr) K (qr)
X 5ji8(R r),—+5J28(r —R )[I (qR )I' (qR )]'~ [ —K (qR )K' (qR )]' (95)

As shown by this expression, IF modes couple stronger
the closer their frequencies approach those of longitudi-
nal modes. The potentials pl (r ) of several IF modes of
a freestanding GaAs wire are depicted in Fig. 8.

VII. CONCLUSIONS

In this paper we have derived the complete set of
eigenfrequencies and displacement eigenfields of the

optical-phonon modes of a circular quantum wire. The
assumed circular shape is rather peculiar, but it makes an
analytical treatment possible. This is important since the
circular wire, owing to its full axial symmetry, may serve
as reference case for arbitrary wires having necessarily
lower symmetries. Moreover, certain general properties
of optical-phonon modes of wires are independent of
their particular shapes. Thus, the results of this paper
are also useful for noncircular wires. The calculated
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U)

4

3

G
Q

Q=K(e cosy'+e sing')+qe, , (A2)

where y' means the polar angle of Q. The polarization
vectors eL, eT, eT become

S P

crate for different directions of Q. We use this degenera-
cy in order to construct eigenmodes of cylindrical sym-
metry with respect to an arbitrarity chosen z axis. The
wave vector Q is decomposed into a component K per-
pendicular to e, and a component q parallel to e, . By
adopting the geometry of Fig. 2, one gets

0
0

eL =—(e„cosy'+e sing')+ —e, ,

eT = —e sin+ +cycos+ (A4)

eT =—(e, cosy'+e sing') ——e, .

3

o 2
CL

g«, (x)= I dV'" 'et(V')" " (A6)

If plane waves of the same polarization branch but
different polar angles y' are linearly combined with cer-
tain coeScients, one obtains again an eigenmode. We use
coefficients (1/2ir)exp(imp'), which depend on an in-
teger rn. The corresponding linear combinations are
denoted by g,K (x). They read

0

r/R

We consider the components of g,K (x) with respect to
the cylindrical basis set e„,e,e, at position x. One ob-
tains

(A7)

FIG. 8. Electrostatic potentials of the two IF mode branches
of a freestanding GaAs wire for two difT'erent wave vectors q.

eigenfrequencies and eigenfunctions as well as Frohlich
interaction Hamiltonians allow one to study confinement
and interface effects on optical-phonon modes for a
variety of physical properties of quantum wires —among
them Raman spectra, momentum scattering rates, ener-

gy relaxation times, polaron effects, etc.

with the radial parts

2'
wLK q(") dg cos+ e„

2w 0

+—sing e +—e,
K . q

Q " Q
'

i(Kr cosy+ m y)

1 2
WT Krnq(r ) dyI —sing e„+cosy.e ]s 277 0

(A8)
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APPENDIX

We consider an infinite, spatially homogeneous, and
isotropic material. Its displacement eigenfields may be
taken as plane waves:

i(Kr cosy+ my)

1 2~ K
wT K (r)= dip —cosy e„

+—sing. e ——e,q . K
Q ' Q

'
i (Kr cosy+ m y)

(A9)

(A10)
(u«x) =e,e'~'" (A 1)

of wave vector Q and polarization e, . The unit vectors e,
and eI =Q/Q for longitudinal modes (t =L ) and
eT =eT, eT =[et XeT] for the two transverse modes

S

(t =T„T ), with eT being an arbitrary unit vector per-
pendicular to Q. The eigenfrequencies co«are degen-

By using the relation

1 2~ i(Kr cosy+ mb) ~ mJ
277 0

(A 1 1)

all y integrals in (A8), (A9), and (A10) may be expressed
by Bessel functions J (Kr) of first kind and their deriva-
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tives J' (Er ).
Displacement fields calculated in this way are valid for

an infinite homogeneous medium. In order to apply them
to the interior of a wire, boundary conditions have to be
set on the interface. For LO modes, i.e., modes without
vortices, the parallel components of displacements fields
have to be continuous, and for TO modes, i.e., modes
without sources, continuity must hold for the normal

components. These conditions are expressed by relation
(30a) for LO modes and relations (39a) and (39b) for TO
modes. Taking the boundary conditions into account,
and omitting irrelevant phase factors and normalization
constants, the displacement fields (A8), (A9), and (A10)
turn out to be the same as those given by the expressions
(29), (37), and (38), i.e., those obtained previously by
means of the generalized Born-Huang equation.
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