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A quantum model and simulator for resonant tunneling diodes that includes three-dimensional (3D)
scattering-assisted tunneling processes is reported. The 3D phase-breaking or quasi-phase-breaking
scattering processes considered are polar scattering by optical phonons, deformation potential scattering
by acoustic phonons, interface roughness scattering, and alloy scattering. The simulator solves
Schrodinger equation in 3D using an expansion in terms of sequential scattering events. The average
transmission and reflected currents are then calculated using an (analytic) ensemble average over the
scatterers. We assume that the scattering events are uncorrelated and use a semiclassical phonon field.
The relaxation approximation is not used. Back scattering is included so that the current is conserved.
An important feature is that the 3D analysis permits one to account for the variation of the perpendicu-
lar momentum of the electron in the scattering process. This variation of the perpendicular momentum
and the dependence of the scattering process upon the initial perpendicular momentum are the source of
the broadening of the transmission coefficient. Simulation results are reported for a 34/34/34 and a
50/50/50 double-barrier heterostructure. The dominant scattering mechanisms in these devices are po-
lar phonon scattering and interface roughness scattering. Polar phonon-assisted tunneling is revealed in
the transmission coefficient by the presence of secondary resonant transmission peaks due to emission
and absorption of optical phonons. At low temperature (4.2 K) this emission-assisted tunneling intro-
duces a noticeable bump in the current voltage characteristics of the diode in agreement with a previous
one-dimensional quantum model and low-temperature experimental data. At room temperature, howev-

er, 3D polar scattering introduces a much larger broadening of the transmission peak in the 50/50/50
structure than can be predicted by a one-dimensional model. A strong broadening is also introduced by

0
interface scattering for rnonolayer terraces of 70 A average width, emphasizing the importance of the in-
terface quality. Up to 6 and 20 multiple sequential IR scattering events are required for the transmission

0
coefficient to fully converge for the 34- and 50-A barrier diodes resulting in a transmission coefficient
versus energy with a characteristic asymmetric shape. However, the diode IV current converges typical-
ly in only three sequential IR scattering events. As expected the effective broadening introduced by
these scattering mechanisms reduces the peak current and increases the valley current of the current
voltage characteristic of the resonant tunneling diodes in agreement with experimental data.

I. INTRODUCTION

Heterostructure devices of small size have been instru-
mental in revealing the wave nature of electrons as pre-
dicted by quantum mechanics. The resonant tunneling
diode demonstrated by Chang, Esaki, and Tsu' and the
Bloch oscillator proposed by Esaki and Tsu are examples
of novel semiconductor devices which rely on the wave
nature of the electron. Other electron devices, such as
the Zener oscillator, are also conceptually possible.

Modern growth techniques now permit the fabrication
of high quality one-dimensional heterostructures. They
have led to improvement of the resonant tunneling diode
by Sollner et al. and more recently the demonstration of
the Bloch oscillator by Sibille, Palmier, and Wang and
Beltram et al. at room temperature. Limitations on the
operation of these devices remain due to the scattering
processes. An improved understanding of scattering pro-
cesses is therefore critical for the design of optimal de-
vices structures.

In this paper we present a three-dimensional (3D)
quantum simulator which permits us to analyze the im-
pact of the scattering processes upon tunneling in a het-

erostructure. In this study we will consider polar scatter-
ing by longitudinal optical phonons, deformation poten-
tial scattering by longitudinal acoustic phonons, interface
roughness scattering, and alloy scattering. A similar
study recently reported by Chevoir and Vinter, also in-
cludes the 3D effect but it is based on approximate scalar
rate equations (semiclassical model), whereas our quan-
tum simulator directly solves the Schrodinger equation
and therefore includes backscattering (self-energy effects
and current conservation).

Many other approaches have been used to solve the
Schrodinger equation in the presence of scattering, but
with concomitant limitations. Frensley and Jensen and
Buot used the Wigner distribution formalism. It leads to
strongly nonlinear equations in the presence of dissipative
effects, however, and the Wigner distribution has only
been solved so far using the relaxation time approxima-
tion and assuming a constant relaxation time. Other ap-
proaches based on the Green-function formalism only ad-
mit solution for simplified device or scattering models.
For example Wingreen, Jacobsen, and Wilkins (polar
scattering) and Leo and MacDonald" (interface rough-
ness scattering) both use a simplified hopping model for
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the resonant tunneling diode. Datta' assumes that the
electron-phonon interaction can be approximated by an
impulse function in space. Another limitation is that
these analyses ' ' are one dimensional. As we shall
see, three-dimensional effects must be accounted for if
one is to simulate the broadening of the transmission
coefficient introduced by scattering processes in some
modes of operation.

Consider the case of polar scattering. A multiphonon
studies accounting for phonon-assisted tunneling was re-
ported by Wingreen, Jacobsen, and Wilkins for electron
tunneling through a double barrier. Such a model is con-
sistent with the experimental results obtained at low tem-
perature (4.2 K) by Goldman, Tsui, and Cunningham. '

Alternately at room temperature and at 77 K, device
physicists (see the discussions given by Stone and Lee, '

Vinter and Weil, ' and Mizuta, Tanoue, and Takahashi' )

have found the need to introduce an effective broadening
in the transmission peak to improve the fit between the
measured and calculated current voltage characteristics
of multibarrier resonant tunneling diodes. The main
consequence of this energy broadening is to reduce the
peak to valley ratio of the current-voltage characteristics
of the resonant tunneling diodes.

The one-dimensional model of Wingreen, Jacobsen,
and Wilkins' cannot account for this broadening at
room temperature. In this paper we shall demonstrate
that a three-dimensional model of phonon scattering per-
mits us to reproduce both the low- and high-temperature
results. The multiphonon model reported by Ref. 10 re-
lies on a one-dimensional (in space) model for the elec-
tron which assumes that the perpendicular momentum of
the electron is left unchanged: k,~=ko~ (0, incident; l,
scattered). It results that the longitudinal part of the en-
ergy E& could only assume two values E&x =Eo +Acoq for
a single-phonon scattering event. We shall see that in
one-dimensional heter ostructures the perpendicular
momentum satisfies instead the two-dimensional momen-
tum conservation rule: k&~=ko~+q~. The various new
scattered states which result when the perpendicular
momentum is allowed to vary can greatly affect the tun-
neling process. Indeed the longitudinal electron energy
E& can then take continuous values within a prescribed
range,

Ak
E» Eox Acoq+ 2'

As we shall see, the three-dimensional effects discussed
above for phonon scattering apply also to elastic scatter-
ing processes.

In this paper we study 3D scattering-assisted tunneling
in a simple double-barrier heterostructure. In Sec. II we
present the heterostructure. In Sec. III we develop the
3D scattering-assisted tunneling theory. In Sec. IV we
discuss the various scattering processes under considera-
tion. An effective transmission coefficient for 3D
scattering-assisted tunneling is introduced in Sec. V. The
numerical algorithm is described in Sec. VI. Simulation
results are presented in Sec. VIII for two double-barrier
diodes. We conclude in Sec. IX by summarizing the re-
sults obtained.

II. TEST RESONANT-TUNNELING STRUCTURE

To test the scattering-assisted tunneling simulator pro-
posed below we will employ a resonant-tunneling diode
(see Fig. I ) consisting of a conventional undoped
A1GaAs/GaAs/A1GaAs double-barrier structure
sandwiched between two strongly doped GaAs n +

buffers.
We consider two double-barrier structures with a bar-

rier width and a well width of six and nine lattice param-
0

eters wide ( = 34 and 50 A), respectively. A barrier
height of 0.25 eV corresponding to an Al mole fraction of
0.3 is used. The simple tight-binding band [see Eq. (6)]
with the effective mass of 0.076+0. 1m the electron rest
mass is used for Al Gai As.

As shown in Fig. 1 the voltage VD applied across the
resonant tunneling diode Fermi levels Efl and Ef~ is
given by

VD = VDI+Ef,L
—Ef.~ (2)

where VDI is the intrinsic voltage appearing across the
double-barrier structure and with Ef,l and Ef,~ the
built-in potentials in the buffers. A donor concentration
Nz =10' cm is used in the buffers. For this high con-
centration the donor ionization energy vanishes, and the
donors can be assumed to be completely ionized. '

We assume that the electric field is constant inside the
quantum structure. Note that there is no undoped spacer
between the double barrier and the buffers in the test de-
vice. A self-consistent calculation of the potential and
field across the device becomes necessary in the presence
of these spacers.

III. SCATTERING-ASSISTED TUNNELING THEORY

A. Heterostructure model

Double-barrier
Le&-side bufFer ~ zegjo~ I Right-side bufFer

CL ~ QN ~ CL

Efcl ~ II

w VD
Dl

~~

l~ +fcR EcR

EfR

FIG. 1. Band diagram of the test resonant-tunneling struc-
ture.

We wish to study the scattering-assisted tunneling pro-
cess in a heterostructure. The total semiclassical Hamil-
tonian of one electron submitted to scattering by various
elastic and inelastic scattering processes i is the sum of
the electron Hamiltonian H, and the electron-scattering
interaction Hamiltonian
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H=H, + g H, h;(t)+ g H, („,; .

The time dependence of the electron-phonon scattering
process interaction term H, „h;(t) will result from our as-
sumption of a classical field of lattice vibrations which
remains in thermal equihbrium despite its interaction
with the electrons. We must now solve the time-
dependent Schrodinger equation

A'(k) = g @ (k~)e

with Xz the number of Fourier coefficients to which the
band structure 6(k) is truncated.

In a general superlattice device the generalized band
structure varies with position. For simplicity of presenta-
tion we shall now assume that the generalized band struc-
ture is well represented by an effective mass approxima-
tion in the transverse direction so that we have

in the superlattice region. Here the heterostructure is
spatially varying along the superlattice axis x and is uni-
form in the perpendicular direction (y and z). To analyze
such one-dimensional superlattices it is convenient to use
the generalized Wannier picture. ' In this picture the
electron wave function ~%) is expanded in terms of the
generalized Wannier functions ~k~, n ) using the envelope
function f(k~, nt ),

lq)=y ff(k„n, t)lk„n)dk, . (4)

Here we are limiting this expansion to a single general-
ized band. In a uniform crystal the state ~k~, n ) is a gen-
eralized Wannier function at the lattice site n along the
superlattice direction and a Bloch state k~ in the perpen-
dicular direction. ' Like the Wannier functions these
generalized Wannier functions are orthogonal

( k', n'~ k, n ) =5„.„5(k' —k )

and are assumed here to form a complete basis (general-
ized one-band approximation). In this work we postulate
the existence of these states. The existence of the gen-
eralized Wannier functions in heterostructures has been
rigorously demonstrated in the case of one-dimensional
crystals. ' ' In three-dimensional crystals with a poten-
tial varying in one dimension the generalized Wannier
functions can still be labeled with the perpendicular wave
vector k~ because the crystal Hamiltonian is translation
invariant in the transverse direction and therefore com-
mutes with the transverse translation operator.

As for Wannier functions, the matrix element of the
heterostructure Hamiltonian H, in the generalized Wan-
nier function basis is

&k,', n ~H, ~k„n ) =H„',„(k,)5(k,' —k, )

with [assuming slowly varying V(x)]

H„'.„(k~)=H„„(k~)—e V(na )5„„,
where H„.„(k~) is the matrix element of the unbiased het-
erostructure (generalized band structure) and where V(x)
is the applied electrostatic potential sampled at the lattice
site x =na. In a homojunction superlattice the band
structure does not vary with position and the matrix ele-
ment H„„(kj) is simply given by

H„„(k~)=6'„„(kj),
where 6 (kj) are the Fourier coefficients of the band
structure 8(k ),

Ak~
H„' „(ki)=H„„+ „5„„.

2m "(n)

+E,(na )
—eV(na ) 5„„.

a m*(n)

See Ref. 22 for more complex (complete) band structures
(X~ ) 1).

Im order to handle the longitudinal variation of the
transversal mass it is convenient to treat the effective spa-
tial variation of the transversal kinetic energy like an
effective longitudinal potential

H„'.„(k )=jH„„+ Ak~

2m *(0)

where 0„.„ is defined using

fl kj m*(0)
2m*(0) m(n)

B. Ensemble average scattering model

Let us consider inelastic scattering by phonons and
elastic scattering by structural defects. As we shall see
below, both scattering processes can be analyzed in a
similar fashion.

We assume that the electron is coupled to classical lat-
tice vibrations. However, we use the coupling coefficients
derived when the electron is coupled to quantized lattice
vibrations or phonons. This semiclassical treatment
neglects the quantum noise associated with the random
thermal distribution of the lattice vibration over the vari-
ous phonon states ~Xq ) for a given mode q. The

In the demonstration example selected later in this paper
we use the tight binding band structure
6'(k, ) = A (n)+E, (na ) —A (n)cosk„a where E, (na ) is
the conduction band edge potential E,(x) sampled at the
lattice site x =na and where 3 (n) is the amplitude of the
band at the site n is given from the effective mass m*(n)
according to A(n)=Pi /[ m*( n)a ]. The mass is spatially
varying and a Hermitian Hamiltonian is obtained using
the effective mass matching theory developed by Kroe-
mer. ' H„.„ is

fz

2a + m(n)m*(n+ I)

6„„
2a +m *(n)m '(n —1)
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electron-phonon interaction Hamiltonian is

(7)e p

where aq and aq are, respectively, the destruction and
creation operators for the phonon of mode q, r is the
electron position operator, Q the lattice volume, a is the
interaction weight for the phonon wave vector q (see Sec.
III). Only bulk phonons are considered here. Scattering
by localized and interface phonon modes is also expected
to contribute ' but the coupling constants (e.g.,
Frohlich constant for polar scattering) have not yet been
evaluated.

The semiclassical picture for the phonon interaction
Hamiltonian is obtained by performing the following sub-
stitution:

—i(co t+p )

aq = Aq+e
i(co t+Q )

a =3 +e

where 3 + is the lattice vibration amplitude of mode q
with frequency coq and phase Pq. Note that in this substi-
tution we consider two possible amplitudes A q+ and

q because we intend to use the quantum result that
the phonon emission and absorption rates are weighted
by the factor 1+Nph and %phd respectively. 3 + will be
used for both a (scattering) and a (backscattering)
when these operators contribute to the absorption of a
phonon by the incident electron. Aq will be used for
both aq (scattering) and aq (backscattering) when these
operators contribute to the emission of a phonon by the
incident electron.

After substitution the following semiclassical interac-
tion Hamiltonian is obtained:

2
H, ~„= —g aqAq+sin(coqt —

q r+Pq) .~p II q q—

Note that the amplitude Aq+ and the phase Pq are ran-
domly updated at times set by the phonon lifetimes. For
optical phonons we have b,co=0.012coLo. ' The corre-
sponding phonon lifetime is 8.3 ps and the resulting ener-

gy broadening is on the order of 0.5 meV. For a given
device this introduces a noise in the dc current. Since we
are only interested here in the average current, a simpler
model is obtained by assuming that the phonons' ampli-
tude Aq+ and phonons' phase Pq are randomly distribut-
ed and mutually uncorrelated. The average current is
then obtained from an ensemble average over the pho-
nons' amplitude and phase using

Ef I lf
& &q+e ' &q+e '&E~= & ~ q+ &EA5q q

ACOq
exp 1

B 0

with k~ the Boltzmann constant and To the lat tice tem-
perature.

The phonon field extends over the entire heterostruc-
ture system (sample) of length I.„. Note, however, that
we shall only study the interaction between electrons and
phonons in the superlattice region (e.g., double barrier)
whose length LsL is generally much smaller than L . It
is convenient to assume that the lattice vibrations vanish
at the edges of the sample. Using P~ q

=P
~ q

+sr we

obtain the desired standing waves

2
H, „h= —g g C+(q)cos(cot —

q~ r~+Pq)sin(q„x ),0 0

where we have introduced the constant

C+(q)=2aqA + .

q is now quantized q„L =q Na =pm and given by

q„= = —for O~p ~ —.pm v m. N
L N a 2

(10)

The number of q„modes in the sample is given by half
the number of lattice sites. If the sample length L is

large enough compared to LsL, the phonon momentum
quantization does not acct the phonon-assisted tunnel-
ing process. The length of the sample L then becomes
arbitrary. Indeed, the increase in the number of modes
q„resulting from an increase of L is compensated in

H;„, by the decrease in the polar interaction strength
since we have Q=L S where S=L L, is the superlattice
area and I„ its length.

In the generalized Wannier function basis the matrix
element of the electron-phonon interaction is (the phonon
scattering index i is dropped for simplicity)

=(N, +-,' + —,
' )5...

ip, ip
& A„.+e q A +e '&E~=O,

where X„ is the average number of phonons in the mode
q. The notation & &E~ indicates the ensemble average
over the scattering events.

The number of phonons of frequency co is given by the
Bose-Einstein thermal distribution

1k&~n'~ H~h~k~, n &
= —g sin(p n'a )5„„+C+(q) I5(kI —kj+q~)e ' ' +5(kI —k~ —q~)e

q„)0 qg

A similar model is developed for elastic scattering. A
general elastic scattering process can be represented by
an interaction potential Hd„, (r). It is convenient to use
periodic boundary conditions so that we have

H,]„,= y Vqe' '= y ~
Vq~e' 'e' ',

q q

I

where q is a reciprocal space vector. The phase Pq and
the amplitude of

~
V

~
will vary from device to device due

to the random spatial distribution of the scattering agents
(e.g., alloy scattering and interface roughness scattering).
An ensemble average over the scatterers is then used to
calculate the average transmission and reflected currents.
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The analysis of elastic scattering thus becomes similar to
that of a phase-breaking scattering process.

In the generalized Wannier function basis the matrix
element of the elastic phase scattering process i at lattice
N, is

(kj, n'IH, ~,.t, , Ik~, n )

1=5„,~ 5„,„—g C;(q~)5(k~ —kg —qq),S

where Hermiticity requires C;( —q~)=C;*(q~). In this
work we assume that the elastic scattering events are un-
correlated,

(C,'(q,')C, (q, }), =(IC, (q )I'), 5
q q 1 1 (12)

Specific expressions for interface roughness scattering
and alloy scattering are given in Sec. III.

C. The envelope equations

Now that the Hamiltonian matrix elements have been
calculated we can rewrite the Schrodinger equation (3) in
the generalized Wannier function basis (4). This gives for
the envelope function f(k~, n, t ), the following envelope
equation:

i fi f(k~, n, t ) = f (k~, n, t )+ g H„„f(k~, n ', t )
2m *(0)

1 ~ i(co t+p ) —i(co t+p )+ —g sin(q, na) g C+(q)(f(k~+q~, n, t)e ' '+f(k~ q~, n, —t)e
nq)0 '

q

1+ —g 5„~ g C;(q~)f(k~ q~, n,—t) .S; "'q (13)

As usual the magnitude of the envelope function
If(k~, n, t )

I
gives the probability of presence at the lattice site n, and

at time t of an electron with a perpendicular momentum k~.
This envelope equation is the generalized Schrodinger equation which we must solve to analyze scattering-assisted

tunneling in a superlattice. We know that the electron absorbs or emits optical phonons so that its energy will be either
increased or decreased by a multiple of Ace when it is scattered by a phonon. For elastic scattering the total energy
remains unchanged. Therefore a steady-state solution can be obtained by expanding the envelope function into a
Fourier series. We shall initially limit our analysis to a single sequential scattering event (the generalization to multiple
sequential events is considered afterward). Consider the envelope function given below

—i ( Eo t /fi)f(n, k~, t ) =f0(n)5(kj k~p)e—
—i(Eot/fi) —i(co t+p )+ e ' g g e q ' C+(q)f, (n, q~, q, )5(kj —(koq+qq))&n, ,o,
—i(EO t /A) i(co t+p )+ —e g g e " ' C (q)f, (n, q~, q„)5(k~—

(koan q&))&n, 0,
+ —e

1

S
—i(Eot/A) g g C, (q~)f, (n, q~, i )5(kz —(kpj+qJ)) (14)

We can easily demonstrate that f(kj, n, t ) is an ensemble
average solution of the envelope equation (13) limited to a
single sequential scattering event provided that fo and f,
are solutions of specific envelope equations. To obtain
these envelope equations we first substitute the proposed
solution (14) in the envelope equation (13), and equate the
terms of same energy (frequency) Ep, Ep+Aco, and
Ep

—
Acoq, and weighted by the same Dirac function

5(kj kJ ) (i.e., same perpendicular Bloch wave) . Next we
perform an ensemble average using Eqs. (9) and (12) as-
suming that elastic and phonon scattering are uncorrelat-
ed processes

& C, (q, )C. .—(q).-"'
&,„=0.

It results that f0 must satisfy the envelope equation

Eoxfo(n)= gH n'fo(n')
n'

+ g IG+(n, q„)+G (n, q, )I
1

X q &P

+ QG, (n), (15)

where G+ and G; are coupling terms defined below.
The envelope function f, is a solution of the envelope

equation

E( f, (n, E,„,q„)= QH„„f, (n', E„,q, )
n'

+sin(q„na }fp(n)
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for phonon scattering and

E,„f,(n, E,„,i)= QH„„f,(n', E, , i)+5„~fo(n) (17)
n'

for elastic scattering.
We have used in Eqs. (15), (16), and (17) the longitudi-

nal incident and scattered energies Eo„and E& which
are defined to be

Eo =Eo — . Iitoil'
2m *(0)

fiE, (+qj ) =Eo+Acoq — Ikoj+q~l
2m *(0)

for phonon scattering,

E,„(q j)
= Eo— Ikoj+q~l for elastic scattering .

2m '(0)
In Eq. (15) we have defined the coupling terms G+ and G;
which are given by

1
G+(n, q„)=sin(q„na )—g ( C+(q) )F~f, (n, +q~, q, ),S

for elastic scattering, where H is a coupling function
specific to the scattering mechanism considered.

Because we have done a full three-dimensional analysis
the coupling function H is found to be a continuous func-
tion of E, instead of the impulse function obtained in
one-dimensional analyses. In practice we replace the
lower integration bound —2AL by a more physical value
(e.g. , —0.3 eV) so as to limit the range of the transversal
energy to a physical value.

Note that a complete multiple sequential scattering
solution can be obtained using the same procedure. For
example a second sequential scattering event is imple-
mented by introducing the coupling terms in the Wannier
equations (16) and (17) which couple the waves f, to the
waves fz. The presence of the coupling terms in both the
incident as well as the scattered Wannier equations ac-
counts for backscattering. The latter enforces the conser-
vation of the current. This is demonstrated in the Ap-
pendix for a single sequential scattering event but holds
also for multiple sequential scattering events.

IV. SCATTERING PROCESSES CONSIDERED

(18)

G;(n)=&„~ —& & IC;(qj)l'&Fpf)(n, +qj, i) .
S

The summation over the perpendicular momentum can
be replaced by an integration. For all the scattering pro-
cesses discussed below (except acoustic scattering), the in-
tegration over the perpendicular momentum can be car-
ried analytically. The coupling terms are then expressed
as

0 LO
G+(n, q„)=sin(q„na) f&(n, E&„,q„)

L

XH+ (E,„,q„)dE,„
for optical phonon scattering and

F.o
G;(n)=5„+ f f, (n, E„,i)H, (E,„)dE,

%COLO

q, LO
~opt ~stat

' 1/2

(20)
1 ~LO

where e is the electron charge, and q the amplitude of the
phonon wave vector q. For GaAs we use for dielectric
constants e„„/e, ,= l. 1664, and for the optical phonon
frequency coLo assumed independent of q (Einstein mod-
el), 8.55 THz. The coupling function H obtained after
integration of ( CLo )F~ lsee Eqs. (10) and (18)] over the
perpendicular momentum is

The first of four scattering processes considered is po-
lar scattering, a mechanism by which an electron is scat-
tered by the longitudinal optical phonons (LO) through
the interaction of its Coulomb field with the polarization
waves of the lattice. The coupling constant in Eq. (7) is
(see Ref. 26 for a review)

HLo+«i. ,q. )— 2
2m 2 2q.+, «o. +&~LQ Ef ) +4q koJ$2

1/2

+q, AC
2pcoq

where = is the so-called deformation potential and p the
semiconductor density. For GaAs = is 7 eV (Ref. 27) and

Electrons in a crystal are also scattered by the displace-
ment of the atoms from their lattice site. The displace-
ment of the atoms induces a local change of the band gap
which acts as a potential, scattering the electrons. For
longitudinal acoustic phonons (AC) the coupling constant
1S26

1/2

I

p is 5.37 g/cm .
The number of phonons N given by the Bose-Einstein

distribution is determined using the so-called equiparti-
tion approximation by

k~ To
N = for N &&1 .

'ACOq

For long wavelengths (q small) we have co~=qv, with v,
the sound velocity. Despite the simplicity of the model
used, the wave-vector dependent frequency cu prevents



2152 PATRICK ROBLIN AND WAN-RONE LIOU 47

the integration over the perpendicular momentum to be
carried out analytically (see Conwell ). We elected to
treat acoustic scattering as an elastic scattering process.
This overestimates the emission process and underesti-
mates the absorption process. The coupling constant 0
obtained after integration of & C~c )z~ [see Eqs. (10) and
(18)] over the perpendicular momentum is simply

=2 1/2m 2= k~Tp
H~c+(E„) (22)2~ g2 pv2

Another important scattering process is the scattering
of electrons by the roughness of the interface (IR) of two
di8'erent semiconductors. A distribution of terraces typi-
cally of a monolayer thickness is present at the inter-
face. The electron is scattered elastically by these ter-
races, i.e., the total energy of the electron is conserved.
However, the longitudinal and perpendicular energy of
the electron changes in the process. Following Leo and
MacDonald, " consider an interface with a density of ter-
races Dz (number of terraces per unit area). Let us as-
sume that the distribution of the terrace's width can be
approximated by a Gaussian function of mean o.. If the
terraces are mutually uncorrelated (in position and width)
the coupling constant is found to be

& IC,R;(qJ)I )F~ Vz(N a)4~ Dzoexp[qzcr ]',

where V~; is the conduction band discontinuity at the in-
terface located at the lattice site N, . This model reduces
to the widely used phenomenological model of Prange
and Nee,

A
& IC,R;(qj)I )F~= V~(N;a)~A exp

if we use A=2o and Dz =4/(vrA )=1/( A). This last
identity is equivalent to assuming that the average sepa-
ration between terraces is equal to the average terrace
width. Similar identities are also given by Vinter and
Weil. '

The coupling constant H&R; at the lattice site N; ob-
tained after integration of & IC&R,. I ) [see Eq. (19)] over
the perpendicular momentum is

Va (N a), m'
H,R, (E,„)= A

m*A
X exp — (Eo E,„+Eo~)—

2A

m*
XIo A (+Eoz+Eo E& )

g2

where Io[x] is the modified Bessel function of order 0.
Note that the terraces are usually one monolayer wide
and a should be selected to be half a lattice parameter
(the normal choice for the [100] direction' ). Alternative-
ly, if a is selected to be the lattice parameter, Vz, should
be divided by 4.

The last scattering process considered is alloy scatter-
ing (AL). In an alloy A B& C the crystal potential is
not periodic. However, the crystal potential of the alloy

can be represented in terms of a nonperiodic fluctuating
potential superposed on an average potential which is
periodic. This fluctuating potential introduces an
eftective scattering process referred to as alloy scattering.
The coupling constant is '

np
& IC&t., ;(qj)l'&E+

where o, is the mole fraction at the lattice site N;, 0 is
the volume of the elementary cell which is given in terms
of the elementary crystal axis by fL =a /4, and where
5 Vzz is essentially the variation of the conduction band
at I between alloy AC and BC. The coupling constant
HJ t; obtained after integration of & C~t, I )F~ [see Eq.
(19)] over the perpendicular momentum is1, np m*

H~„, (E,„)= AV„~a;(1—a, )
2m. a

V. TRANSMISSION COEFFICIENT
FOR PHONON-ASSISTED TUNNELING

Once the wave functions fo and f, have been obtained,
one is then in a position to calculate the reflected or
transmitted currents. We have demonstrated that for
each electron of energy Ep„and perpendicular momen-
tum k~p incident on the superlattice we will obtain a con-
tinuous spectrum of scattered states of longitudinal ener-

gy E& and transversal energy Ej~. We are only interest-
ed in the average current obtained from an ensemble
average over the scatterers. As discussed in the Appen-
dix, when all the incident and scattered waves are as-
sumed to be mutually uncorrelated, the total current is
then directly given by the summation of the current car-
ried by each of those states.

For simplicity we now limit the discussion to the
tight-binding band. Let us introduce the amplitudes
1, bp, and cp of the incident, reflected, and transmitted
wave fo(n),

iko &
—iko„z na

e +b e " forn(0,
fo( ) k,„,n. —

coe '" for n )Lsz /a =Nsz,

where the momentums kp z and kp z are obtained for a
given energy Ep„ from the tight-binding band structure
of semiconductor L (left side) and R (right side)

Ep = Ag Agcoskp pa = Ag Ag coskp g a

Note that this last equation admits two solutions for both
k p&g and k p~z . We assume here that 3z and 3z are
positive numbers and select the positive values for kp„z
and kp„, .

The incident and transmitted currents for the envelope
function fo are given, respectively, by

J o(Eo )=eve. (Eo )

~so(Eo ) =e
I co I vz (Eo„)=e Ifo(Nsz. ) I vR (Eo

where vt (Eo„) is the velocity of semiconductor L on the
left side of the superlattice and where vz(Eo ) is the ve-
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locity of semiconductor R on the right side of the super-
lattice. Since we assume here that the regions L, and R
are flat, the electron velocity is simply given by

l d6;(k„)
fi dk X

The transmitted current associated with the envelope
function fi is also given by e~c(Et, q, )~ vR(E, x). The
total average transmitted current JT zh+ resulting from
the emission or absorption of all the phonons is then
given by

1
T ph+( 0 ol ) ~ g g ( C+ ( k) ~EAif1(+sL E1 'q )I vR(E1

&x~p %

1 EO+~coLO=e g f H+(Ei„,E01 q )~f (1& sLE i, q„)~ vR(E1„)dE1
X q)0 "L

The total transmitted current JT,&„,+ resulting from elastic scattering is similarly given by

1
JT, 1 t(E0 Epl ) e 2 —g & I (qi) I' &EAlf 1(&sL Ei

i q&

=e g f,„H;(Et,EO, )lf1(&sL,E, , t )I'vR(E„)dE,„.
The total forward transmission coefficient for an incident electron of longitudinal energy Eo„and perpendicular

momentum kpJ is then given by

TF(EO Eol ) Tp+ T h+ T
1

using the elementary transmission coefficient

JTO(EO Epl )
To(E0 Eol ) =

JIO Ox

JT ph+(Eox, Epl )+JT ph (Epx Epl )
T &E E

T, clast Ox OlJ (E ,E )
clast Ox & Ol

I0 Ox

A total refiection coefficient RF can similarly be defined (by replacing ÃsL by 0 and R by I.), and current conservation
(see the Appendix) automatically enforces RF + TF = l.

The total forward diode current per unit area from semiconductor L to R for a given Fermi energy E&I on the left
side (see Fig. l) is then obtained by summing the transmitted current over all possible incident momentums kp,

m 4 2A~ 2A

, , f dE0 f dEO,
2m+ 0 0

eTF(Eo„,Eol )

Eo —
EIL,

p +1
B TO

(23)

with EO=Ep +Epg.
The total backward diode current IB per unit area

from semiconductor R to L, for a given Fermi energy EfR
on the ride side is obtained from the same equation by
switching the direction of the Hamiltonian and the in-
dices R and I.. The total diode current I per unit area is
given by the difference between the forward and back-
ward current I=IF(E&L ) IR(EIR ). —

VI. NUMERICAL SOLUTION

The ensemble average solution of the Schrodinger
equation in the presence of phase-breaking scattering has
reduced to the solution of a set of coupled difference
equations. The coupling involves an integration over a
continuum of energy E& . For the numerical calculation

we replace this integration over E, by a summation over
a discrete set of energies E, „. For this purpose we use
the Simpson integration rule generalized to inequally
spaced encl gy levels E

&
~ The critical part of this nu-

merical integration is the determination of the energies
E,„„. VVC have developed an integration algorithm,
based on the Simpson integration rules, which estimates
the integration error and introduces new energies E,
where most necessary, so as to achieve the desired target
integration error. An initial scanning of the energy with
a resolution specified by the user is used to detect any fine
structures. For the 50/50/50 test diode studied here a 1-
meV initial scanning resolution is sufficient to detect all
the fine structures of the scattering-assisted tunneling
process. The number X, of energies used for the calcula-
tion therefore includes the initial scanning energy points



2154 PATRICK ROBLIN AND WAN-RONE LIOU 47

plus the ones introduced by the algorithm. For the test
diode simulation reported below an average of 200 ener-
gies E& „ is typical for a single scattering process.

The solution of the Schrodinger equation in the pres-
ence of scattering therefore reduces to the solution of the
difference equation (15) coupled to a finite set of
difference equations (16) and (17). For phonon scattering
the number of difference equations (16) is N~ XN„where

is the number of phonon modes q . To reduce the
size of the system to be solved we limited the solution to
the first (odd) Nsi =LsL/a phonon modes q„. Only the
odd modes contribute since the odd modes can be ap-
proximated by 1 (sinq„~a = 1) in the superlattice region
and the even modes approximated by 0 for small values
of q . For polar scattering the higher phonon modes
were verified to be negligible both because of the I/q
weight in the phonon-electron interaction and the fast
variation of the standing wave sin(q„a) which seems to
provide a phase cancellation suppressing phonon scatter-
ing. As a result, for the first NsL modes we have
effectively N =1, and the size of the system is much re-
duced.

An exact numerical solution of Eqs. (15), (16), and (17)
can be easily obtained since this is a system of linear

I

equations. The solution of N„+ 1 coupled difference
equations with the boundary conditions given above can
be reduced using the difference equations to the solution
of a linear system of 2N„+2 equations and unknowns.
Indeed in addition to bp cp we have N„unknown
coefficients b, and c„. For several scattering mechanisms
the size of this system grows rapidly and the calculation
becomes too slow.

A more efticient method consists of first calculating the
coupling terms G(n). Indeed as one can expect from a
linear system the functions f, (n ) can be expressed as

Nsr

f, (n)= Q h;(n)f (i),

where the function h;(n) is the impulse response solution
of Eq. (17) with fo(n)=1. Substituting f, (n) in Eq. (16)
or (17) we find that the coupling terms G(n) can be writ-
ten

NsL

G(n)= g HsE( n, i)f 0(i),

where we have for phonon scattering

ED+fico(q )

HsE+(n, i, q„)=sin(q„na) f h, (n, E„)H+(E,„,q, )dE„
L

and for elastic scattering
E

HsE(n, i)=5„&f h,.(n, E,„)H;(E„)dE,„.
L

HsE is the so-called self-energy matrix. This a complex
non-Hermitian matrix. The real part of the self-energy
matrix shifts the resonant energy of the double barrier.
The imaginary part accounts for the loss of current of the
incident wave fo(n) by scattering. Note that the global
current conservation (R~+ TF = 1) is independent of the
energies E, „used. Current conservation (see the Ap-
pendix) is always found to be numerically enforced up to
the last digit. The incident wave fo(n) is then obtained
by solving a small system of Ns„unknowns with NsL
equations. The advantage of this method is that the im-
pulse response calculated can be used for all incident
electrons of energy Ep„sharing the same transversal en-

ergy Eoi. For the 50/50/50 test device considered this
approach reduces the calculation time by a factor of 40.
This approach permits us to handle multiple sequential
scattering in an iterative fashion (see discussion in Sec.
VIII).

The complete phonon-assisted tunneling algorithm
developed is controlled by a single error: the desired tar-
get error for the current being calculated. The error con-
trol algorithm developed for this purpose guarantees that
the targeted error is met and that the integration calcula-
tion is efficient and fast.

The algorithm was written in FORTRAN. The calcula-
tions were performed with the Ohio Cray Y-MP. A SUN
3 was used as a terminal. The calculation of one I-V

point for an error of 1% in the total current for the reso-
nant tunneling diode discussed below was found to re-
quire on average the calculation of 2000 transmission
coefficients taking on average 3 min of Cray time. An I-
V characteristic (20 points) takes therefore one Cray
hour.

VII. NUMERICAL RESULTS

In this section we first analyze the individual impact of
polar, acoustic, alloy, and interface roughness scattering
mechanisms upon resonant tunneling before considering
their combined effect.

Let us start by polar scattering. We show in Figs. 2(a)
and 2(b) the equilibrium (no bias) transmission coefficient
TF(Eo Epi ) plotted versus Eo for EQJ 0 for a
34/34/34- and 50/50/50-A diode at the lattice tempera-
ture of 4.2 K (dashed line), 100 K (dashed-dotted line),
and 300 K (dotted line). Also shown is the transmission
coefficient in the absence of scattering (solid line).

Three different transmission peaks are observed.
Indeed the transmission coefficient plotted is the superpo-
sition of direct tunneling and phonon-assisted tunneling
by emission and absorption of optical phonons. The
main peak centered upon the energy E„,=86. 1 meV cor-
responds to direct resonant tunneling Tp by unscattered
electrons. Note the 3.5-meV self-energy shift of the main
resonant transmission peak relative to the one obtained in
the absence of scattering E„,p

—-89.6 meV. The right
peak centered upon E„,p+ficoLo corresponds to resonant
tunneling assisted by emission of phonons. The left peak
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centered upon E p f2NLO corresponds to resonant tun-

neling assisted by absorption of phonons. This absorp-
tion peak cannot be observed at low temperature (4.2 K)
due to the small phonon population. Our simulator (not
the model) is presently limited to a single sequential
scattering event for phonons. The presence of a second
phonon scattering would also introduce a self-energy
shift for these secondary transmission peaks.

In general the higher the temperature the higher the
phonon-assisted tunneling peaks. Note that at 300 K the
main peak of the transmission coefficient of the
50/50/50-A diode [Fig. 2(b)] is considerably more
broadened than that of the 34/34/34-A diode [Fig. 2(a)].
This is due to the fact that the resonant tunneling peak in
the 50/50/50 diode is much sharper (a fraction of meV
wide), which permits us to resolve the large 3D broaden-
ing induced by polar scattering at room temperature.
Such a result cannot be predicted if the transversal
momentum is assumed to be constant (one-dimensional
model).

This is not, however, the only possible source of three-
dimensional broadening. In Fig. 3 we show the equilibri-
um (no bias) transmission coefficient TF(EO„,Eo~ ) plotted

versus Eo for various perpendicular energies Eo~ at 100
K (4.2 K is very similar). The main peak of the transmis-
sion coefficient is the highest when Eoj is 0 (solid line)
and rapidly reduces for 0.05 eV (dashed line) before in-
creasing again for 0.1 eV (dashed-dotted line) and 0.15 eV
(dotted line). Secondary peaks in the transmission
coefficient corresponding to emission (4.2 and 100 K) and
absorption (100 K) of phonons can only be distinctly ob-
served for incident electrons with very small perpendicu-
lar momentum Eoj -—0. Notice that the peak of the
transmission coefficient is also shifting with the perpen-
dicular momentum. This shift is the major source of
broadening at lower temperature.

Let us now examine the impact of polar scattering
upon the I-V characteristic of a 34-A barrier diode. The
I Vchar-acteristic calculated for a 34/34/34-A diode in
the presence (dashed line) and absence (solid line) of polar
scattering at 4.2 and 100 K is shown in Figs. 4(a) and
4(b). As we can see the peak current is decreased and the
valley current is increased in the presence of polar
scattering. Polar scattering therefore contributes to the
reduction of the peak to valley current ratio. At 4.2 K
the phonon emission peak of the transmission coefficient
has introduced a secondary peak in the I-V characteristic
around VD =0.6 V. In Fig. 5 we show the larger
transmission coefficient resulting at VD=0. 6V in the
presence of phonon-assisted tunneling at 4.2 and 100 K
(solid line, not distinguishable) compared to the transmis-
sion coefficient obtained in the absence of polar scattering
(dashed line). At a higher temperature (100 K) such a
secondary peak cannot usually be observed because the
phonon-assisted current is small compared to the total
diode current. Indeed the diode current is approximately
proportional to the area under the transmission
coefficient from 0 to the Fermi energy Ef, which is 11.47
and 82 meV at 4.2 and 100 K, respectively.

Similar effects are also observed in the 50-A barrier
diode at 4.2 and 100 K. I.et us consider, however, the
300 K I-V characteristic shown in Fig. 6. The large
broadening introduced by phonon scattering at 300 K

10&-

&0+-

107
0.04 0.06 0.08 0.1

E (ev)

0.12
I

0.14 0.16

0.9-

0.8-

07-

0.6-
CQ

0.5-

04-

0.3-

0.2-

0.1-

0
0 0.05 0.1

t

0.15 0.2 0.25

FIG. 2. Equilibrium (no bias) transmission coefficient

TF(Ep Epg =0) vs Ep„ in the presence of polar scattering for an

(a) 34/34/34- and (b) 50/50/50-A diode at the lattice tempera-
ture of 4.2 K (dashed line), 100 K (dashed-dotted line), and 300
K (dotted line). Also shown is the transmission coefficient in

the absence of polar scattering (solid line).
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FICs. 3. Plots of the 100-K equilibrium ( VD =0) transmission

coefficient TF(Ep EpJ) vs Ep for the perpendicular energies

E«of 0 eV (solid line), 0.05 eV (dashed line), 0.1 eV (dashed-

dotted line), and 0.15 eV (dotted line).
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[see Fig. 2(b)] has now completely removed the negative
conductance region in the diode I-V characteristic. This
demonstrates the importance of a 3D analysis which ac-
counts for the variation of the perpendicular momentum.

Next let us consider the impact of acoustic phonons
upon the transmission coefficient. We show in Figs. 7(a)
and 7(b) the equilibrium (no bias) transmission coefficient
TF(Eo,Eoi ) plotted versus Eo„ for Eoi =0 for 34/34/34-
and 50/50/50-A diode at the lattice temperature of 4.2 K
(dotted line), 100 K (dashed-dotted line), and 300 K
(dashed line). Also shown is the transmission coefficient
in the absence of scattering (solid line). Compared to po-
lar scattering the impact of acoustic scattering upon reso-
nant tunneling is small. The maximum self-energy shift
at 300 K is 2.7 and 3 meV for the 34- and 50-A diode, re-
spectively. Note that two different transmission peaks
are observed for the 50-A diode corresponding to direct
tunneling and phonon-assisted tunneling by emission and
absorption of acoustic phonons. This splitting is, howev-
er, an artifact which would be suppressed if a second
sequential scattering event were introduced. Indeed the
self-energy introduced by the secondary transmission
peak would shift it so that both peaks would merge in a
single one, as in the 34-A diode. As expected, the impact
of the acoustic phonon on the I-V characteristic shown in
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Fig. 8 is seen to be negligible. These I-V data tend to in-
dicate that the development of a more accurate model of
acoustic scattering (the elastic approximation was used
here) is not necessary for resonant tunneling.

Let us now consider interface roughness scattering.
We show in Figs. 9(a) and 9(b) the equilibrium (no bias)
transmission coefficient TF(Eo,Eoi) plotted versus Eo„
for Eon=0 for a 34/34/34- (and 50/50/50-A) diode for
0, 1,3, and 6/20 sequential scattering events. Note that
this scattering mechanism is temperature independent.

0
The average terrace size used is A=70 A. One clearly
sees that the transmission coefficient converges after a

O

few sequential 3D scattering events (6 for the 34-A diode
and 20 for the 50-A diode). The importance of interface
roughness scattering is measured by the large self-energy
shift (about 11 meV for the 34-A diode and 7 meV for the
50-A diode). Note the resulting asymmetric shape of the
transmission coefficient after several sequential scattering
events. As a consequence, the valley current will be

FIG. 5. Transmission coefficient TF resulting at VD =0.6 V
0

for a 34/34/34-A diode in the presence of phonon-assisted tun-
neling at 4.2 (solid line) and 100 K (dotted line, not distinguish-
able from the solid line) compared to the transmission
coefficient obtained in the absence of scattering (dashed line).
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FIG. 4. I-V characteristic in the presence (dashed line) and
absence (solid line) of polar scattering calculated for a
34/34/34-A diode at (a) 4.2 and (b) 100 K.

FIG. 6. I-V characteristic in the presence (star) and absence
(solid line) of polar scattering calculated for a 50/50/50-A diode
at 300 K.
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strongly increased due to the slow decrease of the
transmission coefficient at large energies. However, the
peak current is not much affected because the total area
under the transmission coefficient does not vary. The re-
sulting current voltage characteristic confirming these
predictions is shown in Fig. 10. This figure shows the
current voltage characteristic after 0,1,2 sequential IR
scattering events at 100 K. As we can see convergence
occurs much faster than for the transmission coefticient.
This is due to the fact that the current is relatively insens-
itive to the high frequency variation of the transmission
coe%cient but is proportional to the area under the
transmission coefficient. These simulations support the
concept that the interface quality is of prime importance
to control the valley current. Note that we have assumed
in the ensemble average performed [see Eq. (12)] that in-
terface roughness scattering events by different interfaces
were uncorrelated. A weak (two bodies) correlation
could easily be included in the present model. The corre-
lation of such interface scattering events, if important,
could lead to additional structures (weak localization) in
the transmission coefficient. Henrickson et al. have
shown that this can lead to a splitting of the resonant
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FIG. 8. I-V characteristic in the presence (star) and absence
(solid line) of acoustic scattering calculated for an 34/34/34-A
diode at 100 K. The impact of acoustic scattering on the I-V
characteristic at 100 K for a 34/34/34-A diode.
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FIG. 7. Equilibrium (no bias) transmission coefficient

TF(Ep Epg =0) vs Ep in the presence of acoustic scattering for
(a) 34/34/34- and (b) 50/50/50-A diode at the lattice tempera-
ture of 4.2 K (dotted line), 100 K (dashed-dotted line), and 300
K (dashed line). Also shown is the transmission coefficient in

the absence of scattering (solid line).

FIG. 9. Equilibrium (no bias) transmission coefficient
TF(Ep Epg

=0 ) vs Ep in the presence of interface roughness
scattering for an (a) 34/34/34- and (b) 50/50/50-A diode for 0
(dotted line), 1 (dashed line), 3 (dashed-dotted line), and 6 (34-A
diode) and 20 (50-A diode) (solid line) sequential scattering
events.
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peak in double-barrier structures with a very thin well (20
A) and high barriers.

Finally, let us consider alloy scattering. We show in
Fig. 11 the equilibrium (no bias) transmission coefficient
TF(EO„,Eoi ) plotted versus Eo for Eoi =0 for a
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FIG. 10. Current voltage characteristic of a 34/34/34-A
diode at 100 K after 0 (solid line), 1 ( + ), and 2 (+) sequential
IR scattering events.

34/34/34- (and 50/50/50-A) diode for 0, 1, and 2 sequen-
tial scattering events. It is not possible to distinguish the
1 and 2 sequential scattering events in Fig. 11. Clearly
this indicates that only one single sequential scattering
event is necessary for alloy scattering. The impact upon
the I- V characteristic at 100 K shown in Fig. 12 is small.

We now consider the combined impact upon resonant
tunneling of these four scattering mechanisms. We show
in Figs. 13(a) and 13(b) the equilibrium (no bias) transmis-
sion coefficient TF(Ep Epi ) plotted versus Eo„ for
Eoi =0 for a 34/34/34- and 50/50/50-A diode at the lat-
tice temperature of 4.2, 100, and 300 K. Also shown is
the transmission coefficient in the absence of scattering.
Clearly the transmission coefficient exhibits complex
structures resulting from the superposition of each
scattering mechanism. However, one can recognize the
dominant contribution of both polar (LO) and interface
roughness (IR) scattering. To emphasize the interaction
between these scattering mechanisms resulting from
backscattering, we show in Fig. 14 the various transmis-
sion coefficients To TiR T~c+LQ and T,&

which contrib-
ute to the total transmission coefficient at 100 K. One
can verify that a structure present at an energy in a given
transmission coefficient (e.g. , a peak in TA(+Lo) induces
antistructures at the same energy in the other transmis-
sion coefficients.

The current voltage characteristic obtained for the
34/34/34- and 50/50/50-A diodes at 100 K is shown in

Fig. 15. To save computer resources, a constant mass
was used, and the average over the perpendicular energy
was performed analytically for the 50-A barrier diode.
The various scattering mechanisms (dominated here by
IR) merely cooperate to reduce the peak to valley current
ratio of the diode. It is interesting to note that the com-
plicated structures present in the transmission coefficient
are not resolved in the I-V characteristic at 100 K. How-
ever, a notable exception was the 4.2 K I-V characteristic
of Fig. 4(a) in which phonon-assisted tunneling induced a
bump in the I- V characteristic.
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FIG. 11. Equilibrium (no bias) transmission coefficient
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=0 ) vs Ep in the presence of alloy scattering for an
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sequential scattering events.
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FIG. 12. I- V characteristic in the presence (solid line) and ab-
sence (star) of alloy scattering calculated for a 34/34/34-A
diode at 100 K.
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FIG. 15. Current voltage characteristic obtained for the (a}
34/34/34- and (b) 50/50/50-A diodes at 100 K in the presence
of LO, ac, IR, and al scattering (stars) and in the absence of
scattering (solid line).

VIII. CONCLUSION

In this paper we presented a 3D model and simulator
of scattering-assisted tunneling for finite length hetero-
structures. This quantum simulator solves the
c rodinger equation in 3D using a sequential scattering

event expansion. The wave function and transmission
and reflected currents are calculated using an (analytic)
ensemble average over the scatterers which assume that
the sequential scattering events are uncorrelated. The
sequential scattering event expansion used includes back-
scattering so that current conservation is enforced (a reg-
ular perturbative treatment does not). This model admits
an exact numerical solution based on the solution of a
large system of linear equations.

Multiple sequential scattering was implemented for al-

oy scattering and interface roughness scattering. The
quantum simulator uses a backward iterative numerical
algorithm to handle multiple scattering, which avoids du-
plication of calculation. Indeed a direct forward ap-
proach for N sequential scattering events (at a single lat-
tice site N;) would require solving a system of at least
300 Schrodinger equations since 300 scattered waves
are generated at the Nth scattering event ass, assuming a sin-

g e scattering event can be accurately mapped by 300
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outgoing scattered waves. Instead, the backward itera-
tive algorithm used only requires a computation time
proportional to the number of multiple sequential events
X (i.e., the Schrodinger equation is solved 300XN in the
sample considered).

Note also that the Wannier picture used can handle
more complete band-structures without much increase in
computation time (see Ref. 22 for a demonstration show-
ing a special I to X resonance in the double-barrier
diode).

This scattering-assisted tunneling simulator was ap-
plied to two double-barrier structures. Polar scattering
and interface roughness scattering were the dominant
scattering mechanisms in the devices studied. Multiple
sequential scattering was shown to lead to transmission
coefticients versus energy with a characteristic peaked
shape, which increase the valley current of the diode I-V
current characteristic. The three-dimensional treatment
of the phonon-scattering processes featured by this model
introduces an eftective broadening of the transmission
coefficient Isee Figs. 2(b) and 3] particularly at 300 K
which cannot be predicted by a one-dimensional model
(e.g. , Ref. 10). The broadening introduced by polar
scattering was shown to contribute to the reduction of
the peak to valley ratio of the I-V characteristic and even
suppress the negative conductance at room temperature
(see Fig. 6).

This scattering-assisted tunneling simulator could be
useful for testing other quantum device structures such as
the Bloch oscillator ' and the Zener oscillator. For
these longer devices, multiple sequential events of phonon
scattering are expected to become important.
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APPENDIX: CURRENT CONSERVATION

The current J(n) at the site n is obtained from the sum
of the elemental currents j (n, n') (see Ref. 22 generalized
here to 3D),

N m —1

J(n)= f f g g j(n —p, n —p+m, k~)—~/a =1 =0m= p=

where the labe1 JO is the current of the incident state and
J1„ the current of the scattered state 1r. The summation
over r is carried over all the scattered states.

Note that the current J, or electron velocity v; sup-
ported by the state i is obtained from the sum of the ele-
mental currents j;(n, n') (see Ref. 22),

J;(n) =e
I f;(n) I'U;(n)

N m —1

g j, (n p, n ——p+m)
m =1 p=0

+j, (n +p —. m, n +p ), (A3)

which for the tight-binding case J;(n) simply reduces to
elemental currents entering and leaving the site n,

J;(n) =e
I f;(n) U;(n) =j;(n, n+1)+j;(n —l, n ), (A4)

where j,(n, n') is the elemental electron current (see Ref.
22) from the lattice site n to the lattice site n' for the state
i (0 or lr) given by

j;(n, n') =e( —a/A')ImIH„„, f;*(n )f, (n')) . (A5)

Having defined the current, let us demonstrate that the
current is conserved. Using the Wannier picture,
scattering-assisted tunneling was shown to reduce to the
solution of a set of coupled diff'erence equations which for
uncorrelated scattering events is given by Eqs. (15) and
(16) or (17). Note that the coupling involves an integra-
tion over a continuum of energy E,„which we replaced
by a summation over a discrete set of E,„„.This system
of equations can be rewritten in the form

&o fo(n)= g H„„fo(n')+ g C„(n)f&, (n), (A6)
n'

j (n, n', k~) =e( —a /A)Im I H„„f*(n,kz)f (n', k~) I

For the tight-binding case J(n) simply reduces to ele-
mental currents entering and leaving the site n,

J(n)= f f I j(n, n +1, k~) +j(n —l, n, k~)Idk~ .—m/a

(A2)

To calculate the total current for the scattering-
assisted tunneling problem we replace the envelope
f(n, k~, t) of Eq. (14) in Eq. (Al) and perform an ensem-
ble average over the scatterers.

Using our assumption that the scattering events are
mutually uncorrelated, we obtain the simple result that
the total current is the sum of the current J,.(n) supported
by each energy state i,

+j (n+p — mn+p, k) 'dk~, (Al)
E~~ „f,„(n)= Q H„„f&„(n')+C„*(n)fo(n), (A7)

where j ( n, n ', k~ ) is the elemental electron current (see
Ref. 22) from the lattice site n to the lattice site n' for the
state i (0 or 1 r) given by

where C„(n) is the coupling constant.
Multiplying Eqs. (A6) and (A7) by f0 (n) and byf f„(n), respectively, and taking the imaginary part gives

the following elemental current conservation equations:
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0= g jp(n n )+ g jp i (n)
n'

0= g j,„(n,n')+ j,„p(n),
n'

(A8)

where j;(n, n ') is the elemental electron current from the
lattice site n to the lattice site n' for the state i (0 or lr)
given by Eq. (A5) and where jp, „(n) is the electron
current from the state 0 to lr and j,„p(n) from state lr to
0 (both at the lattice site n) defined by

jp i„(n)=e( —a/irt)lmIC„(n)f p (n)f i„(n)I,

j,„p(n)=e( —a/A)lmtC„*(n)f i„(n)fp(n)J .

The latter interstate currents verify jp,„(n)=—j,„p(n).
This property enforces the conservation of the elemental
electron currents. The conservation of the total electron
current J(n) follows from it. Indeed the total current
(J(n) )E~ at a site n is obtained from a summation of ele-
mental currents (A3). The conservation of the elemental
currents expressed by Eqs. (A8) and the elemental current
property j;(n, m)= —j;(m, n) therefore guarantees the
conservation of the total current from site to site.
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