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Electron-phonon energy relaxation in quasi-one-dimensional electron systems in zero
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The nature of the acoustic-phonon emission from a quasi-one-dimensional electron gas has been
shown to vary with electron temperature T, and confinement potential. Intensity oscillations occur as
the one-dimensional levels are moved through the Fermi level EF and quasimonochromatic phonons are
emitted at higher temperatures. Analytical expressions have been obtained for the frequency spectrum
of the total energy-loss rate Q and very marked changes with T, are predicted in the angular distribution
of emitted phonons. The emission is strongly a6'ected by magnetic field. At low T„oscillatory behavior
of Q at relatively low field is replaced by a monotonic increase followed by a sharp fall when the Fermi
velocity drops below the velocity of sound. Marked changes should also occur in the angular distribu-
tion.

I. INTRODUCTION II. THE BASIC EQUATIONS

The main task of this paper is to calculate the electron
energy relaxation due to acoustic-phonon emission from
a (quasi-)one-dimensional electron gas (1DEG) in both
zero and quantizing magnetic fields B. A number of cal-
culations have now been made of phonon emission from
2DEG's (Refs. 1 —5, 8 =0—these references refer to
GaAs and Refs. 6 and 7, 8%0) and there has also been a
substantial amount of experimental investigation. The
experiments include direct measurements of the angular
and frequency distributions of emitted phonons W(q)
(Refs. 8 and 9) and also studies of the integral energy-loss
rate Q. ' '" However no experimental studies of emis-
sion from 1DEG's have been reported yet and there has
only been one theoretical treatment. ' This paper, which
also included analysis of phonon emission from quantum
dots, concentrated on the numerical calculations of the
integral energy-loss rate. Little detailed information was
given on the angular and frequency distribution and the
analysis was confined to zero magnetic fields.

In the present work we give particular attention to the
form of W(q) for the diff'erent ranges of parameters and
also consider the effects of quantizing magnetic fields.
An outline of these results has been given in a prelimi-
nary communication. ' The analysis has applications
which extend beyond ultrathin wires or electrostatically
confined structures. Important examples are the one-
dimensional edge states that exist on either side of a Hall
bar when a quantizing magnetic field is applied; many of
the properties of the quantum Hall effect can be de-
scribed in terms of quasi-one-dimensional edge currents
passing through these states. ' The confinement is now
due to both electrostatic and magnetic potentials but, as
we shall show in a later paper, the phonon emission can
be described in a similar way to that in electrostatically
confined systems.

s=hco(N+ ,')+ttt k /2—m, (lb)

where utt(x ) is a harmonic oscillator function with
characteristic width l =(fi/mao)'~, k is the wave vector
in the direction of free motion (y axis), and
N =0, 1,2, . . . . We assume that the electron distribution
in the 1DEG will be described by a degenerate Fermi
function f, for which the effective electron temperature
T, is greater than the lattice temperature T. If the Fermi
energy EF & —', A'co so that only one subband is occupied at
low temperatures, EF increases with linear electron densi-
ty v as

Ace m. vA+

However if E~)&%co so that many subbands are occu-
pied,

1 /3
97T %co vE

3201
(2b)

In terms of v the conditions for these two cases are
v(2&2/m. l and v))l ', respectively, corresponding to
confinement lengths less and greater than the average

We consider emission from a 1DEG formed by the la-
teral confinement of a two-dimensional electron system in
the plane z =0. We assume the confining potential to be
parabolic: V=mco x /2 and note that this form has
been shown to provide a good description of the behavior
of several types of 1D structure. ' ' The electron eigen-
states and energy eigenvalues of the system are given by

(N, k ~:—lb(x, y) =uz(x ) exp(iky),
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electron separation.
For an electronic system with spherical energy sur-

faces, as in GaAs, the electron acoustic-phonon interac-
tion is described by the potential Vz = ( Cq r/
0)'~ exp(iqr), where q is the phonon wave vector, II is
the normalizing volume, and y = + 1 for deformation
coupling and —1 for piezoelectric coupling. Interaction
constants C for both types of interaction may be found,
for example, in Refs. 1 —5. The piezoelectric interaction,
in fact, also depends on the direction of q but for simplici-

ty we follow the usual practice of taking an average over
all directions. ' This does not change any qualitative re-
sults, particularly in the one-dimensional problem where
the direction of electron momentum A'k is fixed relative to
the crystal axes. There will, however, be a small change
in the numerical factors in C for the different temperature
intervals considered as already noted for the 3D (Ref. 19)
and 2D (Ref. 5) cases.

By Fermi's golden rule, the probability of spontaneous
emission of phonons with wave vector q is given by

~(q) = g gl &N, k
I exp(iqr) IM, k —

q, ) I'5[%~(N M—)+A'kq /m A'—q'/( 2m) —Asq]

Xf, [hco(N+ —,')+A k /(2m )]I 1 f, [ %co( N—+—,')+A' k l(2m ) Asq]J,— (3)

where s is the sound velocity. Similar expressions can be
obtained for absorption and stimulated emission and by
combining these it can readily be shown that the net
energy-loss rate per electron is given by

Q=(vL ) 'QA'sqW(q)

1 —exp[Asq(1/ks T, —I/ks T)]
1 —exp( Asq /kii T ) — '

(4)

where Ly is the samp le length al ong the y axis.
From Eq. (3) it can be seen that the frequency and an-

gular distributions of the phonons emitted from the
1DEG are determined by a series of energy and momen-
tum constraints. The product f, (1 f, ) ensures tha—t the
phonon energy cannot exceed the width of the Fermi dis-
tribution:

I

unity.
The condition a 5 irk's/ks T, for a =5 nm corresponds

to temperatures less than 45 and 25 K for quantum wells
in Si and GaAs, respectively, although this becomes more
restrictive in single heterostructures (and metal-oxide-
semiconductor field-effect transistors) because of the
difference in the wave functions. Optical-phonon emis-
sion is negligible in this temperature range (e.g., Ref. 20).

As a rule, the lateral confinement in a 1DEG is not as
strong as the confinement along the z axis. Therefore, the
most severe restriction on q may be either (5) or (7a) de-
pending on the relative sizes of kz T, and fisl
=(ms Aco)' . It is convenient to give separate con-
sideration to the different temperature ranges.

III. RANGE (i) ks T, «( smAco)'~

Asq ~k~T, (5)

kq~
—

q~ /2+ m co(N —M ) /A msq /A' =0, —(6)

where k -kN =+2m [EF %co(N+cf12) ]/A, t—he Fermi
wave vector in the Nth subband. Since the electrons are
confined in the x and z directions, exact momentum con-
servation in these directions is replaced by the inequali-
ties

and, for a transition between the Nth and Mth electronic
subbands, the combination of energy and y-component
momentum conservation requires that q is given by

«Iq. f, lq, l
. (9)

In this case restriction (5) is more severe than (7a).
Hence q as well as q, is typically of order k~ T, /fxs and
the total matrix element in (3) is 5~~ which means that
interlevel (intersubband) processes are absent. The com-
ponent q is given by Eq. (6) with M =N. Since
k& I '&&k&T, /As q, we can neglect the term of or-
der q to obtain

q„Sir/l,

q, Sir/a,
(7a)

(7b)

where a is the characteristic thickness of the 2DEG. We
mainly restrict the present analysis to temperatures for
which a ~Ms/k~T, . For this range the restriction set
by (5) is always more severe than of (7b) with the result
that the characteristic value of q, is determined by

q, 8 k T,i/its
and the matrix element of exp(iq, z) is always equal to

So the phonons are emitted almost normal to the axis of
the 1DEG and isotropically in the xz plane (the intensity
distribution will not, in general, be isotropic because of
phonon focusing in the substrate). From (6) it can be
seen that the peak of the emission, in fact, occurs at a
small angle 8& normal to the 1DEG axis where
(ir/2 8~) is the Cerenk—ov angle cos '(ms/Ak~) and
evidently depends on the subband responsible for the
emission.

The expression for W(q) can now be integrated over k
to obtain
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2Cq may y7zg q8'(q) = g exp
A Q~q ~ ~ 2ksTq

Ez f—ico(N+ —,
' )

+1

X exp
Rsq+E~ A—co(N+ ,' )—'', +

2k~ T,q k~T,
(10)

2Cq~+'m s
w(q) —=

M L,kFq()
exp 1

ASq

k~T,

It is interesting to compare (10) with the analogous
phonon distribution for a 2DEG in the case when the
wave-vector component in the xy plane

q~~
is less than

msq/irikiv. In this system electrons also emit Phonons
isotropically in the plane normal to the electron momen-
tum k. But this can now have any direction in the xy
plane, so in this range the 2DEG emission is the same as
that from a set of 1DEG's randomly oriented in the plane
and by averaging (10) we obtain

real structures, then away from the peaks, the sum in (12)
can be replaced by an integral of value
(1/3irico)ln(9' A'v /32mco), where we have used the ex-
pression for Ez given by Eq. (2b). For this case the value
for Q essentially only diff'ers from the corresponding ex-
pression for a two-dimensional system by the logarith-
mic factor in spite of the marked difference in the angular
distributions. The similarity of the two- and three-
dimensional expressions has already been emphasized in
Ref. 2 and it can now be seen that this also extends to
one-dimensional systems. This statement is also
confirmed by numerical calculations. '

Cmkg
Q = r(1 +4g(@+4)[Z;~+ Tr+"—]

xg
~ E~ fico(N+ —,')— (12)

with a frequency distribution

/+3
Q(co ) ~ (for T, &&T),

exp(A'co /ks T, ) —1

Since W(q) ~1/qi, the emission is strongest normal to
the plane: this is the only direction in which the total in-
tensity is the sum of the intensities from each of the
1DEG's. So the statement in Refs. 2 and 5 that the
emission from a 2DEG becomes isotropic at low temper-
atures is not exact.

Returning to the one-dimensional problem we calcu-
late the energy-loss rate Q per electron using (4) and (10).
After somewhat cumbersome calculations we obtain

IV. RANGE (ii) (ms'%co)' '«kii T, «%co, E~

The nature of the phonon emission differs from that in
range (i) in two important respects. The first is that pho-
nons can now be emitted from intersubband as well as in-
tr asubb and transitions, and the second is that since
ksT, /fis » I ', the characteristic value of q„ is deter-
mined by l ' rather than T, . This second change will be
shown to modify the angular dependence of the emission
and reduce the power-law dependence of Q on T, .

There are now three possible kinds of electron transi-
tions as shown in Fig. 1. There are intrasubband small-
angle transitions with ~q ~ = msq /iiik, as in (i) (labeled 1 in
Fig. 1), intrasubband backscattering transitions with
~q =2k~, and intersubband scattering transitions with

~q~ =~k~+kM~ (labeled, respectively, 2 and 3). In pro-
cess 1, q « q whereas in the two latter processes

qy -q . In all three cases q, qy «q, so that the phonons
are emitted essentially normal to the plane of the original
2DEG. The distribution function now consists of two
components:

where co =sq is the phonon frequency. It can be seen
that Q oscillates with the electron density v having peaks
when E~(v) coincides with the density of states singulari-
ty near the bottom of a one-dimensional subband (the
possibility of these oscillations was also pointed out in
Ref. 12). In real structures, the singularities are
smoothed by carrier scattering. If we assume Lorenzian
broadening corresponding to a scattering time ~, 1/c, in
(12) [e=E& fico(N+ —,

' )] is replac—ed by

Ef= kBT,

2(e r +I)(+8 r + I —sv)

If many subbands are occupied, as is the case in most

FICx. 1. Schematic picture of the different types of electron-
phonon processes allowed in temperature range (ii). The dashed
lines indicate the approximate extent of the thermal smearing of
the Fermi distribution.



ELECTRON-PHONON ENERGY RELAXATION IN QUASI-ONE-. . . 2085

msW(q)=
3 g QNN(q„l /2) exp

EF fi—co(N+ —')
+1

kii T,

~ kNkM
p ~(q+k +k ) +

mk~ T; ~
kN+kM v

A2kNkM

m ~Tei N —+ Mi 8 e

fisq +EF fico(—N+ ')—
X exp — +

k~T,
T

QMN qx

N, M, +

.—:W&(q)+ W~(q),

(13)

where Wz(q) includes processes 2 and 3 and QMN(t)=(M!/N!)'~iexp( —t/2)t'N M''~iLMN M(t) are the matrix ele
ments of exp(iq„x ) fL~(t) are associated Laguerre polynomials, M ~N].

In spite of the very different phonon frequencies generated in intrasubband and intersubband transitions, these two
types of transitions [two terms in (13)] give approximately equal contributions to Q so that the net energy-loss rate per
electron can be written as a single formula:

where

Cmk ~MN
I (y+3) (y+3) T~+ T"+—

ir lR + s +'v
M N [E~ fico(M+—1/2)]' [E —fico(N+ I/2)]'

(14)

AMN=l f QMN(q„l /2)dq„= N, f exp( —2x )HM(x )HN(x)dx
00

x x SM+N —1M)~I

(HN is the Hermite polynomial) and now

/+2

It can be seen that, as in range (i), Q oscillates with v with peaks when E~ coincides with the bottom of a subband but
its temperature dependence is less in power by 1 than in range (i) [Eq. (12)]. This results from the fact that q„ is now
limited by l so that its contribution to the phase volume is independent of T, while in range (i) it increases linearly
with T, .

V. RANGE (iii) kT, -A'co

One additional type of electron-phonon process becomes possible in this temperature range. It results from electron
transitions between peaks in the one-dimensional density of states at E =fico(N+ , ) and gives ri—se to the emission of
"resonant" phonons of energy jfico where j is an integer. It leads to additional terms b. Wand b, Q in Wand Q where

+ r~ + m [sq co(N M)]- —
+

2
+l

k, T, 2k~ Teq

X exp
Ez fico(N+ ,' )——

k, T,
m [sq co(N M) ] —fisq-

2kg Teqv k~ Te
(15)

Since q =(co/s)j ))~q„~, ~q ~

-l ', phonons are largely
emitted normal to the 2DECs plane. The total emission
rate hQ Q and the intensities of the quasimono-
chromatic peaks at ~j in the phonon frequency spectrum
fall off as exp( —ficoj /kii T, ). It is interesting that they do
not depend on the position of the Fermi level in contrast
to the processes discussed earlier and shown in Fig. 1.
This is readily seen when kz T, «Au. Let
EF =fico(N+ —,')+5(5(fico). Since the electron concen-
tration at the bottom of the (N+ 1)th subband
—exp[ —(fico —5)/k&T, ] and the concentration of holes

(unoccupied states) at the bottom of the Nth subband
—exp( —5/kiiT, ), their product, which determines the
transition probability, is independent of 5. To confirm
this more generally, we have calculated the additional
energy-loss rate b, Q arising from (15) and found that it is,
indeed, independent of EF. Its value is given by an ex-
pression similar to (14) and with the same temperature
dependence but with the factor responsible for the oscil-
lations I/[E+ %co(M+ —,')]' [Ez—fico(N+ —,')]' —re-
placed by 1/fico. In fact, the oscillations in (14) also be-
come very heavily damped in this temperature range
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since their amplitude is proportional to a term g/sh(g)
(y =2ir kii T, /irido ) similar to that responsible for the
damping of the Shubnikov —de Haas oscillations in resis-
tivity.

between electron density v and Fermi energy EF to

v= g +2m [E~ A—co(N+ —,')]= 2

N
(17)

VI. MAGNETIC-FIELD DEPENDENCE
OF THE PHONON EMISSION

We next consider the effect of magnetic field on the en-
ergy relaxation in a 1DECr. It is well known (see, e.g. ,
Ref. 21) that if a parabolic confining potential is used to
form the 1DEG and a magnetic field is applied normal to
the 2DEG plane, the resulting Schrodinger equation can
be solved exactly. The energies, in fact, remain the same
as those of (lb) but with the oscillator frequency co and
the effective mass m replaced by the field-dependent
quantities

—2

co = '1/ co +co, and m =m
CO

(16)

The wave functions (N, k~ remain harmonic oscillator
functions but with frequency co, center coordinate
xo =(k A/eB )(co, /co), and the confinement length re-
duced from l to (film co)' . It can be seen that the effect
of a magnetic field on a 1DEG is only significant when B
is such that co, co. The discussion is restricted to this
case.

The presence of a magnetic field modifies the previous
analysis in two ways. The first is due to the changes in
the energy spectrum and the second to the creation of a
spatial separation of the (k~ and (k —

q~~ wave func-
tions. This separation, which increases linearly with q,
diminishes the overlap of the wave functions in the ma-
trix element and provides a restriction on the maximal
value of q . This arises through the matrix elements Q~&
which now become functions of the combination
[q +q (co, /co) ]'r rather than of q„. In fact, except at
very high fields, this restriction on q has only a modest
effect on the total power emitted since nearly all the pho-
nons in temperature range (i) and a sizable fraction ( —

—,
'

)

in ranges (ii) and (iii) have rather small values of
q -mk~T, /Ak~. The effect should, however, be detect-
able through the suppression of the wings of the angular
distribution of phonon emission in ranges (ii) and (iii).

One result of the changes in the energy spectrum is
that since co in formulas (12) and (14) now becomes the
field-dependent frequency co, the energy-loss rate will os-
cillate with B as well as with EF in a similar way to the
conductivity of a 1DEG (see, e.g. , Ref. 22).

Another effect of a magnetic field is the change in the
characteristic temperature determining the boundary be-
tween ranges (i) and (ii) due to the increase in effective
mass m (or decrease in confinement length). So an in-
crease in field can transfer the system from range (ii) or
(iii) to range (i) causing changes in the size and tempera-
ture dependence of Q and also changes in the angular
dependence of the emission.

It is also worth noting that since co and m are replaced
by co and m, the magnetic field also modifies the relation

where

P= exp
ms /2 E~+A'co(N—+ —,

'
)

k~T,

It is seen that for P ) 1 this factor is proportional to

E~ fico(N+ ,' )
—ms /2——

I

6
0) l(0

10

FIG. 2. Magnetic-field dependence of the Fermi energy in
1DEG for n.v(A/8m')' =3 (curve a) and 10 (curve b). Peaks
occur when EF coincides with the bottom of the Nth subband.
The dashed line indicates the %=0 level position, AS/2.

[for B =0 this expression in the limiting cases gives (2a)
and (2b)]. Figure 2 illustrates the effect of this on E~(B )

for two electron densities. Because EI; varies with field,
the magnetic-field dependence of Q (as well as of some
other electronic properties) measured for v=const differs
from that measured for Ez=const. In principle, both
these situations can be realized experimentally.

We consider the Q(B) dependence for low T, corre-
sponding at B =0 to range (i). At low fields it will be de-
scribed by formula (12) which is proportional to m/v.
Therefore, the monotonic part of Q increases steadily
with B, proportional to m if v is held constant or propor-
tional to m if EF is held constant. Eventually, howev-
er, ms /2 becomes greater than Ez Ace(N—+ —,

'
) so that s

exceeds the Fermi velocity in the subband. At this point,
phonon emission from intrasubband transitions becomes
impossible except from the exponentially small propor-
tion of electrons of velocity U )s. Formally it means that
we cannot neglect q /2 in the momentum conservation
law (6). The calculations show that for T=O each term
in (12) must be multiplied by the factor

r

1 xr+ P+ln dx,I (y+4)g(@+4) Jo e"—1 /+1
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and, hence, decreases exponentially with B. For finite T
we need to subtract from this expression a similar one
with T, replaced by T.

The rise in Q(B ) below the Nth maximum is due to the
increase in the density of electron states and the fall is
caused initially by the rapid decrease in emission rate
when the Fermi velocity UF falls below the sound velocity
[EF fico(N—+ ,' ) (m—s /2]. This is followed soon after by
depopulation of the Nth subband when E~ &fico(N+ —,').
So as the field increases, Q(B) goes through a sequence of
oscillations at low fields (ro 5 ro, (&EF /iri) until essentially
all the electrons are in the N =0 subband. For v=const
the rise in Q (B) that occurs is entirely due to the increase
in I and the fall above a critical field B, to UF &$ since,
of course, this level cannot be depopulated.

For co, »m, the critical field is given by
' 1/2

'Aco

2eS
—1+ 1+

Sm$ EF
g2 2 (19a)

for a given EF and by
1/2

'7TflNl V

e 2$
(19b)

for a given v.
An example of the whole Q(B ) dependence is given in

Fig. 3 for a 1DEG with T, =2 K. %'e assume v=const
and also examine the effect of level broadening (see Sec.
III). By comparing the two curves in the figure one can
see that the electron scattering drastically reduces the os-
cillation amplitude but has much less inAuence on the
high-field maximum of Q (note the change in the
magnetic-field scale in Fig. 3 above B =2 T). The oscilla-
tions also decrease in amplitude with an increase in T, .

The field-dependent changes in Q are accompanied by
changes in the angular distribution of the emission. The
Cerenkov angle cos '(sm /haik~) for the ¹hsubband be-

C) 2
Cti

2

10 20 30 40 50
8 (degrees)

60
I

70
I

80 90

FIG. 4. Angular dependences of the emitted power for a
GaAs structure with T, = 5 K, EF=2 meV at diff'erent magnetic
fields: co, /co=0, 2, 5, 10, and 20. P is the angle with the wire
direction {yaxis).

comes zero near the maxima of the oscillations so as the
field increases, the emission becomes steadily more isotro-
pic. This efFect starts with the emission from the higher
subbands and extends to the lower subbands with increas-
ing field. To describe this efFect quantitatively, it is con-
venient to introduce a function

W(g, a)=As fq'W(q)dq

representing the angular distribution of the total emitted
power (here P is the angle between q and the axis of the
1DEG and a is the polar angle in the xz plane). Figure 4
demonstrates the evolution of this function in magnetic
fields at fairly low temperatures where there is no a
dependence. At higher temperatures, corresponding at
B =0 to range (ii), this evolution is preceded by the disap-
pearance of the a dependence as a result of the transition
to range (i) with increasing field.

VII. CQNCI. USIVN

0 0.2 0.4 0.6 0.8 1.0 1.2 1 4 1.6 1.8 2.0 2.8 3.6
B (T)

FIG. 3. Magnetic-field dependence of Q corresponds to
v =const for a GaAs 1DEG structure with EF(8 =0)
=12.5Aco=4 meV, T, =2 K. The collisional level broadening
parameter ~~= 3 (solid line) and co~= 1 (dashed line). The sharp
falls in Q indicated by the arrows occur when the bottom of a
1D subband moves through the Fermi energy.

In this paper we have considered, for a wide range of
electron temperature T„ the various processes of
acoustic-phonon emission that can occur from a heated
1DEG. The angular distribution of the phonons changes
considerably as the electron temperature is changed but
there is less change in the expressions for the frequency
spectrum Q(co») and the total energy-loss rate per elec-
tron, Q(T, ), and for temperatures greater than
(ms fico)' /kii Eq. (14) should provide a good descrip-
tion up to k~T, -As/a. The reason for this is that q
and q, retain the same value or form over this range
( I q„ I

I ',
I q, I

-kz T, /fis ) as does the change
b, q» -mkii T, /A'k~ in q» from its mean value (0 or
k~+kM ) that occurs as T, is increased. So the volume of
phase space occupied by the wave vectors of the emitted
phonons increases steadily with T, over the entire range.
The form of Q( T, ) does change however when
kz T, & As/a. For these temperatures q, becomes limited
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by a ' rather than kz T, resulting in a decrease in the
temperature dependence of Q(T, ) from Ti'+3 T—r+3 to
Tr+ —Tr+ . The frequency spectrum Q(co ) also re-
tains the same form throughout range (ii) but at higher
temperatures "monochromatic" lines appear at
coj (j= 1,2, . . . ). At even higher temperatures there is a
changeover from acoustic- to optic-phonon emission. A
noticeable feature at low temperatures is the oscillatory
behavior of Q( T, ) when the Fermi energy is moved
through the 1D energy-level spectrum.

Much more striking changes with T, are seen in the
angular dependence of the emitted phonons. At low tem-
peratures [range (i)] the emission occurs equally in all
directions close to the normal to the 1DEG axis. It is, in
fact, peaked at a series of angles from the normal
cos '(ms /haik~ ), though high resolution would be needed
to resolve these peaks. As the temperature rises into
range (ii), the isotropy in the xz plane (with intensity
modified by phonon focusing) becomes broken and the
emission is eventually restricted to directions close to the
normal to the original 2DEG. The image of the emission
on the opposite face from a short 1DEG sample would
consist of an ellipse (q„-q ) from half the emission su-
perimposed on a narrow strip (q ((q ) perpendicular to
the 1DEG axis due to the other half. In the y direction
the intensity falls to a minimum at the image center
(q~ =0) but no similar effect occurs in the x direction. A
further rise in temperature results in an additional circu-
lar component to the image due to the resonant phonons.
This rich information contained in the angular distribu-
tion of the emission promises to give considerable detail
on the electron-phonon interaction and similar con-
clusions should also apply to measurements of the ab-

sorption and transmission coefficients.
These various features of the phonon emission are all

very sensitive to the application of quantizing magnetic
fields perpendicular to the plane of the 2DEG. At low
temperatures [range (i)] the energy loss, which is due to
intrasubband transitions, first oscillates with magnetic
field and then falls sharply above a critical field B, as
shown in Fig. 3. At higher temperatures the intersub-
band transitions including the contribution from the
monochromatic phonons are also suppressed once 6/s
exceeds the inverse thickness of the 2DEG. The angular
distribution becomes much more isotropic with increas-
ing field. At low temperatures [range (i)] this results in
the strip component of the image on the opposite face
becoming steadily broader as B~B, while at higher tem-
peratures [range (ii)] the ellipse caused by intrasubband
transitions becomes a narrow strip parallel to the 1DEG
axis which becomes broader as the field moves the system
towards range (i). Very similar effects should again be ap-
parent in the phonon absorption, etc.

Finally we discuss briefly the neglect of screening in
these calculations. In 2DEG's screening produces
significant changes in both the magnitude and tempera-
ture dependence of Q. However in 1DEG's the screen-
ing is much weaker and has a logarithmic character so
the screening has little effect on Q( T, ).
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