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Nonlinear helicon-wave propagation in a layered medium
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In this paper, we have developed a theory that describes the propagation of nonlinear helicon waves in

a layered structure. The reductive perturbation method is used to derive the nonlinear-evolution equa-
tion. We have shown that this equation has a one-soliton solution and this solution has been derived.
Periodic-boundary conditions have been used and expressions relating different quantities in different

layers have been derived, thus indicating how a nonlinear-dispersion relation for a layered medium may
be obtained.

I. INTRODUCTION

Helicons are transverse, circularly polarized elec-
tromagnetic waves propagating in a conducting medium
along the direction of an externally applied magnetic
field. Their existence has been established for more than
a quarter of a century now, and finds applications in
many areas of plasma physics as well as condensed-
matter physics. Recently, interest in the study of helicon
waves has been revived because of the manifest impor-
tance of the exotic properties they exhibit while propa-
gating in superlattices and in layered media. In the
present analysis, we have tried to highlight the nonlinear
aspect of the propagation of helicons in a superlattice
semiconductor plasma.

The linear theory was well explained when Baynham
and Boardman' studied the propagation of helicon waves
in a Kronig-Penny-type periodic structure. This work
was initiated about twenty years ago and forms a
watershed for later development in this area. They found
that in the absence of scattering, the dispersion equation
breaks up into a band structure consisting of allowed and
forbidden propagation regions in a manner similar to an
electron band structure. When scattering is included, the
band edge blurs, resulting in a second propagation solu-
tion. If the scattering is further enhanced, the two propa-
gating circularly polarized solutions collapse into a single
polarized wave. For mathematical simplicity, Baynham
and Boardman' chose to limit themselves to the
Kronig-Penny-type sandwich structures only.

Later, the Kronig-Penny model in the 5-function ver-
sion was used by Tselis, Gonzales De La Cruz, and
Quinn in explaining their theory of helicon-wave propa-
gation based on the linear-response function. They did
not find band-structure-type effects. Kushwaha included
the imaginary part for the frequency in the dispersion re-
lation and treated the problem incorporating collisional
effects as well. Again, no band structure as depicted in
Ref. 1 was found, nor did the second propagation solu-
tion become apparent.

Currently, the electrodynamics of semiconductor su-
perlattices is the subject of many theoretical and experi-
mental papers, since these properties provide the basis
for developing appropriate devices. (A conspicuous illus-

tration of this fact is provided by semiconductor super-
structures. ) In an ordinary semiconductor, the energy of
the conduction electron is a parabolic function of the
quasimomentum. This is because of the fact that the al-
lowed bandwidth exceeds the thermal energy of the elec-
tron. However, invoking Bloch's theorem, Bass and
Tetervov reiterated that the spectrum of the electron in
a periodic field is inherently nonparabolic. The inherent
periodicity of the energy as a function of the quasi-
momentum leads to refined nonlinearity effects, which
form the basis for the development of many semiconduc-
tor devices: oscillators, amplifiers, mixers, frequency
multipliers, dividers detectors, etc. Further, in Ref. 7,
these authors, in their detailed review, have particularly
studied high-frequency phenomena in superlattices. They
have shown that the theory explaining this phenomenon
predicts a large number of oscillatory, nonlinear, and res-
onance behavior of the high-frequency waves within the
superlattice.

More recently, Achar has reexamined the helicon
wave propagation in a periodic structure to see under
what prevalent conditions "band-structure" effects ap-
pear. In place of the Kronig-Penny model the author has
used a sinusoidal structure as an alternative model with
the advantage that the sinusoidal modulation is generic
to the complex periodic modulation, since it represents a
single Fourier component of a general periodic structure.
The constraint the author has applied is a local approxi-
mation, which is valid when the fields vary slowly over
distances of the order of the mean free path and during
the time between collisions. This approximation is met
for the parameters of the model used in Ref. 1. The au-
thor has shown that the wave propagation is governed by
Mathieu's equation. Further numerical calculations do
not exhibit strong band-gap effects in the dispersion.

In Ref. 8 the same author has asserted the fact that the
propagation of helicon waves is rendered possible by the
occurrence of the Hall effect. One can consider the hel-
icon waves to be the dynamical manifestation of the Hall
effect, which accounts for their use in contactless mea-
surements of the Hall effect. In a later publication,
Achar and Ferguson have concluded that in a three-
dimensional Kronig-Penny model system the plateaus
due to helicon damping become distorted initially when
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the barrier is made higher and narrower. In Ref. 10, a
plasma theory of high-T, superconductivity has been
proposed. This is based upon the fact that all oxide su-
perconductors have layered superlattice structures, and
on the idea that the pairing of carriers in a single plasma
results from the attraction arising from the exchange of
virtually excited plasmons.

In the present paper, we have studied the propagation
of helicons in a periodically layered structure. We have
established a nonlinear-evolution equation for the propa-
gation of helicons, using a fIuid description for the elec-
trons and a Kronig-Penny model for the periodic struc-
ture. The equation that we have obtained is similar to
the standard Korteweg —de Vries (KdV) and modified
nonlinear Schrodinger (NLS) equations, for which we
have obtained a one-soliton solution. Finally, we have in-
troduced periodic-boundary conditions and indicated
how a nonlinear dispersion relation may be obtained for a
layered structure.

II. MATHEMATICAL FORMULATION

In order to study the propagation of helicons in a lay-
ered medium of a semiconductor superstructure, we solve
the fundamental equations using a modified form of the
reductive perturbation technique. Confining ourselves to
a magnetic field directed along the z direction, which, in
our case, is the direction of the normal to the layered
medium, the basic equations governing the transmission
of circularly polarized helicons can be written for each
layer as follows:"

n+ (nv, )=0,a a
at az

a e . e
v~+v~ v+= E++l [uz+k ~qu~]

Bt ' Bz m m

u, +v, u, = — [v 8 —u 8„],8 8 e

of order c, . Modifying the reductive perturbation
method' to suit our system of equations, we perturb the
variables as follows:
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Varying v+, as exp(ik&g) we obtain the dispersion rela-
tion for helicons" as
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Further, we introduce at this stage the stretched variables

g=z k—t, r=E t .

Consequently, the operators become
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where g is the independent variable upon which the vari-
ation of the amplitude depends and is also in the z direc-
tion.

In Eq. (9) A, is a velocity parameter to be determined
later. We note that the ordering we have used is the same
as in Ref. 12 for obtaining the modified KdV (MKdV)
equation for Alfven waves. Substituting the ordering
scheme given by Eqs. (8a) —(8c) and (9) and collecting
terms in different orders of c, we obtain the following
differential equation in the lowest order of c:

E~ =+i 8~,
Bz Bt

(4)
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(kk~+co, )c2
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In the above equations, n, U„U+, E+, 8+, and j+ denote
the number density of the electrons, the parallel electron
velocity, the perpendicular electron velocity of the waves,
the electric and magnetic fields, and the current density,
respectively. The remaining quantities pp, c', and co, are
the magnetic susceptibility, the lattice dielectric constant,
and the electron cyclotron frequency. Since helicon
waves are circularly polarized, the fluctuating quantities
have all been expressed in the form a+ =a +ia, where
the signatures relate to the right- and left-hand polariza-
tions. Clearly, the parameters n and U, do not contribute
to the linear-dispersion relation for the helicons, since the
Auctuations in the leading order terms would thereby be

In the above expressions, A, =co/k& is the phase velocity
of the helicon wave. Following Ref. 1 we can obtain a
dispersion relation for helicon waves in a layered medi-
um. This is done with the introduction of appropriate
boundary conditions and the periodicity of the lattice
structure via the Bloch wave number. '

Finally, we would like to note here that both the coor-
dinates g' and i) are in the z direction, the difference being
that the former pertains to the oscillations within each
layer and the latter to oscillations across the layers. We
also note here that in Eq. (11) the various parameters
have different values in different layers.

III. NONLINEAR-EVOLUTION EQUATION

In this section we derive the nonlinear-evolution equa-
tion that governs the propagation of helicon waves in a
layered medium. This is done by collecting higher-order
terms using the reductive perturbation method intro-
duced in the preceding section.
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To order c, we get an expression relating the parallel
velocity fluctuations to the perpendicular velocity fIuc-
tuation as

Finally, in order c, , we obtain the equation for the evo-
lution of the helicon wave. Following Ref. 14, this equa-
tion has the form
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In order to obtain an exact solution of Eq. (14) we sub-
stitute in the above expression the following transforma-
tion

a =K(g+Kqq —co*ad . (15)

This step is taken in order to incorporate both time and
space variation into a single variable and allows us to in-
tegrate once with respect to a. After performing this
step we can separate the resulting expression into its
imaginary and real parts by substituting

y= Q/(), ~') —~, /(2~, ) —~,~ '/(4~, ), (18)

where Q is an integration constant and we note that for
Q =0 we expect a solitary wave solution and for QAO a
periodic wave solution. ' Furthermore, we shall consider
the case where Q=0 and look for soliton-type solutions
only.

For the real part of Eq. (14) we get the following ex-
press&on:

v+, = A (a)expl iq&(a)] .

For the imaginary part we obtain the following expres-
sion:
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Integrating Eq. (15) once, we get
X(K„+2K( ) /(2K ( ) (Acv ) .
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Substituting Eq. (18) into Eq. (19) for the case Q=0, we
obtain the following differential equation: =+3( 16P /P2 —3 ) (24)

d A +p, A+p2A +p3A'=0,
a

where

P, = [r,—y, r2/(2y3)+ r,y, /(4y3) ] /r4,

p, = [ r—,y, /(4y, )+r, + r,y, y, /(4y, )']/r, ,

P3 y4[ 5y4/(4y, ) r,—]/(4y3 4)

The solution to Eq. (20) is of the form"

(21)

(22)

A = Ao[ko+cosha] (23)

Substituting Eq. (23) into Eq. (21) and collecting terms in-
dependent of cosh', those proportional to cosh', and
those proportional to cosh a and setting them separately
equal to 0, we get

Ao=+12p, (16p, /f32 —3) 'i
/p2 .

We can now substitute expression (23) into Eq. (19) and
obtain an expression for cp that reads as follows:

r

tP = 'I/'1+ P4 A de . 2/3 (25)

Thus, the one-soliton solution of Eq. (14) is given by Eqs.
(23) and (25). Equation (23) defines the variation of the
amplitude of the nonlinear wave and the parameter cp ap-
pearing in Eq. (25) describes the variation of the envelope
of the nonlinear wave. It should be noted here that ex-
pression (25) is integrable' but gives diff'erent results for
different combinations of the signs of the coe%cients
entering under the integral.

We can now obtain an expression relating the non-
linear wave numbers and frequency, i.e., K&, K„, and m*,
respectively. This is done by equating the expressions for
P, given by the set of expressions (22) and (24). Thus, we
obtain

co~;+2k,;co„K&;/[cu,*c.; [K&; K.„,(2K@—+K&; )]] A.; co„K&;/c; —= c; [K&; K„—, (2K&, +—K„;)]/4 . (26)

Here, the subscript i has been introduced so that
differentiation between the different layers can be made.
Thus, expression (26) relates the wave numbers and fre-
quency within each layer and this expression can be
viewed as the nonlinear analog to the linear-dispersion re-
lation, which relates k&, k„, and co to one another.

IV. PERIODIC-BOUNDARY CONDITIONS

u+)(di ) —u+p(di )

dU+1

dn nd
dU+2

dn ~d
u+, (0)=exp(i%'d )u+z(d ),

dV+2
=exp(i%'d )

dx)

(28)

In this section we shall introduce boundary conditions
similar to those used in Ref. 1 and discuss how a
nonlinear-dispersion relation can be obtained for a lay-
ered medium. The solution to the nonlinear-evolution
equation [Eq. (14)] for each layer taken separately can be
rewritten with the help of the subscript i and this is given
by the following:

—1/2 —1/2~ 01+ 1d l
~ 021 2d )

(29)

Substituting the periodic-boundary conditions given by
expressions (28) into the expression (26) and separating
into real and imaginary parts, we get the following re-
sults:

u~„= Ao, [Ao, +cosh(K&; /+K„, ri cu,'r)]—
Xexp[iy;(g, g, r)],

where
(27a)

9'id, =0'2d, ~ (30)

q, = — f [y „+y„~,']da,' (2y3,. ) . (27b)

For the sake of simplicity, we assume that our layered
structure consists of two layers which are repeated
periodically. The thickness of the first layer is d, and
that of the second layer is d2, and the subscripts i = 1,2 in
Eqs. (27) and subsequently refers to the layer under con-
sideration. This scenario is illustrated in Fig. 1 and is
similar to that used in Ref. 1. Following Ref. 1, the
periodic-boundary conditions are

I I

l

I I

I

I~
2

FICs. 1. Periodic modulation of the carrier density.
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In the above set of expressions, i.e., (29)—(48), the sub-
scripts for P, Q, and y have been used in the following
way: the first subscript refers to the layer that is being
considered (see Fig. 1) and the second refers to the point
within the layer at which any one of the quantities P, Q,
or y is being evaluated. We further note that for the
coefficients y and A0 the second subscript relates to the
layer under consideration.

V. CONCLUSIONS

In the present paper we had set out to describe non-
linear helicon-wave propagation in a layered superstruc-
ture. We have been successful in achieving this end in
that we have been able to derive a nonlinear-evolution
equation [Eq. (14)]. We have also been able to derive its
one-soliton solution [given by (23) and (25)]. We have
also derived a nonlinear-dispersion relation for helicon-
wave propagation in each layer separately. This is given
by expression (26). In Sec. IV we have introduced stan-
dard periodic-boundary conditions for a layered medium
and have derived expressions relating different
coefficients across the layers.

At this point we would like to note that a nonlinear-
dispersion relation can be obtained for a periodic layered
structure that would be analogous to the linear-dispersion
relation derived by Baynham and Boardman [Eq. (3.6) of
Ref. 1] by using expressions (29)—(32) and (34)—(36) in the
relationship given by (33). However, an explicit expres-
sion for the nonlinear-dispersion relation for a layered
structure has not been given. This is because Eq. (25) has
not been explicitly integrated because, as has been point-
ed out above, the integration yields different results for
different combinations of the coefficients entering this ex-
pression. We have kept our treatment of the problem
very general in that we have not tried to apply our results
to a specific layered structure. This has not been done,
since we have considered an idealized situation in which
collisions in the medium have been neglected. Inclusion
of collisions would lead to a fast damping of the helicon
wave and in order to overcome the effect of damping, an
external electric Geld has to be taken into account. We
hope to report on the inclusion of these effects soon.
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