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Zero-frequency current noise for the double-tunnel-junction Coulomb blockade
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We compute the zero-frequency current noise numerically and in several limits analytically for the
Coulomb-blockade problem consisting of two tunnel junctions connected in series. At low temperatures
over a wide range of voltages, capacitances, and resistances it is shown that the noise measures the vari-
ance in the number of electrons in the region between the two tunnel junctions. The average current, on
the other hand, is linearly related to the mean number of electrons for an asymmetric pair of junctions.
Thus, the noise provides additional information about transport in these devices which is not available
from measuring the current alone.

I. INTRODUCTION

When the charging energy of a tunnel junction is larger
than the temperature, electron tunneling events across
the junction become correlated. These correlations lead
to a variety of phenomena which fall under the rubric of
single-electron charging effects and the Coulomb
blockade' (for reviews, see Refs. 4—7). Recently, there
has been renewed interest in the Coulomb blockade be-
cause of the wealth of new physical realizations: metal-
insulator-metal tunnel junctions with small metal parti-
cles in the insulator, ' lithographically patterned tunnel
junctions, " scanning tunneling microscopy of small met-
al droplets, ' narrow insulating wires, ' and even thin
crossed wires. ' In some cases the technology has ad-
vanced to such an extent that one can consider making
practical devices based on the Coulomb blockade. ' '

The theoretical work in this area has focused on the
average current in either dc or ac measurements. There
has been some work examining the effect of noise in the
external circuit on the average current however, there
have not been any studies until recently treating the
current noise as an interesting phenomena in itself. '

In this paper we compute the zero-frequency current
noise in one of the simplest Coulomb-blockade devices
consisting of two tunnel junctions connected in series.
We apply the same master equation used to compute the
average current. ' This work is a direct outgrowth of
an earlier paper in which we computed the noise with a
similar equation which explicitly did not have charging
effects.

We study the zero-frequency as opposed to the finite-
frequency noise because the time scale at which the
frequency-dependent noise begins to show structure is the
"RC" charging time of the system, which is quite small
( —10 ' s). ' Noise experiments, on the other hand, are
typically done in the regime below 10 s '. Also, because
this calculation is based on the usual master equation for
the Coulomb blockade, it will contain thermal noise and
shot noise, but not 1/f noise, which is often seen in tun-
nel junctions at low frequencies. 1/f noise in tunnel
junctions is usually assumed to be due to defects in or

near the junction. These defects are not contained in our
model. Although 1/f noise will dominate at the lowest
frequencies, there is often an intermediate regime be-
tween the very low-frequency regime and the high-
frequency regime where shot noise dominates. By
focusing on the thermal and shot noise as opposed to the
1/f noise, we are able to make quantitative predictions
for the noise.

The zero-frequency current noise is interesting for
several reasons. First, it is a measurable effect. It may
limit the accuracy of some average current measure-
ments. There has been considerable interest recently in
the zero-frequency noise in noninteracting quantum sys-
tems. Second, we shall see that for this problem the
noise provides a measure of the variance in the charge
Auctuations as a function of time. The average current
only provides information about the average charge be-
tween the two capacitors. Finally, the noise versus
current curve has a rich structure, which is particularly
revealing when rescaled by the average current. This can
be used either to fit the parameters in the model more ac-
curately or to provide a consistency check for parameters
already determined from the average current. Thus,
noise measurements provide an additional test for the un-
derlying rate equation used to describe transport in this
simple Coulomb-blockade device.

This paper is organized into three parts: formalism
(Sec. II), analytic results (Sec. III), and numerical results
(Sec. IV). In the formalism section the model and under-
lying master equation are reviewed, the formulas for the
average current and noise are introduced, and the numer-
ical technique used to compute the current and noise is
discussed. Next, in the analytic results section, we calcu-
late the noise in four limits: (i) the zero voltage limit, (ii)
the region where the voltage is larger than the tempera-
ture but still smaller than the charging energy, (iii) the re-
gion just after the onset of current Aow, and (iv) the large
voltage limit. The details of the fluctuation dissipation
theorem (zero voltage limit) for this system are presented
in the Appendix. Finally, the noise is calculated numeri-
cally and compared to the analytic results. All the results
are summarized in Sec. V.
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II. FORMALISM

A. System

The system which we study consists of two tunnel junc-
tions connected in series [see Fig. 1(a)]. The junctions are
denoted L for left and R for right, and have resistances
RI and R~ and capacitances CL and C~, respectively.
We also introduce the net resistance and capacitance of
the junctions: R =RL +RR and C =CI +C~. The
charging energy of the island is Ec=e /(2C). To drive
the current a voltage V is applied to the left junction,
while the voltage on the right junction is set to zero. The
voltage in the central or middle region between the two
junctions, VM, fluctuates depending on the number of ex-
cess electrons in this region, n. The voltage drops across
the left junction, VL

—V~(n), and the right junction,
VM(n) —Vz, are found using classical electrostatics to be

VL
—VM(n) = V+ + V

ne

B. Master equation

The transport through the tunnel junctions is governed
by four tunneling rates: the rate for electrons to tunnel
onto the central region from the left (I „„+,) and right
(I „„+,) and the rate for electrons to tunnel off of the
central region to the left ( I „„,) and right
(I „„~).' ' The number of excess electrons in the
central region between the two junctions is n. These rates
are computed via Fermi's golden rule. In order to write
the rates we introduce a function y(e):

For energies e larger than the temperature k~T, y(e) is
approximately e, showing that the tunneling rate in-
creases as the allowed phase space is increased. For ener-
gies e less than —k~ T, y(e) is exponentially suppressed:
y(e) = ~e e ~ ', since the energy for these processes must
come from thermal fluctuations. In terms of the charging
energy, Ec =e l(2C), the tunneling rates are

ne
VM(n) —V~ = V — —V (2)

1I"„' „',= yI+e[V (n) —V ( )] E—
e RL, (R

Here and in all following discussions the magnitude of an
electron's charge is e so that —e is the electron's charge.
The additional voltage V has been included to account
for any misalignment of the Fermi level in the middle re-
gion with the Fermi levels of the left and right leads when
V and n are zero. ' One can also include an external
gate on the central region, which has a similar eFect to
V . For simplicity we omit such a gate.

(a)

The energies which enter the rates of Eq. (4) are the volt-
age drops o6'set by the charging energy, indicating that
tunneling is suppressed for voltages smaller than the
charging energy.

The state of the system at time t is described by the
probability p„(t) that there are n electrons in the central
region. Clearly the sum of the p„(t) is unity:
g„p„(t)=1. The time evolution of p„(t) is governed by
the net rate, I; =I; . +I, -, to go from i to j excess
electrons in the rniddle region. By incorporating the
rates I; in a matrix M,

if i =j+1
AfJPJJ+}PJJ}

0 otherwise,

if i =j

ClX

I2

~R

FICx. 1. Schematic of experimental geometry and rates. (a}
The capacitances and resistances of the left and right junctions
are (CL, C& ) and (RL,Rz ), respectively. The voltage in the left
and right leads are fixed to V and 0, respectively. The voltage in
the central region, V, fluctuates depending on the number of
electrons in the central region, n. (b) At zero temperature the
rates for tunneling are linear in n. For a positive bias, V) 0,
only the rates for tunneling onto the central region from the
right lead, I „„+&,and the rates for tunneling oA' the central
region to the left lead, I „„&,are nonzero. The points where
these rates vanish, N& and NL, determine the maximum and
minimum charge states N, „and N;„.

the master equation for the time evolution of p(t) may be
written succinctly as

dp(t) =Mp(t) .
dt

A direct consequence of Eqs. (5) and (6) is that the sum of
the p„(t) is independent of time because

gM; =0.

Equation (7) in turn implies that the matrix M has a zero
eigenvalue so there is a steady state solution, i.e., a vector
p' ' which satisfies

O=Mp'" .

C. Current

Although only the net transition rate I; enters in
computing p(t), the current depends on whether an elec-
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tron travels to the right or left. For example, a transition
from n to n+1 electrons in the central region has the
rate I „„+&. If the additional electron tunneled from
the right, this process gives a negative contribution to the
number current and a positive contribution to the electri-
cal current. On the other hand, if the additional electron
tunneled from the left, there would be a positive contri-
bution to the number current and a negative contribution
to the electrical current. To take into account the
difference in sign for the two processes, we introduce two
new matrices, v and v, which contain the rates for
tunneling across the left and right junctions, respectively.
The sign of a matrix element is positive if a process gives
a positive contribution to the number current from left to
right, and negative if a process gives a negative contribu-
tion to the number current.

—(+)I ' if i=j—1

I R — +( )PL ) f —'+1
lJ J~l

0 otherwise .

=——e Tr[U~'"'p(r) j . (10)

With these definitions the electrical current across the
left (IL ) and right (Iz ) junctions at time t are

II (g)(r)= e g [U p(t)].

D. Noise

To define the noise we introduce the propagator P(t),
which gives the time evolution of p„(t):

P(t) =exp(Mt ) . (15)

The conditional probability that there are m electrons in
the middle region, given that there were n electrons at
t =0, is P „(t). It is understood that t is positive in Eq.
(15). With P(t) we can compute all possible correlation
functions between the density and the current. ' For
example, the density-density correlation function is

(N(t)N(0)) =8(t)Tr[NP(t)Np' 'j

+8( r) Tr[—N P( t)N—p' 'j . (16)

This equation has a simple physical interpretation. Ini-
tially, the probability distribution is the steady-state solu-
tion p' '. The number of the electrons in the central re-
gion is measured by N at this initial time. Next, the sys-
tem is propagated forward in time via P, and the number
is again measured with N. For t )0 the initial time is
t =0 and the final time is t, while for I; (0 the initial time
is t and the final time is 0. In a similar manner the
density-current correlation function is ( A =R or L)

In Eq. (10), we have defined a trace of a vector to be the
sum of its elements. Both the currents IL and I~ are pos-
itive when the electrical current goes from left to right.
To obtain the steady-state current from Eq. (10), p(t) is
replaced by p' '.

In general the current in the left and right junctions
will be different; however, in the zero-frequency limit
they must be the same because of the continuity equation.
To derive the continuity equation we introduce the num-
ber matrix N, where N, =i X5, The expectation value
for the number of electrons in the central region at time t
1s

(X(t)I„(0)) = —e8(t)Tr[NP(t)v +p ' 'j

—e8( t) Tr[ v—P( —t) Np' Oj . (17)

The only difference between Eqs. (17) and (16) is that the
matrix v measures the current across one of the junc-
tions instead of the number of electrons in the central re-
gion measured by N.

In analogy with Eqs. (16) and (17), the current-current
correlation function should have two matrices v and v
for measuring current at the two times 0 and t. Although
such a term includes the correlation between two
different tunneling events, it does not include the self-
correlation of a given tunneling event with itself. In our
earlier paper we gave a formal derivation of the self-
correlation term as well as the correlation between
different tunneling events. Here we insert this self-
correlation term by hand. Suppose there is a current
pulse across the right junction between 0 and dt. The
number current is (dt) ' during the time interval dt, and
the number current squared is (dt ) . The probability of
this happening is dt times the average number current to
the right. Thus, it would seem that the self-correlation
term for (Iz(t)I~(0)) is just eI5(t). However, the
current can be either positive or negative, and the self-
correlation term is always positive. Thus, in computing
the self-correlation term we must take the absolute value
of the matrix elements of v and v used in computing
the current. These new matrices may be written suc-
cinctly as ([N, v "]);I =~(v");J~ and ([v,N]);~
=~(vR),. ~. Thus, the current-current correlation func-
tion is ( A, B=R or L)

N(r)=Tr[Np(r)j .

Using the rate equation for the probability, Eq. (6), the
time derivative of N(t) is

=Tr[NMp(t)j .

The key observation is that v —v is the commutator of
N and M.

(13)v —v =[NM].

Using Eqs. (7) and (13), the time derivative of the charge
in the central region may be written as

(14)

which is the continuity equation. As noted above in the
steady state, dN(t)/dt =0, and II is equal to I~.

—e = —e Tr[[N, M]p(t) j =II (t) Iz(t), —dN(r)
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(I„(t)Iz(0)) =e 6)(t)Tr[v ~P(t)v Bp(0)]

+e 6)( t—)Tr[v P( —t)v +p(0) j

5„Le 5(t)Tr[[N, v ]p' '] .

S„ii(co)=2e g (p' 'v xi) (xivap( ')1

A, WO

+2e g (p' 'v x ) (x v p' ')1

g~0 k+ l Ct)

(18) +52' 2(P(0)[NvA]p(0)) (26)

The first two lines of this equation contain the correlation
between two different tunneling events, while the last line
is the self-correlation term.

As for the average current, the continuity equation
identity Eq. (13) can be used to show that any occurrence
of (IL I„)ma—y be replaced by e(d—N/dt ).

d—e (N(t)N(0)) =([IL(t) I„(t)—]N(0)),
dt

—e (N(t)I~(0))=([IL(t) —Iz(t)]I~(0)) .
dt

(19)

(20)

In the zero-frequency limit this implies that both the
current-current correlation function and the current-
density correlation functions are independent of where
the current is measured. The noise Szi) (co) is now
defined as the Fourier transform of the current-current
correlation function, (I„(t)I&(0)), with its long-time be-
havior subtracted.

Szz(co)=2 J dt e' '[(Iz(t)Iii(0)) —(I) ]2. (21)

K. Numerical technique

In order to compute the noise it is useful to symmetrize
the matrix M. The key observation is that this system
obeys detailed balance [see Eq. (8)]:

The continuity equation [Eq. (20)] and the relation
Szi)(co)=S&z( —co) imply that correlation functions for
all possible choices of A, B=R,L are equal in the zero-
frequency limit, co=0. As discussed in the Introduction,
we will always be taking the zero-frequency limit because
it is the easiest to study experimentally.

In this paper we truncate the matrix M to include some
finite number of states and then diagonalize it to deter-
rnine its eigenvalues and eigenvectors. The eigenvector
with zero eigenvalue is p' '. Equations (24) and (26) are
used to compute the current and noise.

III. LIMITS

Before discussing the results of our numerical evalua-
tion of the zero-frequency noise, in this section we com-
pute the noise in four limits which may be treated analyt-
ically. The cases discussed are: (A) the zero voltage lim-
it, where the noise is related to the conductance via the
fiuctuation dissipation theorem; (B) the thermally activat-
ed conduction regime, where the voltage drop is large
compared to the temperature but still small compared to
the charging energy; (C) the two-state region, where the
voltage is larger than the charging energy but small
enough that only two charge states are allowed; and (D)
the large voltage bias limit.

A. Zero voltage

Even though we will focus on potential drops eV, large
compared to the thermal energy k&T, any technique for
computing the noise must reproduce the fluctuation dissi-
pation theorem ' at zero bias:

S=4k') TG( V=O), (27)

where G is the differential conductance, 6=BI/BV. In
the Appendix we show how Eq. (27) follows from the
definitions of the rates [Eq. (4)] and the expression for the
noise [Eq. (26)]. In Sec. IV we also verify that our numer-
ical algorithm produces the fluctuation dissipation
theorem at zero bias.

(&) (0) (22)

A direct consequence of Eq. (22) is that Mipi") =M„p
allowing us to define a symmetric matrix M,

—(0)—A—(0)
A ep (24)

The matrix M is written in terms of its eigenvalues, k 0,
and eigenvectors, x&, as

M; = gA(xi);(xi )J . (25)

Using this same representation, the noise S~z(co) is given
by

(23)

In a similar manner we define v as (p,' '/p'; ')'~ v and
p'; ' as the square root of p'; ', so that the expectation
values may also be written in a symmetric form, e.g. ,

B. Thermally activated conduction

When the voltage is large compared to the tempera-
ture, the thermal noise is small compared to the shot
noise, which comes from the current Aowing. Even with
e

~ V~ ))ki) T, if the voltage is small compared to charging
energy, the conduction is thermally activated because the
voltage drop alone does not provide enough energy to
overcome the charging energy. ' In this section we show
that in this regime (Ec ))e

~
V~ ))kz T) the noise is relat-

ed to the current by the standard shot-noise relation

(28)

In this limit the steady-state probability distribution
function p'„' is strongly peaked about one value of n ex-
cept for special values of V where two states are equally
occupied. We shall assume that we are not at one of
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these special points and call the state which is most likely
occupied the n =0 state. To describe the transport it is
sufficient to keep only three states: the n =0 state and
the two states immediately accessible from this state:
n =+1. At T=O the matrix M thus becomes

—r, , 0
M(T=O)= I ) 0 0 I ] o

O 0 —r, o

(29)

The eigenvector of M( T =0) with zero eigenvalue is (0, 1,
0), indicating that at zero temperature only p„o is
nonzero. For a finite temperature there is a small correc-
tion 5M=M —M(T=O), which allows transitions to the
states n =+1.

~M= 6r 1 o

0

6ro 1 6ro —
1 6r1 0

6I 0 o

(30)

S
2e

rR1~0 6rLr 0~1
1~0

rL1~0 rR

+ 6I 0—1~0

rR
6ro- —1

1~0+r, .0~1
1~0

rR
6r,', +

—1~0

~Lr —1~0
I

6I 0

(31)

(32)

These equations have a simple physical interpretation.
Conduction in this thermally activated regime follows
from the occurrence of a rare transition from n =0 to
n =+1, followed by a rapid decay back into the n =0
state. Thus, for example, there could be a thermal Auc-
tuation causing an electron to tunnel from the right lead
to the central region (51 O, ). This thermal fiuctuation is
followed shortly by the electron tunneling off to the right
lead (I f 0) or to the left lead (I, 0). If an electron tun-
nels to the right lead then there is no contribution to the
current, while if the electron tunnels to the left lead there
is a positive contribution to the electrical current. Thus,
only a fraction of the time, r1 0/r1 0, does this
thermally activated process contribute to the current.
This explains the first term in Eq. (31):
(I

& o/I &
o)61 0 &. The other terms in this equation

have similar interpretations.
The noise in this regime only contains the self-

correlation term because we have independent thermally
activated processes which are separated by long periods
in time. Thus, the only difference between the current

There are analogous zero-temperature and finite-
temperature correction terms for v and v

Because we have reduced M to a 3 X 3 matrix, Eqs. (24)
and (26) for the current and noise can easily be expanded
to linear order in the 5r's:

rL1~0 6rR
o

and the noise is one sign change resulting from some pro-
cesses giving a negative contribution to the current and a
positive self-correlation term for the noise. Dividing Eq.
(32) by Eq. (31), it would seem that their ratio is not 2e;
however, because the voltage is large compared to the
temperature, two of the activated rates are always much
larger than the other two. For I)0, 6I 0 1 and 6ro
are much larger than 6I 0 1 and 6I 0 1 by a factor ex-
ponential in e

~
V~/kR T, while for I (0 the situation is re-

versed. Therefore, the noise is indeed equal to 2e times
the absolute value of the current [Eq. (28)].

C. Two-state regime

Eventually the voltage becomes larger than the charg-
ing energy, and there is current fl.ow even at zero temper-
ature. As discussed above, in the thermally activated re-
gime only one charge state is allowed at zero tempera-
ture. At the onset of nonthermally activated current
Aow, there are two allowed charge states at T=0, except
for the special case of a symmetric pair of junctions,
where there are three allowed charge states. We only
consider the asymmetric case here. It is a good approxi-
mation to keep only these two states for some range in
temperature, kz T &(Ec. Our two-state approximation is
similar but not identical to the one used in Ref. 42. They
compute p

' ' using only two states, and then allow transi-
tions to a third state in computing the current [Eq. (24)].
We do not allow transitions to a third state; however, in
the regime of interest here, where only two states are en-
ergetically accessible, the two approaches give the same
result for the current.

Since only two states are involved, there are only two
rates. In the case I )0 one rate I, increases the number
of electrons by tunneling across the right junction, while
the other rate I decreases the number of electrons by
tunneling across the left junction. These rates depend on
the voltage drop across the sample and can be determined
from Eqs. (3) and (4). In the next section we will also give
the limiting form of these rates at zero temperature.
Since M in this limit is a 2 X2 matrix,

M=
rR rL

rR (33)

it is simple to solve for the current and the noise:

rLrRI=e r'+r' (34)

(I R)2+(I L)2
S=2eI

(I R+I L)2
(35)

We wish to emphasize here that although Eqs. (34) and
(35) look simple, they contain a great deal of structure be-
cause the rates I and I depend on voltage. This will
be shown explicitly in Sec. IV, when we plot this result
along with the numerical results for finite temperatures.
From Eqs. (34) and (35), we can see that I is largest when
two rates are equal. Also, the noise is suppressed from its
uncorrelated value S=2e~I~. This suppression is to be
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expected because having only two allowed states in the
central region introduces correlations between tunneling
events. If the system is at one of the allowed states, say
the state with more electrons, then another electron can-
not tunnel onto the central region until an electron tun-
nels off. This kind of correlation did not appear in the
thermally activated regime, because an electron tunnels
off so quickly after tunneling on that it has no effect on
subsequent tunneling events.

D. High-voltage limit

1I „„,= (n NL )8(n —NL), —n~n— (36)

We have now computed the noise for V=0,
Ec »e~ V~ &&k sT, and e~ V~ &Ec. In this section we
compute the noise for e~ V~ &&Ec, where we expect the
current-voltage characteristic to be almost linear. Even
though we compute the noise in the asymptotic high-
voltage limit, in Sec. IV we will see some of the approxi-
mations derived here work down to e

~ V~ -Ec.
Because we are interested in the limit where the volt-

age is larger than the other energy scales, k&T and Ec,
we set the temperature equal to zero. This means that
y(e) in Eq. (3) takes on a very simple form: y(e) =e8(e).
If the sample is biased so that the electrical current Aows
from left to right, then two kinds of processes are impor-
tant at T=O: tunneling across the right junction to the
central region (I „„+&)and tunneling from the central
region to the left lead (I „„,). The rates for these pro-
cesses are

close to N;„. Because pz' =0, it is then a good ap-
msx

proximation to replace n by ( n ) in Eq. (37):

I=e (Nz —(n ) ) .1
(41)

Equations (41) and (42) show that the current is linearly
related to the average number of electrons in the middle
region for an asymmetric pair of junctions.

Up to this point we have not made any assumptions
about the voltage being much larger than the charging
energy. Now we assume that NL and NR are integers.
This can only be true for a limited set of voltages; howev-
er, in the large voltage limit the current and noise should
be insensitive to whether NL and NR are integers. We
verify this numerically in Sec. IV by showing that the re-
sults predicted here are asymptotically true in the high-
voltage limit.

If NL and NR are integers, then we have shown in our
earlier paper that the noise can be computed exactly
(see also Chen and Ting" ). The current can also be com-
puted exactly in this special case. ' ' Here we review
the results in the context of this problem. For integers

and NR the number electrons in the middle region,
N (t), satisfy a simple rate equation

In a similar manner for RR «RL, the probability of be-
ing in the state n =N;„ is small and we can approximate
the current by Eq. (36) with n ~ ( n ):

I=e ((n ) —Nt ) .
1

L

1I „„+)
= (N~ n)8(Ntt n—), —

RRC

dN(t)
dt RRC

N( t) NL-
R, C

(43)

where the numbers NL and NR are given by
This allows one to compute both the steady-state current

NL=
CR V CVp +-

e e 2
(38)

e

RC
Cv —1
e

(44)

e e 2
(39)

and to relate the zero-frequency noise to the variance in
the number of electrons in the middle region, var(n),

These rates are illustrated in Fig. 1(b). The minimum al-
lowed state N;„ is the largest value of n for which
(n —NL ) (0. Similarly, the maximum allowed state N, „
is the smallest n for which (Nz —n ) (0. Assuming that
NL & 0 and NR & 0, this means that the values of n with
p'„Wo are

4eS=2eI var(n) . —
RC

The variance of n is given by

R 'R
L R

var(n) =
(Rt '+R~ ')

CV
e

(45)

(46)

;„=—Int( NL —1 ) ~ n ~ In—t(N+ + 1 ) =N (40) so the noise in the high-voltage limit is

Since I„and IL are just the expectation values of
I „„+&and I „„„respectively, it is tempting to call
Eqs. (36) and (37) with n ~(n ) the current. This is not
correct because I „„,= (n Nt )/(RL C ) is on—ly valid
for n ~N;„+1. For n =N;„ the rate I „„,is zero.
Similarly, I „„+,=(Nz n)/(Rz C)

—is only valid for
n ~N,„—1. However, in the limit RL &&RR the rate
for tunneling across the left junction, I „„,is much
larger than the rate for tunneling across the right junc-
tion, as illustrated in Fig. 1(b). This means that (n ) is

R, '+RR '
S=2eI

(R
—i+R —t)

Note the formal similarity of these results with those of
the two-state regime [Eqs. (34) and (35)]. An important
difference between these two sets of results is that RL '

and R„ I are constant, while I and I depend on volt-

age. Thus, here S/2eI goes to a constant asymptotic
value, while before S/2eI depended on voltage. In the
next section we will show numerically that Eq. (47) is
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indeed valid in the high-voltage limit, and Eq. (45) is a
good approximation for much smaller voltages.

IV. NUMERICAL RESULTS

In this section we present the results for computing the
noise and current via Eqs. (24) and (26). There are six pa-
rameters in the model besides the voltage: the resistances
RL and Rz, the capacitances CL and Cz, the tempera-
ture T, and the offset voltage V . Two of these parame-
ters can be eliminated by rescaling the rates by
R =Rz+RL and the energies by the charging energy
Ec=e /2C. Thus, our parameter space consists of the
resistance ratio RL/R, the capacitance ratio CI /C, the
temperature divided by the charging energy k~T/Ec,
and eV~/Ec. In evaluating Eqs. (24) and (26) we will al-
ways truncate the matrix M because the higher charge
states ~n

~

)) I are energetically forbidden, especially at
low temperatures and voltages. In practice we have
found it is sufficient to keep the 15 states surrounding
n =0. With this many states the steady-state solution p„(o)

is zero to within our numerical accuracy for the highest
(n =7) and lowest states (n = —7). Increasing the num-
ber of states does not change p'„'.

A. Temperature dependence

For most of this section we will consider temperatures
far below the charging energy because this is where
charging effects are most important. To start, however,
we set the voltage equal to zero and verify that our nu-
merical algorithm satisfies the fluctuation dissipation
theorem [Eq. (27)j. In Fig. 2, we have plotted both the
noise S and the differential conductance G=dI/dV as a
function of temperature for a pair of junctions with
RI /R =0.01 and CL /C =0.01. As expected in a

Coulomb-blockade problem, the conductance and noise
are suppressed for temperatures much less than the
charging energy ( & 0.2Ec, here). For temperatures
greater than or of the order of the charging energy, the
conductance rises linearly with temperature, indicating
that the number of accessible states is increasing with
temperature. In this same regime the noise approaches a
constant value as required by the fluctuation dissipation
theorem. We have divided the two curves to show explic-
itly that the fluctuation dissipation theorem is satisfied.

B. Dependence on V~

In Fig. 3, the current and noise versus voltage curves
are plotted for CV =0 and CV =0.25. The temperature
is much less than the charging energy, kz T=0.01E&. As
expected for an asymmetric pair of junctions with
RL =0.01R and CL =0.01C, the curves exhibit the step-
like structure of the Coulomb staircase. The primary
effect of the offset V is to shift the I-V and S-V curves.
To reduce the parameter space in subsequent plots we
will specialize to V =0, where the I-V and S-V charac-
teristics are symmetric in the voltage. In this figure the
fact that the noise and current curves are almost the same
indicates that the noise is close to its uncorrelated value:
S=2eI. Careful examination shows that the noise is ac-
tually less than 2eI. The amount by which it is less than
2eI changes as a function of voltage. Thus, in subsequent
plots we will also look at the noise ratio S/2eI to bring
out this structure.

C. Dependence on the capacitance and resistance ratios

Restricting ourselves to kz T &&Ec and V =0, the pa-
rameter space becomes two dimensional: (RI /Ra,
CI /Cz ) or (RI /R, CI /C). It is well known that for
asymmetric junctions with RL «Rz and CI «C~ (or

2.0 I t
J

I I I I
j

I I I I
(

I I I I

I i t i i i i I

/(e
(2e

1.0—

0 0
0.0 0.5 1.0

ksT/Ec
1.5 2.0

FIG. 2. The equilibrium noise S and conductance G =dI/d V
for two tunnel junctions connected in series. At temperatures
far below the charging energy of the tunnel junctions,
Ec=e /2C, both the conductance (solid curve) and the zero-
frequency noise (dotted curve) are suppressed by the Coulomb
blockade. At temperatures above the charging energy the con-
ductance is roughly linear in temperature and the noise ap-
proaches a constant value. In accordance with the fluctuation
dissipation theorem the ratio of the noise to the conductance
remains fixed at 4k& T (see dashed curve).

0 i l i I i t i l &hl I I

—5 0 1

CRV/e

FIG. 3. The nonequilibrium noise and current. At low tem-
peratures ( k& T=0.01Ec ) for an asymmetric junction

(Rl /R =0.01 and CL/C=0. 01) both the average current I and
the noise S show the characteristic step structure of the
Coulomb staircase. Indeed, S is roughly equal to the standard
shot noise result of 2eI. With an offset voltage V~ the current-
voltage and noise-voltage characteristics are shifted, but other
qualitative features of the curves remain the same. Henceforth
we set V~ =0.
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RL &)RR and CL ))CR) the Coulomb-staircase structure
as in Fig. 3 is seen, while for asymmetric junctions with
RL ((RR and CL ))CR (or RL ))RR and CL ((CR) no
steplike structure is seen. There is only a suppression of

I
[

I
[

I
/

I
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I
]

I
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I
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I
]

T

(a) kBT=O. 1Ec

Rr./(Rc+RR) = 0 99 "

0.9

the current for small voltages.
The noise ratio S/2eI vs the current curves are the

new contribution of this paper. The first observation to
make about these curves is that there is a rich variety of
structure in the noise when rescaled by the current. This
structure is not contained in the current. For example,
one might say that the S/2eI curves in Fig. 5 are simply
related to the derivative of the current; however, there is
no simple way to take the derivative of the current curves
in Fig. 4 and obtain the S /2eI curves in that figure.
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FIG. 4. The dependence of the current and noise ratio
(S/2eI) on the resistances of the junctions at (a) k~T=0. 1Ec
and (b) k&T=0.01Ec. We go from good steps (CL /C=0. 01,
RL /R =0.01) to no steps ( CL /C =0.01, RL /R =0.99) by vary-
ing the resistance ratio RL/RR, keeping the capacitances fixed
at CL/C=0. 01 and C& /C=0. 99. When the difference between
S and I illustrated in Fig. 3 is plotted as the noise ratio, S/2eI, a
rich variety of structure is revealed. This structure becomes
more pronounced as one goes down in temperature. The noise
ratio shows structure even when the current shows little struc-
ture, illustrating how the noise can provide new information
about the parameters in the model. The dotted lines are the
asymptotic value of the noise ratio at large voltages [Eq. (47)].
Since the noise remains finite as the current goes to zero, the
noise ratio diverges as V~O. We have thus only plotted it for
CII V/e )0.2. [This is the reason S/2eI ) l at low voltages in
(a).]

/(Rc+RR}=0.0/1

0 [ I~/ I [ 1 l

0 1 2 3 4 5 0 1 2 3 4 5

CRV/e

FICi. 5. The current and noise ratio as a function of the ca-
pacitance ratio at (a) k& T=0.1Ec and (b) k& T=0.01Ec.
(Rz /R =0.01) Varying the capacitance instead of the resistance
has a different effect. A11 the noise ratio curves have a similar
structure, indicating that the noise is more sensitive to the resis-
tance ratio than capacitance ratio. This should not be too
surprising because the asymptotic limit of the noise ratio (dotted
lines) is determined by the resistances of the junctions [see Eq.
(47)]. Although the abscissas of Fig. 4 and this figure are the
same, the voltage ranges are different because the capacitances
vary here.
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FIG. 6. The temperature dependence for the most asym-
metric junctions shown in Figs. 4 and 5 (R& /R =0.01,
CL/C=0. 01). The current (I), the noise (S), the noise ratio
(S/2eI ), and the differential conductance (6=dI/d V) all show
significant temperature dependence below k~ T=0.01Ec. The
spiky structure in the noise ratio is due to a combined effect of I
and S having sharper structure as one goes to lower tempera-
tures. The zero-temperature curves are obtained from the ana-
lytic expressions for the noise in the two state limit [Eqs. (34)
and (35)].

Using the structure in S/2eI, one can determine the
parameters in the model more accurately than one could
with the current alone. Alternately, one can use the pa-
rameters obtained from the current to perform a con-
sistency check. We illustrate this point by considering
three examples from Figs. 4 and 5. In Fig. 4(b), the top
three cases, RL /R =0.75, 0.9, and 0.99, have almost
identical current-voltage characteristics, yet their noise-
ratio curves are quite distinguishable. As a second exam-
ple, the steps in the Rl /R =0.5 I-V curve are only
slightly more pronounced than the steps in the
RI /R =0.75 curve; however, the noise-ratio curves ex-
hibit a change in curvature. The upper curve has a
downward cusp, while the lower curve has an upward
cusp. Finally, we note that the RL /R =0. 1 curve in Fig.
4(b) and the CJ /(CL+CR )=0.25 or 0.5 curves in Fig.
5(b) are quite similar, although their noise-ratio curves
are very di6'erent.

Comparing Fig. 4(a) to 4(b) and Fig. 5(a) to 5(b), there
is considerable sharpening in the noise-ratio curves as one
goes down in temperature. The spiky structure of the
curves in Fig. 5(b) (ks T=0.01Ec) is just beginning to be
visible in Fig. 5(a) (ksT=O. IEc). It is natural to ask
whether even T=0.01EC/k~ is the zero-temperature
limit. For the higher voltages and less asymmetric junc-
tions, one has indeed reached the zero-temperature limit,
i.e., the curves do not change appreciably as one goes
down in temperature; however, the lower voltage regions
of the more asymmetric junctions continue to become
sharper as one goes down in temperature. To illustrate
this we have plotted in Fig. 6 the region around the first

step in the most asymmetric junction of Figs. 4 and 5

(Cr =0.01C, Rt =0.01R) for four temperatures. The
T~O curves were computed analytically using the two-
state approximation of Sec. III C. For all of the curves
shown, I, S, S /2eI, and dI /d V, there is significant
enhancement of the structure for temperatures below
one-one-hundredth of the charging energy. Both the
current and the noise become sharper as one goes down
in temperature, showing that the increased structure in
the noise ratio is a combination of e6'ects in the noise and
current.

D. Discussion of the noise ratio

While the above shows that the noise provides new in-
formation about the transport in these systems, it does
not give us a simple interpretation of what this informa-
tion means. In this section we use the analytic results of
Sec. III, to understand our numerical results. Three lim-
its are discussed: the thermally activated regime before
the first step; the region just after the first step, where the
two-state approximation is valid; and the large voltage
limit, where the current and noise-voltage characteristics
become linear. We also test an approximate formula for
the noise which interpolates between the high- and low-
voltage limits. This formula relates the zero-frequency
noise to the variance in the number of electrons in the
middle region. All these cases except for the very high-
voltage limit are presented in Fig. 7. The asymptotic
large voltage limit is illustrated in Figs. 4 and 5.

The first region we consider is the thermally activated
regime where the voltage drop is much smaller than the
temperature. In Sec. III B we showed that in this region
S/2eI is unity at sufficiently low temperatures because
the current Aows in one direction via rare uncorrelated
events. In Figs. 4 and 5 we do indeed find that the noise
ratio is unity in the low-voltage regime below the first
step in the I-V characteristic. This is shown more explic-
itly in Fig. 7, where we replot the solid curves of Figs.
4(b) and 5(b) along with several analytic approximations,
shown as solid dots. In Fig. 7(a) the thermally activated
regime extends up to Cz V/e=0. 5 (region I). Because
the capacitance ratios vary in Fig. 7(b), the extent of the
thermally activated regime also varies. For Cz )CL the
thermally activated regime extends up to C„V/e= —,',
while for Cl )Cit it extends up to Cit V/e
=(—,')(Cit /CL ). Thus, the thermally activated regime for
the top curve in this figure only extends up to
Cit V/e=0. 5(0.05/0. 95)=0.026. We have not put in
any solid dots for the thermally activated regime in Fig.
7(b) to avoid cluttering the graph. In both of these
figures the noise ratio is not shown down to zero voltage
because at any finite temperature (k~T=0.01Ec here)
thermal fluctuations cause S /2eI to diverge as V~O.

For an asymmetric pair of junctions the region just
above the thermally activated regime in Fig. 7 is the
two-state limit. In this regime only two states have
nonzero occupation probability. If the system is in one
state, then the only allowed transition is to the other
state. This introduces correlations which in turn
suppress the noise. For the processes in the thermally ac-
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tivated regime, there were also two relevant rates: one
slow rate due to thermal activation, and a quick decay
rate from the excited state. Because one of the rates was
much longer than the other, the problem reduced to one
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0 1 2 3 4 5 0 1 2 3 4 5
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FIG. 7. Approximations for the current and the noise. The
solid lines are the numerical results of Figs. 4(b) and 5(b), and
the dots are the approximations. (a) In the thermally activated
regime labeled by I the noise ratio is unity. In the two-state re-
gime labeled by II the current and noise are given by Eqs. (34)
and (35). Both this and the thermally activated regime are exact
at low temperatures. In the higher voltage regime, region III,
we have used Eqs. {41) [Rl ~R~] and (42) [R„+RL ] and Eq.
(45), which relate the current and noise to the mean and vari-
ance in the number of electrons in the region between the two
tunnel junctions. Although these approximations are not exact,
they clearly indicate the important qualitative features of the
current and noise. (b) With this abscissa the boundaries of the
thermally activated and two-state regimes vary as one changes
the capacitances. Thus, although the thermally activated and
two-state regimes are also exact here, we have only shown the
large voltage approximation to avoid cluttering the graph.

with just the slow rate. Another way to say this is that
the noise in the two-state limit, S=2eI [(I )

+(I ) ]/(I +I ) [Eq. (35)], reduces to classical shot
noise S=2eI when one of the rates is much larger than
the other.

In Figs. 7(a) and 7(b), one of the rates is much smaller
than the other near the onset, and the noise ratio is close
to unity. As the voltage is increased the smaller rate in-
creases and the noise is suppressed. In this regime the
maximum possible suppression is —,

' when I =I . In
Fig. 7(a) most of the curves in the two-state regime (re-
gion II) do indeed go down to —,'. The curves then return

up as the rate which was originally smaller now becomes
the larger rate. The exceptions are the RL =0.01R and
CL =0.01C junction, which has not yet reached the zero-
temperature limit (see Fig. 6), and the three upper curves,
where the smaller rate does not reach the larger rate be-
fore the next step. In Fig. 7(b) the same physics holds,
but we have not illustrated the two-state regime with
solid dots because the place where the two-state regime is
valid varies with CI /C.

It is tempting to say that our two-state approximation
for the noise works even after the first step, especially for
asymmetric junctions where the probability is strongly
peaked about either the maximum or minimum allowed
state. While the strictly two-state approximation predicts
the qualitative features of the noise-ratio voltage curves
for higher-order steps, it is not quantitative. In particu-
lar we can see from Figs. 4 and 5 that the noise ratio does
not go down to —,

' after the first step. Our two-state ap-
proximation predicts that the noise goes down to —,

' for
the higher steps as well. Rather than try to extend the
two-state approximation by, for example, including three
states, we now turn to the large voltage limit.

In Sec. III D we argued that in the large voltage limit
the noise ratio should be given by S/2eI
=(Rr +Rz )/(RL '+Rz ') [Eq. (47)]. This expres-
sion is remarkably similar to the expression we found in
the two-state limit for the noise (I I ~~~~RL ~~~ ); howev-
er, it is important to keep in mind that the high-voltage
limit is definitely not a limit where the two-state approxi-
mation is valid. Rather, formulas with this structure ap-
pear in a wide variety of contexts, including both quan-
tum coherent ' and incoherent transport. ' We re-
gard them as a ubiquitous but not universal high-voltage
limit when only two rates are important. To check this
asymptotic limit, the dotted lines in Figs. 4 and 5 (not
Fig. 7) are the ratio in Eq. (47). Clearly, it is approached
at large biases.

This still leaves the intermediate regime, where more
than two states are important and one has not reached
the asymptotic limit of large voltages. From Eqs. (41)
[RI ~Rz ] and (42) [Rz ~RI ], we see that at least for
asymmetric junctions the current provides a measure of
the mean number of electrons in the central region. In
region III of Figs. 7(a) and 7(b), the solid dots over the
numerical I-V characteristics show that these expressions
are good approximations for the current even for the less
asymmetric junctions. Since the current provides a mea-
sure of the mean number of electrons in the middle re-
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gion, (n ), it is natural to try to express the current Auc-
tuations in terms of the variance of n, var(n). In deriving
the high-voltage limit, we found that S=2eI

4—e var(n) l(RC ) [Eq. (45)]. The solid dots in region III
in Fig. 7(a) and all the solid dots in Fig. 7(b) are the noise
ratio computed with this approximation using the numer-
ically determined var(n). Although this is not as good an
approximation as for the current, it works remarkably
well down to lower vo1tages. The reductions in the noise
can be regarded as an increase in the variance, which is
to be expected near a step where there are large Auctua-
tions. The places where the approximation works most
poorly, e.g., RL /R =0.5 and 0.75 in Fig. 7(a), are also
the places where the approximation for the current works
worst. This last approximation for the noise provides us
with the simple intuitive picture that the noise measures
the variance in n while the current gives information
about the mean.

APPENDIX

The proof of the fluctuation dissipation theorem in
quantum mechanics is a few lines long. On the other
hand, the proof for most classical systems is much longer.
In this appendix we prove the Auctuation dissipation
theorem in two steps. We first simplify the expression for
the noise in equilibrium and then simplify the expression
for the linear response conductance.

1. Simplified expression for the noise

Since we are interested in the zero-frequency noise, we
define a new matrix, 5P,

5P,, = f dr [P,,(r) —pIO'] .

As can be seen by applying M to Eq. (Al), 5P;1 is related
to the inverse of M:

( M5P );~
=p'; ' —5; (A2)

V. CONCLUSION

In this paper we have computed the zero-frequency
current noise for the simple Coulomb-blockade problem
consisting of two tunnel junctions connected in series.
The noise was computed both numerically and analytical-
ly using the same master equation as for the current. The
numerical results are exact within the context of the mas-
ter equation. The analytic results were shown to agree
with the numerical results in four regimes: the zero volt-
age limit, the thermally activated regime, the region
where only two charge states are accessible at low tem-
peratures, and the large voltage limit. The low-
temperature limit in some cases is not obtained until the
temperature is very much less than Ec, e.g. , kz T
=10 E&. For the intermediate-voltage regime we ob-
tained a useful approximation to the noise which related
the noise to the variance in the number of electrons in the
region between the tunnel junctions. Thus, while the
current for an asymmetric pair of junctions is linearly re-
lated to the mean number of electrons in this region, the
noise measures the variance.

Both the numerical and analytic results showed that
the noise contains information which is not contained in
the current. Thus, by measuring the zero-frequency noise
we can determine the five parameters in the model more
accurately than one could with the current alone. Alter-
nately, one can use the noise to check the results obtained
by measuring the current, showing possible deficiencies in
the underlying rate equation used to describe transport in
this system.

+5 L, 2e TrI[N v ]] . (A3)

In equilibrium the matrices v and v are proportion-
al to one another. We thus define a matrix v which
satisfies v = —R~ 'v, v =RL 'v, and

(A4)

Equation (A4) allows us to reduce Eq. (A3) to two
different kinds of traces: Tr[[N, [N, M]]p' '] and
Tr[ [N, M]5P[N, M]p ' ']. These traces can be simplified
using: (i) the trace of M times any vector is zero [Eq. (7)],
(ii) Mp' ' is zero [Eq. (8)], and (iii) M5P is related to the
identity matrix via Eq. (A2). The end result is that the
noise in equilibrium is

S= —4e TrINMNp' '] .
(RL '+R~ ') (A5)

2. Simplified expression
for the linear-response conductance

In equilibrium the probability function p'„' has a
thermal distribution, i.e., it is the exponential of —P
times some energy E„. The simplest way to see this is to
use the detailed balance [Eq. (22)]

The zero-frequency noise may be expressed directly in
terms 5P:

S~~ =2e TrIv 5Pv p' ']+2e TrIv 5Pv p' ']
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where the energy E„ is

e nE„= +eVn .
2C

(A7)

The fact that the distribution is thermal and that E„ is
given by Eq. (A7) allows one to express the derivative of
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(p)

av,
= —Pe(n —Tr I Np ' 'I p'„') . (A8)

The strategy now is to express partial derivatives with
respect to V in terms of partial derivatives with respect to
V . At the end we use Eq. (A8) to rewrite partials with
respect to V in terms of equilibrium expectation values.
Because we know that the currents II and I~ are equal,
we will only consider II. The quantity which we are
computing is the linear-response conductance

aI av' „, Qp= —eTr. p' ' —eTr v
BV

(A9)

where this and all other partial derivatives are evaluated
at V=O. The derivative of I with respect to V at V=O
is zero because I at V=O is zero.

p
' ' with respect to V in terms of the equilibrium proba-

bility
(p)= —eTr v'

BV BV
Cg g (0)

C aV,
(A12)

In order to eliminate the other derivative with respect
to V, we note that Mp' ' is zero for all voltages, and
hence

aM ( )
ap(p)

aVP av
BM (P)+M aP
aVP av,

=0,

=0.

(A13)

(A14)

As in Eq.-(A11), we can relate derivatives with respect to
V to derivatives with respect to V:

BM RL, 'C~ —R~ 'CI. ()M

C(RI '+Rit ') (A15)

Using Eqs. (A13)—(A15), the linear-response conductance
1s

=0.

(A 10) (R +R )' (A16)

Because the I 's are functions of Cz V+CV, derivatives
with respect to V can be related to ones with respect to
V.

As our final simplification of dI/dV, we use Eq. (A8) to
convert the partial with respect to V to traces involving

(0)

BV C av,
(A 1 1)

RL 'RR

(R +R )'
= —Pe Tr[NMNp' '} . (A17)

Using Eqs. (A9) —(A 1 1), one partial derivative with
respect to V can be eliminated:

Dividing Eq. (A5) by Eq. (A17), we obtain the fiuctuation
dissipation theorem, Eq. (27).
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