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pand structure and symmetry analysis of coherently grown Sit „Ge„alloys on oriented substrates
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A semiempirical tight-binding method was used to calculate the band structures of Si, „Ge alloys
coherently grown on (001)-, (111)-, and (110)-oriented Si, ~Ge~ substrates. The distorted lattice and
Brillouin zone, as well as the band-edge splittings and shifts which vary with the Ge content of both the
Si& Ge strained layer and the substrate, are given. The band structures and symmetry properties of
the coherently strained Si, „Ge„alloys along high-symmetry lines of the distorted Brillouin zone are an-
alyzed. The calculation results show that for the [001] and [111]growth cases, the conduction-band
minima appear in the growth direction when the epilayer is under tensile strain. When the Si& Ge„al-
loys are grown on a (111)-or {110)-oriented substrate, the four-degree degenerate state X, in the [001]
direction of an unstrained diamond structure splits into two bands with even and odd parities, respec-
tively. This splitting results in a nonlinear effect, which increases rapidly with increasing strain and re-
sults in the downward bending of E, (6) and E, (2) for Si-rich alloys grown on (111)and (110) Ge sub-
strates, respectively. This effect deviates from the band-edge variation trend given by linear
deformation-potential theory, which does not explicitly include the nonlinear effect. Corresponding to
the reduced symmetry of the distorted diamond structures, irreducible representations of the space
groups are obtained and used to denote the calculated energy bands. Relations among the irreducible
representations of the energy bands, such as compatibility, the relation between energy bands of un-
strained and strained diamond structures, and additional degeneracies due to time-reversal symmetry,
are obtained and shown. Finally, selection rules for direct optical transitions are obtained within the
framework of the electric-dipole approximation, and the effects of the polarization of incident light are
discussed.

I. INTRODUCTION

Recently, there has been increasing interest in electron-
ic properties of Si/Ge strained-layer quantum wells and
superlattices' and their application to electronic and
optical devices. The band structure, which is fundamen-
tal to the electronic properties, is distorted under strain.
People ' and others have used linear deformation-
potential theory to predict the band-edge shifts and split-
tings of coherently strained Si, „Ge alloys. But the ex-
act nature and the symmetry properties of the distorted
band structures in the Brillouin zone remain unclear.
Moreover, since the deformation-potential values were
obtained in external stress experiments, where the strain
tensors were relatively small, nonlinear effects due to high
strain as in typical cases of coherent growth need further
study. A semiempirical tight-binding method can be
used to calculate the band structures in the distorted Bril-
louin zone, which automatically incorporates the full
space group of the strained Si, Ge alloy (as a virtual
crystal). Using the tight-binding technique, band mixing,
crossing or anticrossing, degeneracy and spin-orbit split-
tings can all be included.

In this paper, the semiempirical tight-binding method
including the strain is used as described in Sec. II. The

consideration of symmetry properties and the irreducible
representations are given in Sec. III. Section IV presents
the calculation results for the band-edge variations with
the Ge content of the strained layer and the substrate,
and the band structures and symmetry properties of
coherently grown Sit „Ge alloys on (001)-, (1 1 1)-, and
(110)-oriented Si, ~Ge~ substrates. Finally, the selection
rules for direct optical transitions are discussed in Sec. V.

II. TIGHT-BINDING METHOD AND STRAIN

A. Tight-binding calculation of Si, „Ge„alloy

A semiempirical tight-binding method was used to cal-
culate the band structure of the Si& Ge bulk alloy. In-
teractions among the nearest and second-nearest atoms
were considered and sp orbitals of each atom were taken
as the basis functions. Spin-orbit splitting was also taken
into account according to the method given in Refs. 7
and 8. Slater-Koster integral parameters were adopted
and the parameters used for bulk Si and Ge are given in
Table I. For the Si, Ge„alloy, the virtual-crystal ap-
proximation was used, in which the integral parameters
of the alloy were the linear interpolations of those of bulk
Si and Ge:
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TABLE I. Two-center integral parameters for bulk Si and Ge
determined by fitting to experimental data and pseudopotential
calculations. The subscripts 1 and 2 designate nearest and
second-nearest interactions. All parameters are in units of eV.

Si:
Ge:

~min

3.38
0.77

1.12
0.87

1.80
0.66

Integral parameters Si

E„(000)
E„„(000)

(ssa. )
&

(spo )&

(ppo )&

(PP~) I

(sso )2

(spo )~

(pp~)2
(pp~)2

0.0
4.380

—2.094
1.687
2.250

—0.483
0.001
0.0948
0.483

—0.060

0.0
5.524

—1.679
1.819
2.010

—0.405
—0.030
—0.086

0.369
0.011

E (Si& Ge ) =xE&&(Ge)+(1 x)E&q(Si),

where E is the two-center integral parameter between
orbitals p and q. Shen et al. ' used a nonlinear interpola-
tion for the integral parameters of alloys, but in our cal-
culation we prefer the linear interpolation.

In order to see the strain effect on the band structures
of Si, „Ge alloys, the band structures of unstrained Si
and Cxe along different directions of the Brillouin zones
were first calculated and shown in Figs. 1 and 2, in which
the band structures along the eight (111)directions are
the same, and so are the bands along the six ( 100) direc-
tions. It will be shown later that these equivalent bands
may be split or shifted by the coherent strain. The band
structures in Figs. 1 and 2 agree with those of other cal-
culations. " Although for the higher conduction bands
the data are not very accurate in the present calculation,
the lower conduction-band edges are very close to the ex-
perimental data' and are given as follows:

The band structures of Si& „Ge„alloys, calculated us-
ing Eq. (1) and the tight-binding parameters of Si and Ge,
show a gradual transformation from Si to Ge when the
alloy changes from pure Si to pure Ge (i.e., x increases
from 0.0 to 1.0). Figure 3 shows the variation of direct
and indirect optical transition energies of the Si, „Ge
alloy as a function of the Ge content x, where
EO=E, (I 7 ) —E,(1 s), Eo= E(16 )—E,(I s+) are two
direct transition energies at the I point; E@d(X) and

Eg d(L) are the minimum direct transition energies at the
X and I points, respectively. The minimum indirect
transition Eg, (A, L ) is compared with the experimental
value Eg, (exp). One can see from Fig. 3 that when the
Ge content of the alloy increases from 0.0 to 1.0, Eo (or
the I 7 band of Fig. 1) decreases, crosses the Eo (or the
I 6 band) at about x =0.3, and becomes the lowest con-
duction band at the I point for x)0.3. At the same
time, the two lowest conduction bands, 1.6+ at the L point
and 66 in the 6 line of Fig. 1, also decrease but with
different rates. These two indirect minimum-energy
values are equal at about x =0.77 and then L, 6+ becomes
the lowest conduction band for x & 0.77 shown in Fig. 3.
The indirect-gap energy Es; (b, L ) is the minimum of the
two described above. The calculated results are in agree-
ment with other calculations' and experimental data, '

except the cross-point value x, =0.77, which is smaller
than the experimental result of 0.85. The low value of x,
in the present calculation is due to the fact that the ener-

gy value (1.8 eV) of the L-point minimum of bulk Si is
lower than the experimental data (2.0 eV). This may also
have some effect on the accuracy of the I.-point minimum
of a coherently grown Si& Ge alloy.
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FIG. 1. Band structure of bulk Si.
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In the coherent growth of Si, Ge„alloys on a
Si& „Cxe„substrate, internal stress and strain wiH build
up due to the lattice mismatch. The strain tensor for a
coherently grown epilayer is similar to that when the al-
loy is under an external biaxial stress. The strain tensor
components 6~x, Eyy, and e„denote the relative displace-
ments in the three coordinate directions x, y, and z, whilee, e, and e, denote one-half of the changes in the an-

gle between two originally perpendicular lines. In our
calculation, the strain is assumed to be elastic and homo-
geneous.

Based on the elastic properties of bulk Si and Cxe, the
strain and stress tensors can be easily obtained in a
growth coordinate system OX'Y'Z', where OZ' is taken
as the growth direction. By coordinate transformation,
the strain tensors can be represented in the conventional
crystal coordinate system of the diamond structure,
OX', where OX, OY; OZ are taken aiong the (100)
symmetry directions of the crystal. The strain tensors for
the [001], [111],and [110] growth cases are given in the
OXY'Z coordinate system as follows:

[001] growth:

FIG. 3. Direct and indirect band gaps of a bulk Si& „Ge„al-
loy. Eo is the energy difference between I 7 and I"8+, Eo is the
energy difference between I 6 and I,+, E~ d(X) and I:g d(L) are
the direct band gaps at points X and L, respectively, Eg;(A, L) is
the indirect band gap from the 6 line into the L point, and
Eg;(exp) is the experimental data of the indirect band gap given
in Ref. 12.

e„„0 0

woo)
= 0 e 0

0



47 BAND STRUCTURE AND SYMMETRY ANALYSES OF. . . 1939

I C12,
&xx =&x ~ &zz

= 2
C ~x .

11

position in the distorted Bravais lattice is given by

R; =(1+a)R;"o, (5)

[111]growth:

~xx &xy &xy

&xy ~xx &xy

~xy ~xy &xx

(3)

where

4C44

4C44 +C11 +2C12
—(C„+2Ci~)

E y

[110]growth:

~xx &xy

~110 ~xy ~xx

0 0 e„
(4)

where

2C44 —C12

2C44+ C11+C

E'zz —6x

—(C„+2C,2)

+C»+C

Si:
Ge:

C11

16.577
12.40

C12

6.393
4.13

C44

7.962
6.83

For the [001] and [111] growth cases, the strain and
stress components in the growth plane have relations
Ex Ey Tx Ty 7 respective 1y, where E'x

y E'y Tx 7 and Ty
are the strain and stress components in the OX' and OF'
directions in the growth plane. For the [110] growth
case, it can be shown that the relation, E' E'y holds while
T„'WT». Due to the latter, the strain tensor cannot be
decomposed into the sum of the strain tensors of a pure
hydrostatic pressure and a uniaxial stress for the [110)
growth case.

C. Distorted lattice and Brillouin zone

In the coherent growth of a Si, Ge alloy, the dia-
mond structure is distorted differently according to the
growth direction as are the Bravais lattice and the Bril-
louin zone. Within the range of elastic strain, the atom s

where e„' = (a, —ao ) /ao is the strain tensor component in
the growth plane, a, is the lattice constant of the sub-
strate, and a0 is the lattice constant of the unstrained lay-
er. The values of the elastic stiffness constants C», C12,
and C44 (10"dyn cm ') are taken as follows

where R; 0 and R; are the atom's position in sublattice A
of the unstrained and strained diamond structures, re-
spectively, 1 is the unit tensor and e is the strain tensor.
When the Si& Ge„alloy is coherently grown on a (001)-
oriented substrate, the atoms of both sublattices A and B
of the diamond structure are distorted according to Eq.
(5). But, if the growth direction is along the [111]or
[110] direction, there is an additional internal displace-
ment between the atoms of the two sublattices. This
internal displacement is usually described by the
"internal-strain parameter" g,

' varying from 0 to 1.0.
The values gs;=0. 53 and g&, =0.44 (Ref. 17) for Si and
Ge, respectively, were used in our calculation for the
[111]and [110]growth cases.

If the location of an atom in sublattice A of the distort-
ed diamond structure is described by Eq. (5), the coordi-
nate of an atom in sublattice B is given by the follow-
ing. 18, 19

[001] growth:

R =(1+@)R;0,
[111]growth:

1
aoR~=(1+@)R;o — e„„g 1

1

[110]growth:

(7)

0
R, =(1+@)R;0— e g 0 (8)

1

where R; 0 and R; are similar denotations for sublattice
8, a0 is the lattice constant of the unstrained diamond
structure, and e is the strain tensor component given in
Eqs. (3) and (4).

The undistorted and distorted diamond structures cal-
culated from Eqs. (5)—(8) are shown in Fig. 4 for Ge
grown on (001)-, (111)-, and (110)-oriented Si substrates.
From the relations between the basis of the crystals and
their reciprocal lattices, the distorted Brillouin zones
were calculated and shown in Fig. 5. In order to clearly
illustrate the distortion, the strain used in Figs. 4 and 5 is
fictitiously made four times larger than the true strain of
a Ge layer grown on a Si substrate. The symbols denot-
ing high-symmetry points and lines of the distorted Bril-
louin zones in Figs. 5(b) —5(d) are different from those of
the unstrained diamond structure in Fig. 5(a), because the
new Bravais lattice is no longer face-centered-cubic, and
the symbols correspond to the Brillouin zones of the new
Bravais lattices.

By analyzing the change of the symmetry of the Bril-
louin zones, the following results can be obtained. For
the [001] growth case, the original six equivalent [100]
faces in Fig. 5(a) are distorted and fall into two groups in
Fig. 5(b): four faces (100), (100), (010), and (010) in one
group, and (001) and (001) in the other. On the other
hand, the equivalence of the eight [111] faces is un-
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changed. For the [111]growth case, Fig. 5(c) shows that
the six [100] faces remain equivalent while the eight
[111]faces are divided into two groups: (111)and (1 1 1

in one group and six others in one group. For the [110]
growth case, the six [100] faces of Fig. 5(d) are divided
into two kinds: (001) and (001) are equivalent, (100),
(100), (010), and (010) are equivalent. The eight [111]

faces are also divided into two kinds: (111), (1 1 1), (111,
and (1 11) in one group; (111), (111), (111), and (11 1) in
the other. These new nonequivalent faces of the distorted
Brillouin zones indicate the reduction of the symmetry of
the band structures. Therefore, the conduction-band
minima along these k directions are split as follows (re-
ferred to as interband splitting):

[001) growth:

E, (2):[001],[001] (in growth direction)

E, (4):[100],[100],[010],[010] (in growth plane),

[111]growth:

E (1):[111] (in growth direction)

E (3):[ill],[ill], [111] (in growth plane),

E,'(4)

[110]growth:

E, (2):[001],[001] (in growth plane)
E 6

E, (4):[100],[100],[010],[010],
E, (2):[111],[111]
E (2):[111],[ill] .

The above interband splitting pictures obtained from
the argument of the symmetry change of the first Bril-
louin zone are rejected in our band-structure calculation
results discussed in Sec. IV.

D. Strain and tight-binding parameters

In order to calculate the band structures of coherently
grown i, en Si Ge alloys by the tight-binding method,
there are two kinds of parameters that need to be adjust-
e wi sd th train: the geometrical factors discussed a ove

e well-and the two-center integral parameters. In the we-
known Harrison's law, ' a two-center integral parameter
h d dependence on the distance between twoas a

ralatoms. Although this law provides a reasonable genera
trend, it has been shown that a more refined one can
provide better results. The following modified Harrison's
law is used to describe the integral dependence on the dis-
tance:

(o) bulk Si or Ge

(c) Ge on (111) Si

(b) Ge on (001) S i

(d) Ge on (1 10) S i

do
(9)pq pq

h E 's the two-center integral parameter with
strain and Epq is that without strain; similarly, d and do
are the distances between the two atoms with and
without strain, respectively. In Eq. (9), n is a parameter
describing how the two-center integral changes with dis-
tance and it is orbital dependent. In the current calcula-
tion, eight such parameters are taken into consideration
and the values are given below:

n,',"=4.77, n,', '=2.0,
FICi. 4. Distorted diamond structures coherently grown on

oriented substrates: (a) unstrained diamond structure, (b) Cie
grown on a (001) Si substrate, (c) Cre grown on a (111) Si su-
strate, and (d) Ge grown on a (110) Si substrate.

n'"= i.9i n"'= &.0,sp ~ sp

n 1 0 0 7 ppg
n"' =3.1,
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TABLE II. Deformation potentials used in linear
deformation-potential calculation.

Deformation potential

( d +
3

+a )

(:-d + —,':-„+a)L
X

D„
D„'

'Reference 27.
bReference 18.
'Reference 2S.
"Reference 26.
'Reference 28 ~

Si

1.S'
—3.12'

9.20'
16.14
2.04"
2.68

1.31
—2.78

9.42'
16.2'
3.32'
3.81'

diamond structures, not all of the fractional translations
~ s in the corresponding space group are zero, and thus
the space groups discussed here are nonsymmorphic.

It is well known that the diamond structure has 48
point-symmetry operations and the space group is
Oh(Fd3m). When Si and Ge are coherently grown on
(001)-oriented Sii Ge substrates, some of the symme-
try operations of the diamond structure no longer hold.
For instance, the symmetry of all the threefold rotations
(53 ~„53 ~„etc.) and reflections (I53 „I53 '„etc.) are
destroyed. On the other hand, the fractional translation

I

changes from that of the diamond structure
r=(1, 1, 1)ao/4 to v& =(a,a, c)/4, where ao is the lattice
constant of the unstrained diamond structure, and a and
c are the lattice constants of the [001] distorted diamond
structure in the growth plane and in the growth direc-
tion, respectively. The space group of the distorted lat-
tice becomes D4i, (I4, /amd) (Ref. 31) for the [001]
growth case.

Similarly, for Si and Ge grown on (111)-oriented sub-
strates, there are only 12 point-symmetry opera-
tions remaining, which are the identity and inversion
symmetry, the threefold rotations and rejections
along the [111] directions (53 y 53 y I53 y I53 y ),
and the twofold rotations and reAections
(52,5z„,, 52, I52, ,I52„,I52 ). These symmetry
operations together with the new translation symmetry
form a space group D3d(83m ). ' For Si and Ge grown
on (110)-oriented substrates, none of the fourfold and
threefold rotations and reflections are legitimate symme-
try operations. Only eight point-symmetry operations-

$2z p 2+y 7 2 2z 2+y p
—remain and the re-

sulting space group is Dzi, (Imma ). ' The general sym-
metry properties for the three growth directions are listed
in Table III.

Including the spin of an electron, we have the double
space group 6, doubling the numbers of symmetry ele-
ments:

(10)

where E corresponds to a 2~ rotation of the spinor.
When the space group of the distorted diamond struc-

ture is known, the irreducible representations of the
space group at any k point of the distorted Brillouin zone
can be obtained. For example, when k is inside the first
Brillouin zone, the irreducible representations of the
group of k can be obtained by multiplying a factor e
to the irreducible representations of the corresponding
point group. When k is on the surface of the first Bril-
louin zone, the procedure is complicated for nonsym-
morphic space groups. Fortunately, the problem has al-
ready been solved. Miller and Love, and Bradley
and Cracknell have listed all the irreducible representa-
tions of the 230 space groups. Since spin-orbit splitting is
included in the present calculation, the irreducible repre-
sentations of the double space groups are used to denote
all the energy bands throughout this paper. The symme-
try properties of the Si, Ge„alloy were analyzed by
treating the random alloy as a virtual crystal.

The group of k along a symmetry line must be a sub-
group of a special point of that line. Therefore, the irre-
ducible representations at the symmetry point can be
decomposed into a number of irreducible representations
of the group of k along the symmetry line. Thus the
compatibility relations between the bands of symmetry
points and those of symmetry lines can be established.
By analyzing the compatibility relations, the connections

between the energy bands of the symmetry points and
symmetry lines can be worked out. In this paper, the
connection between all the energy bands for the [001],
[111],and [110] growth cases have been confirmed with
the compatibility relations.

In addition to the space-group symmetry operations,
the Hamiltonian of an isolated crystal exhibits time-
reversal symmetry. For example, for spinless particles,
H(r, —p)=H(r, p). Therefore, an additional degeneracy
among eigenvalues may be expected. The judgment of
whether additional degeneracy occurs or not is given by
the Kramers theorem and Wigner*s rule. Using that
rule, we obtained information about additional degenera-
cies for the [001], [111],and [110] growth cases when
time-reversal symmetry is included. The degeneracies
due to time-reversal symmetry are denoted by the sum of
two representations in the band-structure figures in this
paper. Time-reversal symmetry may not apply if the sys-
tem being considered is not isolated, for instance, in the
presence of an electrical or magnetic field.

IV. BAND STRUCTURE
AND SYMMETRY ANAI. YSIS

In this part the band-edge dependence of coherently
grown Si& Ge alloys on the Ge content of both the epi-
layer and the substrate are discussed for difFerent growth
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Z5 A7 Xg+Xg~(=~
Ng+Ng

Ng+Ng

0 —2

Xg+X Ng+Ng

FIG. 8. The band structure of coherently
strained Si grown on a (001) Ge substrate,
along different directions of the distorted Bril-
louin zone. All the energy bands along the
[100] direction are denoted by 5,.

Z [001] = I = [100] X N ['l11] ~
I

For the [001] growth case, the symmetry along the
[001] direction is not reduced, while the symmetry along
the [100] and other directions is reduced by strain.
Therefore the group of k along the [001] direction (line A
and point Z) and the pertinent irreducible representa-
tions, A6, A7, Z~, in Figs. 8 and 9 are the same as
b6, b, 7,X~ of an unstrained diamond structure [see Fig.
5(b)]. But the group of k along the [100] direction is
changed and there is only one irreducible representation
b~ to denote all the energy bands in that direction (see
Figs. 8 and 9). Therefore, all the bands at the I point
connect with bands in the [100] direction with the b ~ rep-
resentation. In contrast, for the [001] direction, two irre-

ducible representations A6 and A7 exist, in which A6 can
connect with I 6+ or I 6, and A7 can connect with I 7 or
I 7 . From the irreducible representations, one can see
that, along the [100] direction, no matter how closely
some of the energy bands appear to approach each other,
they actually do not cross, while A6 and A7 in the [001]
direction can cross each other. Although the symmetry
along the [100] direction is reduced, the four-degree de-
generacy at the X point of the unstrained diamond struc-
ture is not lifted (including the degeneracy of X3+X4 due
to time-reversal symmetry). The energy bands with irre-
ducible representation X3+X4 are, however, different
from X5 of the unstrained diamond structure.

Z5 Xg+Xg Ng+Ng

~Ng+

Ng+Ng

—2

L.
tD

—6

—10

Xg+ Xg Ng+Ng

FIG. 9. The band structure of coherently
strained Ge grown on a (001) Si substrate,
along different directions of the distorted Bril-
louin zone. All the energy bands along the
[100]direction are denoted by b,

z [oo1] =
I = [1oo] x N [111]
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TABLE III. Comparison of the symmetries of coherently strained diamond structures grown on (001)-, (111)-,and (110)-oriented
substrates. a and c are the lattice constants in the growth plane and along the growth direction, respectively, for the [001] growth
case; u, and u3 are constants related to strain tensors, and their values are different for the [111]and [110]growth directions.

Bulk Si and Ge
Bulk Si and Ge

on (001) substrate
Bulk Si and Ge

on (111) substrate
Bulk Si and Ge

on (110) substrate

no. of point symmetry
operations
space group
Bravais lattice

fractional translation

Fd3m(oh )

body-centered
cubic (I, )

(1, 1, 1)a /4

16

I4, /amd{D4& )

body-centered
tetragonal (I q)
(a, a, e)/4

12

R 3m (D3d)
trigonal
(I,p )

u, {1,1, 1)ao/4

Imma(D2& )

body-centered
orthorhombic (I, )

(9 I u] u3)ao/4

It is important to note that the labels of the irreducible
representations are only pertinent to their own space
groups. For instance, I 6+ of the unstrained diamond
structure is an irreducible representation of group 0&,
while I 6+ of the [001] growth case is an irreducible repre-
sentation of group D4&. The relation between the irre-
ducible representations of the unstrained and strained di-
amond structures are given in Table IV, which shows
how the energy bands split from the unstrained diamond
structure into those of the strained ones. For example, at
the I point of Si grown on a (001)-oriented Ge substrate,
the top valence band I z in Fig. 1 is split into two bands,
I 6+ and I 7+ of Fig. 8, and the bottom conduction band
I 8 is split into I 6 and I 7, while the I 6+, I 7 I 6 l7
bands do not split.

I s+ of the unstrained Ge (Fig 2). .The heavy-hole band
~

—,', +—,
' ) (I 4++I 5+) is the top valence band, which is op-

posite to the case of Si grown on a (111) Ge substrate,
where the light hole g, +—,

' ) (I &+) is the top valence band
(refer to Ref. 39). For Ge grown on a (111)Si substrate,
the energy distance between the light-hole band I 6+ and
the spin-orbit split band

l —,', +—,
' ) (I z ) is much larger than

that of the heavy-hole band
~ —,', +—,

' ) (I"4++I s+) and the
light-hole band I 6 . This phenomenon is similar to that
of the [001]growth case previously discussed.

For the [111] growth case, the symmetry along the
[111]direction is not reduced, while the symmetry along
the [111]and other directions is reduced. Therefore, the
group of k along the [111]direction (line A and point Z)

B. [111]growth
2.4

The band-edge variations of Si, Ge alloys grown on
a (111)-oriented Si substrate are shown in Fig. 10. The
compressive stress of the strained layer lifts the conduc-
tion band at the L point and lowers the conduction band
along the 5 line, making E, (6) in the (100) directions
the lowest conduction band until x =0.96, beyond which
the energy of E, (6) and E, (3) in the growth plane are
very close each other. For x )0.96, intervalley scattering
between electrons in the L, and 5 valleys may have some
effect on the transport properties of the strained alloy.
For Si, Ge, alloys grown on (111) Ge substrates (see
Ref. 39), E, '(1) in the [111] growth direction is the
conduction-band minimum except for the x (0.12 re-
gion, where E, (6) is shown to decrease rapidly with de-
creasing Ge content of the strained layer, falling below
E, '(1) and becoming the lowest conduction band. This
phenomenon differs from that of the linear deformation-
potential formula, where E, (6) linearly increases with
decreasing Ge content of the strained layer as discussed
in Ref. 39. In the present calculation, for strained Si
grown on (111) Si& Ge substrates, however, E, (6) is
always the lowest conduction band (also not shown). For
strained Ge grown on (111) Si& Ge substrates, E, (3)
in the growth plane is always the lowest conduction band.

Figure 11 shows the band structure of strained Ge
grown on a (111) Si substrate. At the I point, the two
highest valence bands I 4 +I 5+ and I 6+ originate from

2.0 ELI ())

1.6

1 e2)
S

0.8
(D

0.4

0.0

—0.4

0.0 1.0

Ge content x of the strained layer

FIG. 10. Valence- and conduction-band-edge variations with
Ge content x of the coherently strained Si, Ge alloy grown
on a (111) Si substrate. Energy values are relative to the un-
strained Si substrate, and the band offsets are derived similarly
to Fig. 6.
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TABLE IV. Decomposition of the irreducible representations at high-symmetry points and lines of
the first Brillouin zone of unstrained diamond structure into those of coherently strained diamond
structures grown on (001)-, (111)-,and (110)-oriented substrates.

point I
=&r

point X
=&X

point X
= &Z

point L
=&N

point 8
=&P
line 6

line 6
=&A
line X
=&X
line S
= &F
line Z
=&Y
line Z
=&W
line Z
=&U
line Q

L+
N3

P3

L5+
N'..

A,

L+
N3+ +N4+

8'4
P4

X5

X5

S5

L4
N4
W5

P5

L5
N3

P6
b, 7

A7

Z2
Y2

Z2
8'2
Z2
U2

Z3
Y3

Z3
W3

Z3
U3

Z4
Y4

Z4
8'4
Z4
U4

(a) Decomposition into [001] strained structure (double group)
r,+ p+ r,+ I6 I7
I + r,+ r,++r,+ I6 r;

X5
X3+X4

X5
Z5

r;
I, +r;

L6
N3 +N4

8'7
P7

Z5
Y5

Z5
W5

Z5
U5

point I
=&r

point X
=&F

point L
= &L

point L
=&Z
line A
=&A
line X
=&X
line S

L +

L3+
+

z4+

A4

A4

L+
I 4
L5+

z5+

X5
F3+ +F4+ +F3 +F4

L3+ +L4+ L4
L+ L4
z+ Z4

A5

A5

X5
X3+X4

S5
Q3+Q4

L5
L3
L5
Z5

L6
L, +L

L6
Z6

A,
A,

(b) Decomposition into [111] strained structure (double group)
r,+ r,+ I + I6 r;

line Q
=&8
line Q
=&Y

3

B3
3

Y3

4

84
4

Y4

point I
=&I

point X
=&T

point L
=&R

point L
=&S

point W
=&W
line b,

L4+

R3+
L4+

S3+

W3
8'2

L5
R+
L5
S4+

L +

R+ +R4+
L +

S3+ +S4+
W4

W4

L4
R4
L4
S4
W5
W2

L5
R3
L5
S3
W6

W4

(c) Decomposition into [110] strained structure (double group)
p+ r,+ r,+ r;
p+ r, r,++I,+ I, I5

X5
T2+ T2

r;
I.;+r,

L6
R3 +R4

L6
S3 +S4

8'7
W3+8 5
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TABLE IV. (Continued).

(c) Decomposition into [110] strained structure (double group)

A5 A5

line X
=)X
line X

line S
= &F
line S
=&U
line Z
=&P
line Q
=&Q
line Q
=&D

Z2
P4

3

D3

Z3
P3

X5

X5
X5

S5
F5
S5
U5

Z4
P3

4

D4

Z5
P4

and the pertinent irreducible representations are the same
as those of an unstrained diamond structure (line A and
point L of Figs lan. d 2), while the group of k and the ir-
reducible representations along the [111] direction are
changed. Although the symmetry along the six (100)
directions remains equivalent, this symmetry is reduced
and is lower than that of an unstrained diamond struc-
ture. Thus the four-degree degenerate state X5 is split
into two bands F3++F4+ and F3 +F4 with even and
odd parities, respectively. The degeneracy of F3+ and F4+

is due to time-reversal symmetry, as is the case for F3
and F4 . (A representation is said to have an even or odd
parity when its character under the inversion symmetry
operation is the same as or negative to, respectively, that
of the identity operation. ) The stress-induced splitting of
the X5 state into the pair F3++F4 and F3 +F4 exhibits
nonlinearity and this splitting increases very fast with in-
creasing strain. This effect is automatically included in

our calculation but not explicitly considered in the linear
deformation-potential calculation formula given in Refs.
5 and 25.

For Si& Ge alloys coherently grown on (111)Si sub-
strates, when the Ge content of the strained layer in-
creases from 0.0 to 1.0, the volume compression makes
the center of the two lowest conduction bands F3+ +F4+
and F3 +F4 of Fig. 11, for example, lower with increas-
ing strain. The nonlinear splitting between the F3 +F4+
and F3 +F4 bands also makes the F3 +F4 band move
further down. Therefore, the band-edge variation with
Ge content of the strained Si, Ge alloys has the same
trend in our calculation as those of the linear
deformation-potential formula. But, for Si, „Ge alloys
coherently grown on (111) Ge substrates (again not
shown here, but discussed in Ref. 39), the volume expan-
sion and the nonlinear splitting have different effects on
the lowest conduction band F3++F4+ at the F point.

4
Lg+L4

L g+L4

—8 Lg+L4

t4+lS fS

G. 0~ (&«) s.

h4+A5 Z 4+Z5
Z+

Z6
Z+

Z4+Z5

ZS

FIG. 11. The band structure of coherently
strained Ge grown on a (111) Si substrate,
along different directions of the distorted Bril-
louin zone.

—12 Z6

[&t&] z [&oo]
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Since the nonlinear splitting increases faster with strain,
the lowest F3+ +F~+ conduction band [E, (6)] goes lower
for large strain. The lifting of the conduction-band de-
generacy at the point X of bulk Si under stress has been
previously evidenced in several experiments. ' ' The
nonlinear splittings in the experimental results have been
explained by Hensel, Hasegawa, and Nakayama, and
Laude, Pollak, and Cardona, and they have added a split-
ting parameter ='„or c.z, a new shear deformation poten-
tial, to account for this splitting. A discussion of non-
linear splittings and the comparison between the results
of the present calculation and Hensel's model is given in
Ref. 39.

2.0

1.6

)
0.8

Q

0 4

E,'(C)
E, (2)

on (110) Ge substrate

12 ~ E~" (2)

E. (2)L2

C. [110]growth

The band-edge variations of Si, „Ge alloys grown on
(110)-oriented Si and Ge substrates are shown in Figs. 12
and 13, respectively. For Sit „Ge„alloys grown on (110)
Si substrates, shown in Fig. 12, the conduction-band
minima are E, (2) along the [001] direction for almost all
Ge contents except the x )0.96 region, where the ener-
gies of E, (2) and E, (2) in the [111]direction are very
close. Therefore, near the band crossover point
(x ='0.96), intervalley scattering between the L and the 6
valleys is possible for Sit Ge„alloys grown on a (110) Si
substrate. For Si, Ge alloys grown on (110) Ge sub-
strates, as shown in Fig. 13, the conduction-band
minimum changes from E, (2) in the [111]direction into

—0.4

—0.8

0.0 1.0

Ge content x of the strained layer

FIG. 13. Valence- and conduction-band-edge variations with
Ge content x of the coherently strained Si& „Ge„alloy grown
on a (110) Ge substrate. Energy values are relative to the un-
strained Ge substrate, and the band offsets are derived similarly
to Fig. 6.

2.4

2.0

E". (2)

li2)
Q

0.8
tl)
C

on 110 S i substrate

0.0

0.0 1.0

Ge content x of the strained layer

FIG. 12. Valence- and conduction-band-edge variations with
CJe content x of the coherently strained Si& „Ge alloy grown
on a (110) Si substrate. Energy values are relative to the un-
strained Si substrate, and the band offsets are derived similarly
to Fig. 6.

E, (2) in the [001] direction as the Ge content decreases
to below 0.4. However, the linear deformation-potential
formula used in Refs. 25 and 5 always give E, (2), being
higher than E, (4) for all Ge contents.

Figures 14 and 15 show the band structures of strained
Si grown on a (110) Ge substrate and strained Ge grown
on a (110) Si substrate, respectively. In this case, the
[110] and [110] directions are no longer equivalent but
their symmetry remains unchanged by the strain. Thus
the irreducible representations along the [110] and [110]
directions are the same as those of an unstrained dia-
mond structure, while the energy-band structures in these
two directions differ from each other as shown in Figs. 14
and 15. The symmetries at the I point and along the
[100], [001], [111],and [111]directions are all reduced,
resulting in different energy bands. At the I point, the
conduction bands are all I 5, while all the valence bands
are I 5+, where both the I ~+ and I 5 are two-degree de-
generate. The fourfold-degenerate X5 state of unstrained
Si is split into two T2 states at the T point, and into the
Xz and X5 states at point X. It is interesting to note
that the splitting between the X~+ and X5 states, which
are of the even and odd parities, respectively, is much
larger than that of the two T2 states, the latter of which
is too small to be seen in the figure. It can be seen that
for the [110] growth case, the band structures along the
[100] and [001] directions are diff'erent due to the symme-
try reduction by the strain, as are the band structures in
the [111]and [111]directions (see Figs. 14 and 15). The
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T2 X5 S5+Sg I-- R5+Rg
5

x+5
r 5 Ra+Ri

)
—4

L

LLl

S5+Sg
5+RE

R5+Rq

FIG. 14. The band structure of coherently
strained Si grown on a (110) Ge substrate,
along different directions of the distorted Bril-
louin zone. Since there is only one irreducible
representation to denote all the energy bands
along the [001], [110],and [110]directions, re-
spectively, only one symbol is shown for each
of the three directions.

—]2

T [100j I - [001 j X Z [110j I [110j6 S [1113 l [111jR

nonequivalence of the band structures in the [100] and
[001], [111]and [111),and [110]and [110]directions give
different effective masses of the heavy and light holes,
which are indicated clearly by the significant differences
in the valence-band curvatures.

Similar to the I" point in the [111] growth case de-
scribed previously, the splitting of the X5 state into a pair
of X5+ and X5 bands for the [110]growth is a nonlinear
effect, which increases rapidly with the strain. For
Si, „Ge„alloys grown on (110) Si substrates, similar to
the case of Fig. 15, the nonlinear splitting of the X5+ and
X5 states and the volume compression both make the
X5 conduction state decrease with increasing Ge content
of the alloy. But for Si& „Ge„alloys grown on (110) Ge
substrates, the nonlinear splitting of the X&+ and X5
states has an opposite efFect on the X~+ band compared

with that of volume expansion, thus resulting in E, (2)
decreasing as shown in Fig. 13. The nonlinear band-edge
splitting is discussed in Ref. 39.

It can be known that there is a point IC in the [110]
direction of the second Brillouin zone which is equivalent
to point X in the (100) directions of the unstrained dia-
mond structure, shown in Figs. 1 and 2. For Si& Ge„
alloys coherently grown on (110)-oriented substrates, the
point E in the [110] direction of the second Brillouin
zone is equivalent to point X in the [001] direction but
not to point T in the [100] direction. Therefore, whenev-
er E, (2) in the [001] direction is the conduction-band
minimum, that minimum also exists in the [110]direction
of the second Brillouin zone. This phenomenon is due to
the following relation:

~[110],K ~[001],X ++h

X5
R5+R4

—2)
Q)

Q)

LLl
—6

A5 X5

s++s+

FIG. 15. The band structure of coherently
strained Ge grown on a (110) Si substrate,
along different directions of the distorted Bril-
louin zone. Since there is only one irreducible
representation to denote all the energy bands
along the [001], [110],and [110]directions, re-
spectively, only one symbol is shown for each
of the three directions.

S5+Sg

T [100j I
- [001 j X E [110j - f [110 S [111j I [111jR
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k(110],K +k(100],Z +~h r (12)

where Kh is a reciprocal vector of the distorted lattice.
This phenomenon is favorable for optical transitions if
zone folding is expected to occur in superlattice struc-
tures.

The even- and odd-parity characteristics of the energy
bands in the [001], [111],and [110]growth cases are very
interesting. If the original band in the unstrained dia-
mond structure has an even or odd parity, the split or
shifted bands under strain retain the same parity as the
original one. For all three growth cases at the I point,
all the valence bands have even parities, while all the con-
duction bands have odd parities. If the original band in
the unstrained diamond structure does not have an even
or odd parity, the split or shifted bands under strain ei-
ther remain parityless or split into a pair of bands with an
even and odd parity. This can be seen from Figs. 14 and
15 for the [110] growth case, where the X~ band in the
[100] direction is split into two parityless T2 states, while
in the [001] direction it is split into the X& and X5 pair.
Furthermore, the relative position of the split bands with
the even and odd parities will switch as the strain
changes sign, i.e., expansion or compression. For exam-
ple, at the X point of the [110] growth case, X5 is the
lowest conduction band if the alloy is under compressive
strain (Fig. 15), while X5+ becomes the lowest conduction
band if the alloy is under tensile strain (Fig. 14). The
splitting of a parityless band into a pair of even and odd
bands is important in the sense that the interaction be-
tween the even and odd bands may be very large and the
resulting effects of this splitting, such as band-edge varia-
tions and optical transitions, should not be neglected in
large strain cases.

V. SELECTION RULES
FOR DIRECT TRANSITIONS

Besides denoting the energy bands, the irreducible rep-
resentations of a space group can also be used to deter-
mine selection rules for optical transitions. For simplici-
ty, only direct transitions are discussed here.

For optical transitions, one must calculate the matrix
elements of this type,

&
y'"'"'I

VI q'„""&, (13)

(ki, v)
where V is the perturbation function,
(n =1,2, 3, . . . , I ) is the initial state transforming as the

(k],v)
irreducible representation D ' of the group of

(k2, p)
k&, P

' (m =1,2, 3, . . . , l„) is the final state transform-
(k, ,p)

ing as the irreducible representation D ' of the group
of k2, and l and l„are the dimensions of the two irre-
ducible representations, respectively. For direct optical
transitions, we have k, =kz.

Suppose D~(az ) denotes the representation of the

point group of k& to which the perturbation function V
(k],v)

belongs, the product function Vg„' belongs to the
(k, , v)

product representation D'~'(a& )XD ' ([ak ~v] ) of the

group of k&. According to the orthogonal theorem of

group theory, the number of times which the representa-
(k), JM)

tion D ' appears in the above product representation
is given by

c(p, 13,v)= g X '"([a„l~))X (ak )

Ia~ ~rI
1

XX ' ([ „/ I), (14)

where hk is the number of symmetry elements in the
1

group of k& and X([ak ~r] ) denotes the character of the
1

irreducible representation for the symmetry operation
[ak ~r]. The selection rules are obtained by determining

I

whether or not the value C(p, P, v) is equal to zero for
forbidden and allowed transitions, respectively.

In the electric dipole approximation, the perturbation
function V is proportional to e-r, where e is the polariza-
tion vector of the radiation field. The selection rules for
direct optical transitions at high-symmetry points and
lines of the distorted Brillouin zones for the [001], [111],
and [110]growth cases are illustrated in Table V. Shown
in the first column of Table V are the irreducible repre-
sentations of the perturbation and the pertinent basis
functions. For every symmetry point or line, the irreduc-
ible representations of the group of k for the initial states
are listed in the upper subrow. The next subrows, within
boxes, give the irreducible representations of the final
states that have nonvanishing matrix elements of Eq. (14).

By analyzing Table V and referring to the band struc-
tures in Figs. 8 —15, the following conclusions can be ob-
tained:

(1) At the same k point or line, if there is only one irre-
ducible representation denoting all the energy bands,
then the transitions between any two bands are allowed.

(2) Since the perturbation is the electric dipole approxi-
mation, V-e.r, which is an odd function of space coor-
dinates, transitions between two bands with the same par-
ities are forbidden, while transitions between two bands
with different parities may be allowed. At the I point, all
the valence bands have even parities, while all the con-
duction bands have odd parities. Therefore, transitions
between a valence band and a conduction band may be
allowed, while transitions between two valence bands or
between two conduction bands are forbidden.

(3) Selection rules may depend on the polarization of
the incident light.

Figure 16 shows the selection rules for direct transi-
tions at the I point of Ge grown on a (001)-oriented Si
substrate. When the light is polarized parallel to the z
([001]) direction, only transitions between I 6 and I 6,
and I 7 and I 7 are allowed. When the light is polarized
parallel to the growth plane (xy plane), all the transitions
among the I 6+, I 7+, I 6, I 7 bands are allowed. From
Table V, it can be seen that when light is polarized paral-
lel to the growth direction, the transitions between A6
and A7 along the [001] growth direction are not allowed
either. If polarized in the growth plane (such as along
the [100] direction), transitions between any two bands
are permitted, independent of the polarization of the in-
cident light. The transitions between the lowest conduc-
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TABLE V. Selection rules for direct optical transitions at high-symmetry points and lines for dia-
mond structures coherently grown on (001), (111),and (110) substrates. The first column gives the di-
pole irreducible representations and the basis functions.

(a) [001] growth case (double group)

Point I
r, ;z

r;;(x,y)
Point N

NI, x —y
2N2 ~x +y~z

Point X
X6,y
X z
X'„x

Point P
P 'z

P5,'(x,y )

Line A

Ai, z
A&, (x,y)
Line W

W z
W x
W4', y

O.

Line Q
Qi'x

2Q, ;x+y, z

r,
r, xr;
I-,- xI,

N;
N, xN,
N, xN,

X;
X; XX6
X, xX',
X; XXS

P;
P, xP',
P; XP5

A;
A, xA,
A;XAg

WxW

W;x Wg

Q;
Q;XQi
Q, XQ2

r,+
r,

I 6 +I 7

N3
N3
N4

P3
P6
P7

W2

W2

W3

W~

r+
r;

I 6 +I 7

N4
N4

X3
X3
X3
X4

P4
P5
P7
A,
A,

A6+A7
W3

W3

W2

W4

I6
r+

r,++r,+
N3
N,

'

N4

P5
P4
P7

W4

W4

W5

W3

P6
P3
P7

Wq

W5

W4

W2

r;
r,+

r,++r,+
N4
N+
N',.

X4
X4
X4
X3

P7
P7

p3+P4+P5+P6
A7

A7

A, +A,

(b) [ill] growth case (double group)

Point I,Z
I ),x+y+z

I, ; [x +y —2z, &3(x —y)]
point L,F
L),x —z

2L2;x +z,y
Line A

A),'x +y +z
A„[&3(x—y), 2z —x —y ]
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(c) [110] growth case (double group)
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tion band (X3 +N4+) and the highest valence band
(X3 +%4 ) at point X are also allowed.

For the [111]growth case, the selection rules depend
on the polarization direction at the 1 (and Z) point. For
example, when light is polarized along the growth direc-
tion, the transitions between the I 4 + I 5+ and I 4 + I 5

are allowed. On the other hand, when light is polarized
parallel to the growth plane, the transitions between
I 4++ I 5+ and I 6 are allowed. At the L and F points, the
selection rules have no dependence on the polarization
direction of the incident light.

For the [110] growth case, direct transitions are in-
dependent of the polarization direction. At the I point,
the transitions between I 5+ and I 5, i.e., between any
valence band and any conduction band, are allowed. At
the X point, the minimum-energy transitions between X~
and X5+, or X5 and X5, are forbidden. At the points R
and S, the transitions between R3+ +R4+ and R 3 +R4,
S3+ +S4+ and S3 +S4 are allowed. Along all the other
high-symmetry lines, such as [100], [001], [111], [111],
[110], and [110] directions, transitions between any two
bands are allowed.

VI. SUMMARY

i
+
7

FIG. 16. Selection rules for direct transitions among energy
bands at the I point of coherently strained Ge grown on a (001)
Si substrate. e is the polarization vector of the incident light, z
is the unit vector in the [001] growth direction.

erties of the strained Si, Ge„alloys along high-
symmetry lines of the distorted Brillouin zone were ana-
lyzed in detail. The conduction-band valley E, (6) in the
(100) directions was split into two kinds of valleys:
E, (4) and E, (2) for the [001] and [110] growth cases,
while the conduction-band valley E, (4) in the ( 111)
directions was split into two kinds of valleys: E, '(1) and
E, (3), or E, '(2) and E, (2) for the [111] and [110]
growth cases, respectively. For the [001] and [111]
growth cases, the conduction-band minima appeared in
the growth direction only when the epilayer was under a
tensile strain, i.e., the unstrained lattice constant of the
epilayer is smaller than that of the substrate. For the
[111]and [110]growth cases, the four-degree degenerate
state Xs in the [001] direction of an unstrained diamond
structure was split into two bands with even and odd par-
ities, respectively, due to the symmetry reduction by the
strain. It was found that the splitting between the two
bands with even and odd parities was a nonlinear effect,
which increased rapidly with increasing strain. The
overall effect made the conduction-band edge E, (6) for
the [111] growth case and E, (2) for the [110] growth
case decrease with increasing strain for Si, „Ge alloys
grown on Ge substrates. These results deviated from
those of linear deformation-potential theory, which did
not explicitly consider the nonlinear effect.

The band structures in the present calculations are
consistent with the compatibility relations between the ir-
reducible representations of symmetry points and lines in
the distorted Brillouin zones. The relations between the
energy states of an unstrained diamond structure and
those of strained ones were shown in the band-structure
figures. Additional degeneracies due to time-reversal
symmetry were also labeled for convenience of reference.
Selection rules for direct optical transitions were given
for the Si& „Ge„alloys coherently grown on the (001)-,
(111)-, and (110)-oriented Si, ~Ge substrates using the
electric-dipole approximation. The results showed that
at the I point, transitions between a valence and a con-
duction band may be allowed, while transitions between
two valence or two conduction bands are forbidden. In
some cases, selection rules depend on the polarization of
the incident light, in which case more transitions can be
allowed when the light is polarized parallel to the growth
plane.

A semiempirical tight-binding method has been used to
calculate the band structures of Si

&
Ge„alloys

coherently grown on (001)-, (111)-, and (110)-oriented
Si, ~Ge„substrates. Strain tensors were carefully stud-
ied for the three growth directions and the strain effect
was incorporated in the geometrical factors and the in-
tegral parameters of the tight-binding formulas. The dis-
torted crystal structures and the distorted Brillouin zones
were shown. The band-edge variations of the Si

& „Ge„
alloys coherently grown on different Si& Ge substrates
were obtained. The band structures and symmetry prop-
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