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We obtain the interaction parameters for the spin-1 Ising representation of (GaAs)q Ge2
metastable alloys, based on the total energies of a set of ordered structures calculated by the first-
principles self-consistent pseudopotential method. We then use these parameters to reexamine the
thermodynamic consequences of a recently proposed quenched-disorder model for the observed zinc-
blende-to-diamond phase transition in (GaAs)q Ge2 . In this model, Ge atoms are distributed at
random at all lattice sites. We present a complete phase diagram of the quenched-disorder model
in the pair approximation of the cluster-variation method. In view of our set of first-principles
interaction parameters, we conclude that, like previously proposed bulk thermodynamic models,
the quenched-disorder model does not lead'to a phase transition that agrees with the experimental
result.

I. INTRODUCTION

The measured equilibrium phase diagram of
(GaAs)& ~Ge2~ (Ref. 1) shows that there is nearly total
phase separation into (1—x) GaAs and x Ge at all temper-
atures below melting. On the other hand, single-phase
(GaAs) z Gez [and other (A111Bv)z C21v] alloys have
been synthesized by nonequilibrium growth methods,
producing compounds with either the zinc-blende sym-
metry of the GaAs constituent or the diamond symme-
try of the Ge constituent. A continuous phase transition
from the zinc-blende to the diamond symmetry has been
observed at a composition x, —0.3—0.4 (Refs. 3—5).

The equilibrium segregating (two-phase) behavior of
GaAs and Ge is caused by the high energy (Eb + 100
rneV) that would have been necessary to form nonoctet
Ga-Ge and As-Ge "bad" bonds in single-phase alloys. s

Each of these bonds has a total number of valence elec-
trons that deviates by AZ„=+I from the normal octet
Ga-As and Ge-Ge bonds present in the constituents. The
average energy of a third type of bonds, the so-called
"wrong" bonds, Ga-Ga and As-As, whose average num-
ber of electrons deviates by AZ„= +2 from the octet
bonds, is usually estimated to be E~ = (3 4)Eb-

A series of workss M ~~ attempted to understand the
order-disorder (zinc-blende to diamond) transition in
nonequilibrium (GaAs)q ~Gez~ alloys in terms of stable
or metastable features of the bulk phase diagram. The
results of such thermodynamic theories can be summa-
rized as follows: (i) If wrong (AZ„=+2) bonds are per-
mitted in the model, the interaction parameters can be
adjusted to lead to a critical concentration x, -0.3 (Refs.
3, 10, and 11). (ii) If no wrong bonds are allowed in the
model, the critical concentration is always 2:,)0.57, in
a phase diagram obtained in the pair approximation of
the cluster-variation method (CVM). ~~ (iii) In both ap-
proaches one finds practically complete phase separation

at T 1500 K if, instead of fitting the interaction param-
eters, one calculates them from a realistic first-principles
model. 6 This result is a consequence of Eg ) 100 meV
and is found whether one assumes E -+ oo (i.e. , no wrong
bonds) or E~ -3-4 Eb (which, at T & 1500 K, leads to a
very small number of wrong bonds). However, all previ-
ous theoretical studies have assumed equal interactions
for the Ga-Ge and As-Ge bonds, as well as for the higher-
energy Ga-Ga and As-As bonds, when present. The pre-
vious results were therefore based on the hypothesis of
invariance with respect to the interchange Ga~As.

Recently, Gu, Ni, and Zhu studied the thermody-
namic consequences of removing this Ga~As symme-
try in a model that used pairwise interactions obtained
from the universal-parameter tight-binding (UPTB)
method. ~s These pairwise energies strongly favor As-As
over Ga-Ga bonds. The resulting equilibrium phase di-
agram, also obtained in the CVM pair approximation,
still shows that nearly total phase separation is the ther-
modynamically stable configuration at all temperatures
below melting. Gu, Ni, and Zhu then proposed that the
order-disorder transition could be explained in terms of a
model that we call the "quenched-disorder model. " The
idea is to simulate the nonequilibrium nature of the al-

loy by assuming that the Ge atoms are distributed with
equal probability (given by the composition x) on all lat-
tice sites, regardless of the occupation of the neighbor-
ing sites. This assumption precludes the otherwise ther-
modynamically favored phase separation into a GaAs-
rich and a Ge-rich phase. The quenched-disorder model
gives a phase diagram with a single second-order phase-
transition curve between the zinc-blende and the dia-
mond phases. At typical preparation temperatures, the
critical concentration for the UPTB parameters is x, =
0,36—0.37, in agreement with the experimental values
0.3—0.4 (Refs. 4 and 5).

Since UPTB does not always give reliable quantitative
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information, we decided to obtain independently pair-
wise interaction parameters for (GaAs) i Gez, based on
first-principles pseudopotential calculations. We find in-
teraction parameters that favor Ga-Ga bonds over As-As
bonds, in opposition to the result obtained with UPTB
parameters. This result does not significantly affect the
equitibriurn phase diagram at solid-state temperatures,
still leading to nearly total phase separation. We also
calculate a complete phase diagram for the quenched-
disorder model, which shows that the UPTB parame-
ters correspond to a very special point of the phase di-
agram. Our first-principles parameters lead, at a prepa-
ration temperature ~ 700 K (Ref. 4), to x, —0.67 in
the CVM pair approximation. We estimate that improv-
ing the statistical treatment could reduce x, to 0.57, still
larger than the experimental values 0.3—0.4. We conclude
that neither the introduction of Ga~As asymmetry nor
the quenched-disorder model explains the existence of a
low-temperature single-phase alloy with a zinc-blende-to-
diamond transition at x, 0.3—0.4.

In the following sections, we describe the spin-1 Ising
model commonly used for the thermodynamics of ternary
alloys and its ground-state diagram when applied to a
general (AB)i C2 alloy (Sec. II). To investigate the
Ga~As asymmetry, we calculate the total energy of six
new ordered structures that contain wrong bonds. These
are used together with previously obtained structures
to provide a set of realistic interaction parameters (Sec.
III). We then discuss the assumptions inherent in the
quenched-disorder model, obtain its ground states (Sec.
IV), and present its complete phase diagram (Sec. V).
We finally analyze the implications of this model in view
of our set of interaction parameters (Sec. VI).

II. APPLYING THE BLUME-EMERY-GRIFFITHS
MODEL TO (GaAs)i ~Ges

Let us first consider a general (AB) i Cz alloy in the
diamond lattice. If AB and C are lattice-matched con-
stituents [as in (GaAs) i ~Ge2~], relaxation effects are ex-
pected to be less important than "chemical" interatomic
energies and we assume that the alloy is described by a
Hamiltonian that includes only nearest-neighbor atomic
interactions (for A-A, B B, C-C, A B-, A-C, an-d BC-
pairs). This model can be exactly mappedi4 into the gen-
eralized spin-1 Ising, or Blume-Emery-Griffiths, Hamilto-
nian

'RaEG = J) S,S&+K) S S +I) (S;S&+S,S ),
{") (") {"}

safely omitted from Eq. (1). The terms containing J and
K, together with a magnetic-field (which maps into the
chemical potential of species C) term, constitute the orig-
inal Blume-Emery-Griffiths (BEG) Hamiltonian, is used
to model tricritical behavior in Hes-He4 mixtures.

The BEG parameters are expressed in terms of inter-
atomic nearest-neighbor pair energies spa (S, S'=A, B,
or C) as'4

J = 4(~AA + saa 2~Aa) ~ (3a)

&AC BC + EAB + &CC (3b)

L = 4(saw —s'aa —2sxc+2sac) (3c)

AB/(A+BC)/ABC /C
AB/(8+AC)/ABC2/C

l
I

AB/ARC2/C

The pair energy saa represents the total energy per
nearest-neighbor pair of a zinc-blende structure with only
atoms S in one sublattice and only atoms S' in the other.
The average wrong-bond (b,Z„=+2) energy (with respect
to the normal A Bbond-) is E =2J [see Eq. (3a)]. The
average bad-bond (b,Z„=+1) energy, with respect to the
average normal bond, is Eb = (J —K)/2 [see Eq. (3b)].
The parameter I in Eq. (3c) describes the Ga~As asym-
metry.

The Hamiltonian of Eq. (2) can be minimized in a
straightforward way with respect to the probabilities @gal
of finding species S and S' (regardless of orientation, i.e. ,

pea =pa a) on a nearest-neighbor pair of sites, at a fixed
concentration x in (AB)i ~Cz~. The use of this proce-
dure in combination with a common-tangent construc-
tion leads to the ground-state diagram of Fig. 1. We
assume J)0, which corresponds to a tendency towards
ordering within the AB component [rather than phase
separation into A and B; see Eq. (3a)]. Each region of
this phase diagram is labeled according to the sequence
of stable phases as x increases from 0 to 1. Besides the
constituent phases AB (at x=0) and C (at x=1), the
following phases are found: (i) ABCz (at x = ~), which
corresponds to the "staggered quadrupolar phase"
of the spin-1 model and has C atoms occupying one sub-
lattice and A and B atoms randomly distributed in the

where the spin-1 Ising variables can take the values

1 for A
S, = &

—1 forB
0 for C

(2)

and the indices (ij) indicate sums over nearest-neighbor
pairs of sites. We assume a given concentration of each of
the three species, so that chemical-potential terms can be

AB/C

0
L/J

FIG. 1. Ground states of the generalized Blume-Emery-
GriKths model [Eq. (1)] for (AB)i Cq alloys. The circle
(UPTB) and the small square (LDA) indicate the parameters
obtained by Gu, Ni, and Zhu (Ref. 12) and in the present
work, respectively.
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other sublattice, and (ii) B + AC (and its complemen-
tary A+ BC, both at x = ~s), which corresponds to phase
separation between A (B) and the zinc-blende structure
BC (AC).

All estimatess s' for the interatomic pair energies in
(GaAs) i ~Gez~ lead to values J —K & 0 (i.e. , K/ J( 1
in the ground-state diagram). When ~L[ & (3J —K)/2,
values Eb &0 correspond in the ground-state diagram to
the region AB/C, where GaAs and Ge are phase sepa-
rated. We indicate in the ground-state diagram of Fig. 1
the location of the BEG energy parameters obtained by
Gu, Ni and Zhu (UPTB), together with the parameters
obtained in the present work (LDA). Ga

(b)

Ge
0

III. OBTAINING THE INTERACTION
PARAMETERS FOR (GaAs)i ~Geq~

We have previouslys modeled the energy of a sys-
tern containing normal and nonoctet "bad" (AZ„=+1)
bonds [but no "wrong" (b,Z„=+2) bonds] by considering
(GaAs)„/(Gez)„superlattices (SL's) for several orienta-
tions and repeat periods. The excess energies of such
SL's (with respect to phase separation into pure GaAs
and pure Ge) were calculated P using the first-principles
self-consistent-pseudopotential method. The excess en-
ergies were then fitted by a Hamiltonian that consists
of a sum of Ising-like nearest-neighbor interactions be-
tween atoms and a Madelung energy term. Both contri-
butions include efFects of charge transfer between donor-
like As-Ge bonds and acceptorlike Ga-Ge bonds. These
effects lower considerably the formation energies of su-
perlattices. The Madelung term represents the screened
electrostatic interactions between compensation charges
located near the Ga-Ge bonds and the As-Ge bonds. We
modeled this term by placing the compensation charges
(+e/4 for full charge transfer) at the midpoints of the
nonoctet bonds.

Although the Madelung contribution can be significant
to the excess energies of some SL's, we found that, for
the alloy, by far the predominant effect of charge transfer
in a composition-temperature phase diagram is produced
by appropriately scaling down the Ising terms. This jus-
tifies using the BEG Hamiltonian of Eq. (1) to represent
the excess energy of the alloy. We obtained the value
109 meV for the efFective average bad-bond (b,Z„=+I)
energy Eb in (GaAs)i Gez with charge transfer. We
now supplement this analysis by considering new ordered
structures that are not invariant under the interchange
Ga~As. In stoichiometric (GaAs)i 2, Gez~ this can only
occur in structures that contain wrong (AZ„=+2) bonds.
For instance, a larger number of Ga-Ge than As-Ge bonds
has to be counterbalanced by more As-As than Ga-Ga
bonds so that the total concentration of Ga and As re-
mains the same. The new structures can therefore pro-
vide information not only about the Ga~As asymme-
try parameter L, but also about the wrong-bond energy
E~ =2J.

Three of the new structures are shown in Fig. 2; the
other three are obtained by swapping Ga~As. Struc-
tures (a), (b), and (c) contain, respectively, one, two,
and three wrong As-As bonds per 16 atoms and have

FIG. 2. New structures used to obtain the Ga+-+As asym-
metry parameter I and the "wrong-bond" energy E

been constructed from the 1 x 1 [001] SL by swapping
the atoms of one or two Ga-Ge or As-Ge pairs of the 16-
atom unit cell. We obtained the total energies of the new
structures s with respect to the originating 1 x 1 [001] SL,
which we eall sp, using ten special k points in the irre-
ducible part of the fcc Brillouin zone. For consistency
with the previous fit for Eg, relaxation eÃects were not
included. [Relaxation decreases the formation energy of
the lattice-matched (GaAs)„/(Ge2)„SL's usually by less
than 10%.]

We express the excess energy of these structures s with
respect to phase separation as

AE(s) = AHBEG (s) + o!EM d (s), (4)

where the Madelung energy EM,d(s) of each structure is
calculated by assigning full compensation charges e/2 to
As-As, —e/2 to Ga-Ga, e/4 to As-Ge, and —e/4 to Ga-
Ge bonds. We found that the presence of wrong bonds
makes these structures metallic. The Madelung energy is
therefore scaled down (by a fitting factor a) with respect
to that calculated by the above scheme, because of more
effective screening and less than complete charge trans-
fer due to metallization. The approximations involved in
the Madelung energy model and its homogeneous scal-
ing down only afFect the fit of E =2J, since we use the
known value of Eb = (J —K)/2 from our previous fit,
which did not involve structures with "wrong" bonds,
and since the value of L is obtained from the energy dif-
ferences between each of the structures (a)—(c) and its
complementary.

To fit J and L we use Eq. (4) and the corresponding
equation for the 1 x 1 [001] SL, which we denote by sp
(which has o, = 1, since it has no wrong bonds and full
charge transfer is present). We thus have

EHBEG(s) —b,HBEG(sp) = EE(s) —AE(sp)
—AEMad(s) + EMad(sp)

where EM d(sp) was calculated to be —4.4 meV. The
expressions for GHEE~(s) —AHBEG(sp) in terms of
the BEG parameters, the directly calculated values of
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TABLE I. Expressions for b,HaEG(s) —b.H&EG(so) in terms of the parameters of Eq. (1), the
directly calculated values of the total-energy differences EE(s) —AE(so), and the model Madelung
energies EM,s(s) (assuming full charge transfer) for the structures s = (a)—(c) in Fig. 2 and their
complementary (a')—(c'), where so refers to the 1 x 1 [001] superlattice.

Structure

(a)
(a')
(b)
(b')
(c)
(c')

b Hapa(s) —b HaEG(SQ)
(per atom)

(3J —K —2I )/16
(3J —K + 2L) /16
(3J —K —2L)/8
(3J —K + 2L)/8

(7J —K —6L) /16
(7J —K+ 6L)/16

AE(s) —AE(sp)
(meV/atom)

39.1
36.1
79.9
73.3

103.7
96.3

EM ad (s)
(me V/atom)

—3.9
—39
—7.7
—7.7
24.9
24.9

TABLE II. Recent calculations for the
energies Ei, = (J —K)/2 [of "bad" EZ„=+1 bonds] and
E = 2J [of "wrong" b, Z„=+2 bonds] and for the interaction
parameter ratio L/J, for (GaAs)i Ge2 alloys.

Reference

UPTB
LDAb
LDA'
LDA
LDA

Eg (meV)

115

100
109

E (me V)

298
360
463
330
378

L/J
1.00

—0.06

Reference 12.
Pure GaAs, Ref. 18.' Pure GaAs, Ref. 19.
Reference 9.
Present work. The result for Eb was obtained in Ref. 6.

AE(s) AE(s—o), and the values for EM g(s) (with cr = 1)
for the the six structures s are given in Table I.

The best fit of the BEG parameters, with (J —K)/2
fixed at 109 meV (Ref. 6), gives J= 189 meV, L = —ll
meV, and a =0.44. The three energy difFerences between
each structure 8 and its complementary s' give values of
L consistently between —13 and —10 meV.

A recent ab initio molecular-dynamics simulation of
liquid GaAs found a preference for Ga-Ga over As-As
bonds. ~i Our negative value of L implies that Ga-Ga
pairs are indeed favored with respect to As-As pairs in
crystalline (GaAs)i Ge2 . This conclusion disagrees
with the UPTB results, which show a strong preference
for As-As pairs. We find a small ratio L/J = —0.06.
In Table II we compare the UPTB results (line 1) to
those obtained by recent first-principles self-consistent
pseudopotential calculations for pure GaAs (E~ in lines
two and three) and for (GaAs) i Ge2 ordered struc-
tures (lines four and five). (The somewhat larger value
for the result of Ref. 19 on line three may be due to the
presence of negative-energy third-neighbor wrong bonds
in their fit. ) It is clear that the UPTB parameters work
reasonably well for E~ and Ei„but produce the wrong
sign and a too large magnitude of L/ J.

For the typical values Eb & 100 meV, nearly total
phase separation persists at preparation temperatures

( 700 K in Ref. 4) for both L = 0 (Ref. 6) and L = 1
(Ref. 12). Thermodynamic equilibration of the BEG
model therefore cannot describe correctly the state of
single-phase (GaAs) i Geq alloys or the observed order-
disorder transition at x, =0.3—0.4. In these alloys, Ge is
distributed equally in all lattice sites, even when the al-
loy has zinc-blende symmetry, since ordering only aKects
the positioning of Ga and As (not Ge) in the two sub-
lattices. Gu, Ni, and Zhu used this fact to propose the
quenched-disorder model discussed in the next section.

IV. THE QUENCHED-DISORDER MODEL
AND ITS GROUND STATE

In the quenched-disorder model, the probability of
occupation of each lattice site by Ge is given by the con-
centration x, independently of the occupation of neighbor
ing sites. The model supposes that Ga and As are free
to equilibrate in the set of sites complementary to the
sites occupied by the quenched random distribution of
Ge. This assumption is very different from the situation
of thermodynamic equilibrium of the three species (even
in a metastable state), which was assumed in previous
models. s io ii In fact, the tendency towards phase sepa-
ration implies that, even in the one-phase regions of the
equilibrium phase diagram, the probabilities for finding
Ge-Ge and X-X' pairs (where X and X' denote non-
Ge atoms, i.e. , Ga or As) are larger than their random
values x~ and (1 —x), respectively, while the probabil-
ity for finding Ge-X pairs is less than its random value
2z(1 —x). The assumption of a random uncorrelated dis-
tribution of Ge therefore cannot be motivated by the true
energetics of Ge, Ga, and As atoms. It corresponds in-
stead to a situation where the interaction energies are all
zero. However, since the model can be motivated by the
experimental quick quench of Ge atoms in a highly mixed
state during the growth process, and since, if UPTB in-
teractions are used, it leads to critical concentrations
close to the experimental observations, we analyze here in
more detail both the statistical mechanics of this model
and its physical implications to the order-disorder tran-
sition in (GaAs)i Geg .

We start by considering the consequences of a
quenched disorder of species C in the pair probabilities
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ply of the (AB)i C2 alloy. Since the distribution of
species C is assumed to be uncorrelated with the occu-
pation of neighboring sites, we introduce the following
constraints to the BEG Hamiltonian of Eq. (1):

2
PCC =& )

pAc + pac = 2x(l —x),

p~~+ paa+ JiA.a = (1 —x)'. (6c)

Here ps' for SP S' denotes the "nonoriented" pair prob-
ability for finding either S-S' or S'-S pairs.

A phase diagram for this model in the cluster-variation
method can be more efficiently obtained by working with
correlation functions as the independent variables for
the free-energy minimization (instead of using the more
straightforward "natural iteration" procedure z). The
three constraints of Eqs. (6a)—(6c) and an additional con-
straint for a fixed concentration of species A or B [given
by (1 —x)/2] reduce the number of independent (pap )
to two. Indeed, all pair probabilities can be expressed in
terms of the concentration x and of the short-range-order
(SRO) parameters

(S;S,'+ S,'S, )o1= ) o2= 7)
(1 —x)2 ' 2x(l —x)

where (. ) represents a thermodynamic average of
nearest-neighbor spin products. The Hamiltonian of Eq.
(1) then leads to the total energy per site at a given state
of SRO (o) in the form

E/N = 2(1 —x) o'i J+2(1 —x) K+ 4x(1 —x)o2 L .

value obtained with the UPTB parameters (Table II).
For exactly L/J = 1, the energy degeneracy between
the two types of ground states is removed by maximizing
the CVM pair-approximation entropy. 2s The nonoriented
pair probabilities pcs can be expressed in terms of x and
(cr) and are displayed in Fig. 3 for the case L&0. (The
curves for L (0 are the same as for L &0 if one changes
Ga~As. ) By contrast, if we assume total equilibration
of the original BEG model and the UPTB parameters of
Table II, only Ga-As and Ge-Ge bonds are significantly
present at T &1000 K.

It is worth remarking that these results indicate the to-
tal absence of Ga-Ga bonds but a significant number of
As-As bonds (solid lines in Fig. 3) for I/ J& 1. At typical
preparation temperatures and with the UPTB values of J
and L, the CVM pair probabilities are almost identical to
the T=0 results displayed in Fig. 3 for L/ J=1. The frac-
tion of As-As bonds reaches 8.7% at x = 4. The presence
of such wrong bonds in (GaAs)i ~Geq~ has been the sub-
ject of controversy. Electronic-structure calculations2
show that a significant number of As-As bonds should
close the energy gap of the alloy over a wide composition
range, contrary to experiment.

This ground-state analysis has determined the (exact
for L/J ( 1 and I/J & 1) T = 0 values of the SRO
parameters fo) as a function of the BEG interactions and
concentration x of species C. This is a result of the fact
that the total energy depends only on SRO. To describe
the state of long range ord-er (LRO), however, we need
to introduce new parameters that indicate the possible
difFerent occupation of the two fcc sublattices n and P

o.1 ———1,
(ii) if I/J & 1,

o2 ——0; (9)

O.1 ——4

'(3x —1)/(1 —x) for x ( -'

1 forx
(10)

Notice that the K term is constant at a given concentra-
tion and therefore does not inHuence either the ground
state or the thermodynamic properties of such a model.
Since the BEG Hamiltonian is invariant under the inter-
change I +-+ Land S, ~ ——S, , for all sites i, the phase
diagram must by symmetric about L = 0.

We analyze now the ground-state properties of this
model. The first step is to minimize Eq. (8) with re-
spect to the SRO parameters (o) with the constraints
of Eqs. (6a)—(6c). This is a simple linear programming
problem. 2z For J & 0 and L & 0, there are two classes of
solutions: (i) if L/ J ( 1,

1.0 .'
-. IL/i&il

0.5-

0.0
N~ 1.0

~ W

~ 0.5
0
Q

~ ~
~+ 0.0

1.0

/
GeGe~~

J'

r
AsAs

. IL/~=il

'. GaAs

GaGe~/
~go ~~

. -. iL/Z&1i GeGe z

GaGe

/ '
A,sA.s

GaAs

0.5-

~ ' ' /
GeGe &J'

' . GaAs
rr

r
GaGe, AsGe

'
~ . . .. ~ . .

—1 forx+2 0.0
0,0 0.5

Ge concentrati on.
1.0

—(1 —x)/x for x & zi .

A transition between these two classes of ground states
occurs at I/ J = 1, which corresponds precisely to the

FIG. 3. Nonoriented nearest-neighbor pair probabilities
in the ground state of the quenched-disorder model for
(GaAs) i Ge2 with L &0.
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F((o) (n)) = &((o)) —TS((o) (n)) (12)

with respect to (o) and (g). Notice that the limiting
behavior of the system as T ~ 0 is obtained by first
minimizing E((cr)) [leading to the solution given in Eqs.
(9) and (10)j and then, for these (o), by maximizing
S((o), (g)) with respect to (g) only. It is clear that this
procedure must lead to a constant value of the critical
concentration x, in each of the two intervals 0 (L/ J &
1 and L/J ) 1, corresponding to the two ground-state
solution of Eqs. (9) and (10), and possibly a different x,
at exactly I/J = 1. In the CVM pair approximation the
result turns out to be

'
s for )L[/J ( 1

x, = & ssfor /L//J = 1 (13)

, -'for )L(/J ) 1.

When L = 0, the quenched-disorder model corresponds
to the dilute (spin-z) Ising model, 2s which is a simple
representation of a system of interacting magnetic ions
distributed at random in a given lattice with concentra-
tion @=1—x. The T + 0 limit of this system corresponds
to the purely geometrical site-percolation problem. For
the diamond lattice, the best numerical result for the per-
colation threshold is p'," '~ =0.43 (Ref. 27); thus, at L =0,
x'"~'t = 1 —p,'"~" = 0.57, compared to the CVM result
x, vM = s. The discussion of the Preceding ParagraPh
shows that this value should persist for all ~L~/J ( l.
Although the CVM error in the critical concentration at
T =0 (17'%) is somewhat larger than the error in the crit-
ical temperature at x =0 (6.7%), the general shape of the
order-disorder transition curve of the dilute Ising model
is reproduced by CVM, as shown in the next section. The
CVM results, together with the knowledge of the exact
T = 0 results, give therefore reliable information about
the quenched-disorder model at low temperatures.

by the three species. Two LRO parameters, involving
the site and nearest-neighbor pair, are necessary. They
can be chosen to be

2(1 —x)
' 2(1 —x)

where i and j are sites on the n and P sublattices, re-
spectively, and are nearest neighbors in the definition of

The LRO parameters (g) are zero in the diamond
phase and nonzero in the zinc-blende phase. The ori
ented pair probabilities y&&„ i.e, the probability of find-
ing species S on the n sublattice site and species S' on
the P sublattice site of a nearest-neighbor pair of sites,
can then be expressed in terms of the concentration x,
the SRO parameters (cr), and the LRO parameters (g).
In the CVM pair approximation, the configurational en-

tropy S is a function of (y&&p, ) only. It can therefore
be expressed as a function of x, (o), and (g). At given
values of the interaction parameters, the concentration
x, and the temperature T, the thermodynamics is deter-
mined by minimizing the free energy

V. PHASE DIAGRAM
OF THE QUENCHED-DISORDER MODEL

At a given L/ J and k~T/ J, the critical concentration
x, is the value of 2; where the free energy ceases to be
a minimum and becomes a maximum in the disordered
(diamond) phase, where gq = gz = 0. This implies that,
at x = x„ the determinant of the Hessian (the matrix
of the second derivatives of F with respect to the four
order parameters) is zero. In the disordered phase this
matrix is block diagonal (the elements related to LRO-
SRO cross terms are zero) so we need only to solve for
the root x = 2:, of the determinant of the 2 x 2 part of
the Hessian related to the LRO parameters:

(14)

where the values of oz and oz in I" are obtained by taking
BF/Bo, = 0.

The phase diagram of Fig. 4 is efficiently obtained by
repeating this procedure for different values of L/J and
k~T/J. Notice the rapid variation of x, with respect
to L/J for ~L[/J 1 and k~T/J & 0.5. This is neces-
sary for a smooth joining of the Gnite-temperature tran-
sition surface with the ground-state discontinuous transi-
tion line, given by Eq. (13). Another remarkable charac-
teristic of our phase diagram is the strong reentrant be-
havior of the transition curve for I/J slightly less than
l. In this regime, for x slightly larger than x, = s, a
disorder~order transition precedes the order —disorder
transition as T increases.

We highlight the transition line corresponding to the
(GaAs) q Gez UPTB parameters (L/ J = 1.00), which
reproduces the phase diagram shown by Gu, Ni, and
Zhu. ~z The constant-L curves displayed near L/ J = 1.00
correspond to I / J = 0.95 and 1.05. To illustrate the sen-
sitivity of the critical concentration with L/J, we also
highlight the isotherm (horizontal cross section) of the
phase diagram at k~T/J = 0.4, which, at the prepa-
ration temperature T = 700 K, corresponds to the pa-
rameter J= 149 meV found by Gu, Ni, and Zhu. This
isotherm and that for k~T/ J = 0.32, which corresponds

FIG. 4. Phase diagram of the quenched-disorder model.
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FIG. 5. Two isotherms of the phase diagram of Fig. 4,
corresponding to the preparation temperature 700 K and val-
ues of J obtained by Gu, Ni, and Zhu (Ref. 12) (solid line)
and in the present work (dashed line). The circle (UPTB)
and the square (LDA) indicate the values of ~L~/J obtained
in Ref. 12 and in the present work, respectively.

VI. CONCLUSIONS

We obtained in this work the "wrong-bond" interac-
tion energy and the Ga~As asymmetry parameter L,
complementing our previous determination of interaction
parameters in a spin-1 Ising (Blume-Emery-Griffiths)
representation of (GaAs)i ~Gez~ alloys. This was ac-
complished by fitting the spin-1 Hamiltonian to the
total energies of ordered structures calculated by the

to our parameter J = 189 meV, are displayed in Fig.
5 together with the points corresponding to values of
I / J= 1.00 (UPTB, Ref. 12) and —0.06 (LDA, this work).
For k~T/J = 0.4, z, decreases from 0.54 to 0.24 as L
changes only from 0.8 to 1.2, which is a fluctuation cer-
tainly within the error incurred by the UPTB parame-
ters.

Our results (marked LDA in Fig. 5) indicate that the
critical concentration shows a negligible variation with
respect to the T=0, L =0 value x,=0.67. The I =0 limit
makes the quenched-disorder model equivalent to the di-
lute spin-z Ising antiferromagnet with a concentration
@=1—x of the magnetic species. The CVM pair approx-
imation reproduces correctly the qualitative features of
the phase diagram for this dilute Ising antiferromagnet,
which corresponds to the I =0 cross section of the three-
dimensional phase diagram of Fig. 4, including the "per-
colation threshold" p, = 1 —z, (below which only a disor-
dered phase exists at T =0) and the vertical slope of the
transition curve as T ~ 0. This last feature and the very
small changes apparent in our transition curves (Fig. 4)
when ~L~/J is changed from 0 to 0.06 lead us to conclude
that our interaction parameters correspond to a true crit-
ical concentration x, —1 —p'," '~ = 0.57, at T —700 K,
in disagreement with the value z, = 0.36 obtained by
Gu, Ni, and Zhuiz and with the experimental result z,
= 3—4.4 s This suggests that the quenched-disorder model
is inadequate to describe the correct nature of the dis-
tribution of Ga, As, and Ge atoms in (GaAs)i ~Gez~
alloys.

first-principles pseudopotential method, using the local-
density approximation (LDA). We find L = —11 meV,
which implies a slight preference for Ga-Ga bonds over
As-As bonds, in disagreement with the results obtained
with universal-parameter tight-binding (UPTB) interac-
tions.

We then reexamined the thermodynamic consequences
of a recently proposed quenched-disorder model for
(GaAs)i ~Gez~ in which Ge atoms are distributed at
random in the alloy. This corresponds to a generaliza-
tion of the dilute Ising antiferromagnetic model. A com-
plete three-dimensional phase diagram in the (z, L/J,
k~T/J) space was determined in the pair approxima-
tion of the cluster-variation method (CVM). Interesting
features included a discontinuity at T = 0 and a strong
reentrant behavior. We showed that the UPTB parame-
ters correspond to a special region of the phase diagram
where the critical curve is very sensitive to the values of
the interaction parameters. We estimated that our inter-
action parameters correspond to a critical concentration
z, =0.57 in the quenched-disorder model.

We summarize in Table III the main results of the ap-
plication of thermodynamic models to (GaAs)i ~Gez~
alloys. The first column shows that, without "wrong"
(AZ„=+2) bonds, the critical concentration has a lower
boundary 0.57 in the CVM pair approximation. This
limit corresponds to a correlated three-species percola-
tion problem, where Ge, Ga, and As atoms are dis-
tributed at random in a diamond lattice with the pro-
vision that no Ga-Ga or As-As nearest-neighbor pairs
occur. This is different from the simpler "classical" two-
species percolation problem, with Ge and "non-Ge"
atoms distributed at random. In this classical percola-
tion problem, formation of Ga-As ordered clusters can
be assumed to occur after Ge atoms are distributed at
random. This corresponds to the T ~ 0 limit of the
L =0 quenched-disorder model, discussed in Sec. IV (with
z, = s in the CVM pair approximation). The agreement
between the CVM value for the three-species percolation
problem and the exact value z,'" "=1—p'," "=0.57 for
the classical percolation problem seems to be fortuitous.
In analogy with the classical percolation problem, it is
expected that x, for the three-species problem without
wrong bonds will be lowered somewhat if the statisti-
cal approximation is improved. With LDA interaction
parameters, however, the assumption of no wrong bonds
leads to phase separation at all temperatures below melt-
ing.

Column two of Table III shows that, while adjustable
interaction parameters can lead to z, -0.3 if wrong bonds
are allowed (i.e. , E ( oo), we founds that using first-
principles LDA interactions leads again to phase sepa-
ration. This occurs because the average lowest-energy
nonoctet bonds (the "bad" bonds, with AZ„=+1) are
still + 100 meV higher in energy than the normal Ga-As
and Ge-Ge bonds, Column three of Table III shows that
using realistic LDA values for E (oo and LQO does not
afFect this result. A similar result is found when UPTB
parameters are used in a total-equilibration model. On
the other hand, column four shows that a quenched-
disorder model coupled to UPTB parameters leads to
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TABLE III. Summary of results obtained with thermodynamic models for (GaAs) z Ge2 al-
loys. The parameters E and I are the "wrong-bond" (AZ„=+2) average energy and the Ga~As
asymmetry parameter, respectively. The symbol x, represents the critical concentration for the
zinc-blende to diamond phase transition and PS indicates phase separation.

Parameters

Adjustable
UPTB'
LDA

L=O, E —+oo

x, & 0.57

PS

L=O, E (oo
x, 03

PS

LQO, E„(oo

PS
PS

QD

x, = 0.36
x =057

Quenched disorder.
References 10 and 11 in the CVM pair approximation. The value x, 0.3 corresponds to

k~T/J = 2.
Universal parameter tight binding, Ref. 12, with T 700 K in the CVM pair approximation.
First-principles local-density approximation, Ref. 6 and the present work. No significant changes

from the phase diagram of Ref. 6 (L = 0, E~ —+ oo) occur at T & 1500 K using LDA parameters
E (oo or LQO. The critical concentration 2:, for QD is a good estimate of the exact value at
T-700 K, as discussed in the text.

z, = 0.36 in the CVM pair approximation. We showed
in this paper, however, that this result is a consequence
of the empirical UPTB parameters used. First-principles
parameters lead to x, = 0.67 in the CVM pair approx-
imation, and an estimated near-exact value x, = 0.57.
This is in disagreement with the experimental values z,
= 0.3—0.4.

We conclude that the quenched-disorder model, like
the other thermodynamic models, does not describe cor-
rectly the arrangement of atoms in (GaAs) q ~Ge2~. Fur-
ther evidence for this conclusion can be found in the
anisotropic nature of the experimental samples as de-
termined by transmission electron microscopy (TEM).2s

Ordered domains are observed to extend along the di-
rection parallel to growth. This feature is absent in the
quenched-disorder model, which is isotropic. Anisotropy
is captured by growth models, 4so s~ which are based
on "growth rules, " not obviously related to thermody-

namics, but designed to reproduce the observed critical
concentration. It is possible, however, that partial ther-
mal equilibration of the reconstructed free surface (rather
than the bulk) during growth plays a role in determin-
ing the final structure of the alloy. Such a mechanism
was recently proposedsz to explain spontaneous "CuPt"
ordering in Ga1 In P.
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