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In a previous paper, the authors proposed a model for the optical dielectric function of zinc-blende
semiconductors. It was found to be more generally valid than previous models. In this paper, it
is used to obtain an analytic expression for the dielectric function of the alloy series Al;Gaj_,As
as a function of w and z, which is compared with spectroscopic ellipsometry data between 1.5 and
6.0 eV. The model enables us to determine accurately the critical point energies and linewidths of
Al;Ga;—.As as a function of z. Also, it leads us to model the optical dielectric function of these
alloys better than any previous model in that (1) it covers the entire photon energy range between
1.5 and 6.0 eV as well as the entire alloy composition range between 0.0 and 1.0, (2) it calculates
the optical properties of Al;Gai1_-As as a function of w and z with the highest accuracy, and (3) it
allows one to accurately calculate the values of the refractive indices below 1.5 eV as a function of

w and z.

I. INTRODUCTION

In a previous paper the authors proposed a model® for
the optical dielectric function of GaAs and successfully
applied it to fit the spectral data of the dielectric func-
tion of GaAs. It was found to be more generally valid
than previous models. In this paper we use this model to
obtain a closed analytic formula for the optical dielectric
function of the alloy series as a function of z. This is pos-
sible because the band structure of Al,Ga;_,As does not
vary much as x changes, so that the joint density of states
J(E) has an analytic structure which is independent of
x within a reasonable approximation.

The measured optical properties of semiconductor ma-
terials, such as the complex dielectric function,? e(w) =
€1(w) + tea(w), the complex refractive index, N(w)
n(w) + ik(w), the reflectance® R(w), and the absorp-
tion coefficient a(w), have proven very useful in describ-
ing the electronic structure of these materials. An ac-
curate knowledge of their values is essential in a num-
ber of applications, such as in the real-time monitoring
and control of crystal growth and/or etching with single-
wavelength and spectroscopic ellipsometry, in designing
optoelectronic devices and in analyzing® the spectral data
of multilayer systems. Among these properties, e(w) is
the most fundamental from a theoretical point of view
and is most closely related to the electronic band struc-
ture. In particular, in the absence of line broadening,
€2(w) is approximately proportional® to J(E). All other
optical properties of any semiconductor material are eas-
ily expressed as simple functions of e(w).

Recently, Aspnes et al® have measured the optical
properties of Al,Ga;_,As alloys at room temperature
by spectroscopic ellipsometry (SE). They reported the
spectral data of the dielectric function of Al,Ga;_zAs,
L(wj,zx) = Li(wj,zx) + 1L2(wj, Tk ), over the photon-
energy range from 1.5 to 6.0 eV in steps of about 18
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meV, with xx varying from 0.0 to 0.9 in steps of 0.1.
Garriga et al.”7 have presented SE data of the dielectric
function of AlAs, L(wj;,1), at room temperature from
1.66 to 5.6 eV in steps of 10 meV. Fitting the data of
Refs. 6 and 7 with our new model, we obtain its ana-
lytical expression €(w,z) and predict n(w,z) below the
available spectral data down to optical-phonon frequen-
cies for Al,Ga;_zAs.

A very important recent application of single-
wavelength and spectroscopic ellipsometry is the real-
time monitoring and control of crystal growth and etch-
ing. Recent work in this area®?® points out that proper
methods of interpolation for e(w) are essential to ob-
tain accurate alloy content and/or temperature during
molecular-beam epitaxy or metal-organic chemical-vapor
deposition growth or ion-beam and/or reactive-ion etch-
ing. This paper demonstrates a substantially more ac-
curate method of interpolation in z for e(w,z) than has
been previously available. We plan to apply the same
method to calculate e(w,T) in a later paper.

The alloy system Al,Ga;_,As has been widely used
for many high-speed electronic and optoelectronic de-
vices. These alloys are essentially lattice matched with
a mismatch of less than 0.15% and are valence-bond
matched over the entire composition range. This has
made it possible to grow artificial structures with ex-
cellent interface properties, including heterostructures,?
quantum wells,!! superlattices,!? and resonant tunneling
structures. In developing optoelectronic devices which
utilize Al;Ga;_,As alloys, the optical properties of these
alloys must be well known. In the construction of solid-
state lasers and waveguiding devices which utilize these
materials, the interplay between the physical dimensions
of the device and the refractive indices requires the re-
fractive indices to be known as a function of w and z as
precisely as possible. Also it often is essential to fit or
simulate the spectral data of quantum wells or superlat-
tices made of Al,Ga;_;As alloys which consist of more
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than two layers. However, doing so is extremely difficult
without knowing the dielectric function of each layer as
a function of w and x. Furthermore, the resultant anal-
ysis largely depends!3 on the accuracy of the calculated
dielectric function for each layer. Thus, it is important
to have as accurate as possible a model for the optical
dielectric function of Al,Gaj_ As alloys.

There have been various models for e(w,z) for
Al;Gaj_5As and other tetrahedrally bonded semicon-
ductor alloy series. Aspnes® suggested that one can use
either the interpolation scheme or the harmonic oscillator
(HO) model to calculate €(w, z) from his discrete spectral
data points, L(w;, zx). The HO model has been used4:
for the analysis of multilayer systems. This model was
improved by Terry,'® who demonstrated the significance
of its improvement in the analysis of multilayer systems.
Snyder et al.'® used an interpolation method to calculate
€(w, z) and demonstrated that their method gives better
results around the band edge than does the effective-
medium approximation. Recently, Adachi developed a
new model!” for the dielectric function of semiconduc-
tor materials and used that model to calculate e(w, z) for
Al Ga;_,As.1® Later, Jenkins!® substantially improved
the model of Adachi and used the improved model to
recalculate €(w, ).

Recently, we have developed a new model® for the di-
electric function of zinc-blende semiconductors and have
shown it to be more generally valid than any of the pre-

J

1877

vious models. Thus, this model is expected to produce a
better and more physically significant fit to the spectral
data of Al,Gaj_,As than that given by any previous
model. This model enables us to determine accurately
the critical point energies and linewidths of Al,Ga;_ As.
Consequently, it enables us to calculate the optical prop-
erties of Al,Ga;_,As better than any previous models in
that (1) it covers the entire photon-energy range between
1.5 and 6.0 eV as well as the entire alloy composition
range between 0.0 and 1.0, (2) it calculates the optical
properties with the highest accuracy, and (3) it allows
one to calculate easily the values of the refractive index
below 1.5 eV as a function of w and z.

This paper is organized as follows. In Sec. II we briefly
explain how to model L(wj,zx). In Sec. III our model is
applied to L(w,,1), using a simpler approximation than
that used to fit L(w;,0) in the previous paper. In Sec.
IV we determine the critical-point (CP) energies, E;, and
line widths, I';, as a function of . In Sec. V we show how
to calculate €(w, ), using the values for the F;(z) and
I'i(z) determined in Sec. IV. Our results are compared
with those obtained using other models.

II. A MODEL FOR THE DIELECTRIC
FUNCTION OF Al,Ga;_;As

The optical dielectric function?® of solid-state materials
with Lorentzian line broadening is given by the equation

_ . 8mh%e? Weo(E)dE 1 1
ew)=1- m2 ;/ E? [hw—E+iI‘~hw+E+iF ’ M

where

ch(E) = Pcv(E)chv(E)a

¢ and v stand for the conduction and valence bands, respectively, E = E,,(k) is the energy difference between a pair
of bands in k space, J.,(FE) is the joint density of states between a pair of bands, and P,,(E) is the weighted-average
matrix element of the momentum operator. Similarly, the optical dielectric function of solid state materials with

Gaussian broadening is given by the equation

E2

2.2 oo oo )
e(w) =1+ i87r:;26 Z/ Weo (E)dE [/0 ds ez’(ﬁw—E+2io2s)s _/(; ds ei(hw+E+2wzs)s], @)
¢

where o is the root-mean-square scattering ¢ matrix. Our
model is based on these two equations. It is developed
in two steps. The first step is to find a simple func-
tional representation for W,,(E). This representation
must fully satisfy the CP behavior of W, (E) with no ar-
tificial cutoffs and it must be capable of accurately mim-
icking W, (E) for Al;Ga;_;As for any = value. The sec-
ond step is to analytically perform the integrals in Egs.
(1) and (2), even if only approximately for the case of
Eq. (2).

Let us consider how to construct W,,(E) for
Al,Gay_,As. Because P, (F) is a slowly varying func-
tion of E with no singularities, we need only to consider

f

the analytic structure of J,(E). In developing the an-
alytical form of J.,(E) for the entire Al;Ga;_As alloy
series, we need to ask if its analytic form changes at any
composition. The answer is yes, but not in an impor-
tant way for the purposes of this paper. The crystal
structure does not change, but the band structure does
change from a direct-band-gap structure to an indirect-
band-gap structure around = = 0.35. However, because
of their very small matrix elements, the indirect transi-
tions contribute only negligibly to e(w), except for the
calculation of absorptivity below the direct band gap,
with which we are not concerned in this paper. Also,
from observing the derivative spectra of Al,Ga;_,As, we
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find that the number of major critical-point structures is
independent of z. From band-structure calculations for
GaAs (Ref. 20) and for AlAs,?! the critical-point types
remain the same. Thus, we conclude that the analytical
form of J.,(F) needed in our model can be taken to be
independent of z, so that we can use the analytic form
used for GaAs in the previous paper.

We summarize our model for W,,(EF) for GaAs. Only
seven critical points are clearly evident in the room-
temperature data which we fit. Therefore, in order to
reduce the number of parameters in the model, we in-
clude only the seven critical points Eo(T"), Eo(I")+ Ao (L"),
Ei(A), E1(A) + A1(A), E§(A), Ez(X), and Ez(X) in or-
der of increasing energy up to 6 eV. Except for Fo(I") and
Eo(T') + Ao(T"), each of these critical points is allowed to
contain a two-dimensional (2D) contribution. The resul-
tant discontinuities divide the range of interest, from 1.0
to 6.0 eV, into six segments, which are designated by I,
II, I1I, IV, V, and VI in order of increasing energy. Know-
ing that Ey(T) and Eo(I")+Ao(T') have three-dimensional
(3D) M, critical points, that the Ej(A), E1(A) + A1(A),
E}(A), and F2(X) critical points have 3D M; contribu-
tions and that E,(X) CP has a 3D M, contribution, one
can determine the analytical form of W, (F) in each seg-

|
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ment v. The resultant analytical forms can be written as
follows:

Wi(E) + Wy (E)= \/E — Ep [p1(E) + q1(E) vV E1 — E]
+pv(E) VE — (Eo + Do), (3)

Wi(E) = pu(E) + qu(E) v (Er1 + A1) — E, 4)

Win(E) = pui(E) + qu(E) v/E; — E, (5)

Wiv(E) = piv(E) + aiv(E) VE2(X) - E, (6)

Wv(E) = pv(E), )
and

Wyi(E) = pvi(E) + qvi(E) VE — Ex(Z), (8)

where p,(E) = Y, pn,,E™ and ¢, (E) = 3, qn,, E™ for
v =LI'ILIILIV,V,VI are low-order polynomials. The
contribution of the Ey(T'") + Ao(I") CP is included in the
segment I as Wy (E) without introducing any discontinu-
ity. Summing over all of these contributions leads to the
final analytical form for W(E) = Y~ W, (E).

For the case of Lorentzian line broadening, the substi-
tution of W(E) into Eq. (1) leads to the equation

Z [ (ann + QnFn)I + (ann)l’ + (pnGn + QnKn)II + (p'nGn + QnKn)III

+(pnGn + QnKn)IV + (pnGn)V + (p'nGn + QHHn)VI] + Z bn(hw)na (9)

where H,,, F,, G, and K, are functions of fiw defined
in Appendix A of the previous paper,! and where the
last term gives the contribution to €;(w) from critical
points above 6 eV. The case of Gaussian line broadening
is not as simple because the integral in Eq. (2) cannot
be performed analytically. However, the substitution of
the quantity

2
Di = F.i exp [—ai (y) :I

for I'; in Hy, F,, Gy, and K, leads to analytic func-
J

(10)

8mh2e?
m2

e(w,r)=1-

[
tions which accurately mimic the numerical results for
the Gaussian case, for appropriate values of ;. The
value of o; which most closely mimics the exact results
of Gaussian broadening is not exactly the same for the
four functions H,, F,, G,, and K,, and depends slightly
on the value of n, but is approximately 0.2 in all cases.

Equation (9) is easily extended to apply to the alloy
series Al;Gaj;_;As. Only the values of the parameters
E;, T, pny, and gn, change from one alloy to another.
Thus, Eq. (9) can be made to apply to all Al,Ga;_,As
alloys by replacing each of these parameters by a function
of z, which leads to the result

Z{ [pn(2) Hn () + gn(2) Fr ()]t + [Pn (@) Hn(2)]1 + [Pn(%)Gn(z) + gn(x) Kn(2)]n

+[Pn ()Gn(x) + gn () Kn(z)]lm1 + [P (2)Gn(T) + gn(z) Kn(z)l1v + [Pn(2)Gr(z)]lv

+[pn (2)Cn (@) + an (@) Ha(@)lvi} + ) _ bn(x) ()™

Here, the z in the functions Hy,(z), Fn(z), Gn(x), and
K, (z) means that every E; and I'; inside these functions
is a function of z. This completes the specification of our
model for Al,Ga;_,As. Equation (11) contains all of the
desirable analytical features of Eq. (9) enumerated in the
previous paper.!

(11)

III. APPLICATION TO THE OPTICAL
DIELECTRIC FUNCTION OF AlAs
Before we attempt to apply Eq. (11) to the fitting
of the L(wj, ) for all of the zx, we apply Eq. (9) to
L(wj, 1) and show in detail the fitting procedure. There
are several reasons for this. First, L(w;,1) has never
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been modeled previously. The successful application of
Eq. (9) to L(wj,1) suggests that Eq. (9), which was
developed for GaAs, is applicable to the spectral data
of any Al,Gaj_,As alloy, since AlAs is the opposite end-
point to GaAs. Second, we want to show the simple steps
to follow in modeling any spectral data with Eq. (9).
The spectral data, L(w;,1), were taken from the re-
sults of Garriga et al.,” who measured the optical dielec-
tric function of AlAs and reported two possible results for
L(wj,1). The first was calculated from their data with-
out any surface-layer correction and the second was cal-
culated under the assumption of a 6-A oxide layer. The
first has less noise than the second, but, on the other
hand, has a smaller peak value (28.2) in the E5 complex
region (around 4.5 eV) than that (30.8) of the second.
Both sets of values for L(w;,1) were tried, but the sec-
ond one was chosen for two reasons. First, a 6-A oxide
surface layer was expected to be present on physical and
chemical grounds.® Second, a peak value of about 30 is
expected® for AlAs using the extrapolation method from
the peak values for L(w;, zx) with 0 < x4 < 0.8.22
Within the Lorentzian approximation, the fitting of
L(wj,1) is performed in three simple steps. The first
step is to determine the E; and I'; by minimizing the
root-mean-square (rms) fractional error o, defined by

3
0'% = %Zag,nv (12)

n=0
where

> {leaws) o — [L2(w;, D]}
i
> {[La(w;, 1152
7

a2,n -

the superscript n denotes nth-order differentiation and
the subscript num indicates that the differentiation is
performed numerically. The numerical differentiation is
applied both to the spectral data and to the model, using
the same numerical algorithm and the same energy spac-
ing between successive points, which eliminates the errors
arising from distortion by the numerical differentiation.?3
Values for the coefficients p,, and g, also are deter-
mined in this step, in which a best simultaneous fit to
L3(wj,1) and its first three derivatives is found. In the
second step the p,, and ¢, are redetermined by mini-
mizing ag‘o, using the values for F; and I'; determined in
the first step. This is done in order to obtain a best fit of
€2(w;) to La(wj, 1) with the E; and I'; fixed at their cor-
rect values. This second step is very quick because e(w),
as in Eq. (9), is a linear function of the p,, and g ., so
that they are determined exactly in only one iteration.
The last step is to determine the b, by minimizing

> {er(ws) = La(ws, DY

3

T TS Ly -
J

using the values for the E;, [';, pn,., and ¢, determined
in the first and second steps. Like the p,, and gn,., the
b, are determined exactly in a single iteration.

Figure 1 shows the results of the first step in the
Lorentzian fitting of La(w;,1) and its first three numer-
ical derivatives using 29 parameters—the FE; and I'; at
each of the seven critical points considered and a total of
15 coefficients in the polynomials p,(F) and ¢, (F). The
rms fractional error o2 is 15.4%, which is large mainly
due to the amplification of noise in the derivative spec-
tra. The fit to Ly(w;,1) around Ep is poor because of
the contribution coming from the tail of the line shape
above the F; critical point, which is large because of the
assumption of Lorentzian line broadening. However, the
value for Ey is acceptable because the fits to the deriva-
tives of La(wj,1) around Ey are reasonably good.

Garriga et al.” reported values for all of the E; from an
analysis of L(w,,1). They fitted [L2 (wg, 1)],(,?,)m with the
appropriate theoretical line shapes.24%® However, their
method does not take account of the errors?® due to the
distortion by the numerical differentiation. Table I com-
pares the values for E; determined by their method to
those determined by our method.?® The values we find
for the E; are almost totally independent of whether or
not a surface overlayer due to oxidization is assumed, as
is shown by rows (a) and (b) of Table I. The value for Ey
in row (c) of Table I is found by Garriga et al., assuming
a 2D critical-point line shape; the value for E(X) in row
(c) is cited from the value of Garriga et al. for E§ + Ag.

L 2 ("{1’» 1)

(S V .

[L2 (wj> 1] gz)m
(1]

[L2(wp )12
0

[L 2w, )1 { ¢

Photon Energy (eV)

FIG. 1. Lorentzian fits to L2(w;, 1) and its first three nu-
merical derivatives. The bullets show Lz(w;,1) and its nu-
merical derivatives. The solid lines show the resultant fits.
The inset shows the fit to L2(w;, 1) around Ep with the scale
expanded by a factor of 4. The arrows show the position of
the seven critical points as determined by fitting.
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TABLE L.
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Values for the critical-point energies E; for AlAs, determined (a) from La(w, 1) with-

out the surface-layer correction by our method, (b) from L2(w, 1) with the surface-layer correction
by our method, (c) by Garriga et al., and (d) by Onton. The values are given in units of eV.

Class | Eo(T)  Eo(T) + Ao(T) Ei(A)  Ei(A) + Ai(A) E{(A)  Ex(X) Ez(K)
(@) 2.993 3.201 3.887 4.088 4.610 4.737 4.830
(b) 2.993 3.201 3.888 4.087 4.611 4.738 4.827
() 3.003 3.899 4.048 4.578 4.688 4.853
(d) 2.95 3.90 4.09 4.54 4.69 4.89

Values for the I'; were determined both with and with-
out the surface-layer correction. The values for I'; ob-
tained from fitting L(w;, 1) with the surface-layer correc-
tion are slightly smaller overall than those obtained from
fitting L(w;,1) without that correction. The value for
I'(Ep) is much smaller than the energy spacing between
data points and this could not be determined through
the fit. Thus, the value for I'(Ep) is simply fixed at 5
meV after trying with several different values. The value
for T'(Ey + Ag) also was difficult to determine, due to
the small signal-to-noise ratio in the derivative spectra,
and is fixed at 40 meV. The value for I'(E2(X)) also
was difficult to determine through the fit. The signal-
to-noise ratio in [La(wj, 1)]&?,),“ around FE,(Y) is close to
one. It is not clear whether the fit around the E3(XZ) re-
gion should follow exactly the first sharp peak or broadly
cover the following several peaks. Thus, the accurate de-
termination of I'(E3(X)) becomes somewhat uncertain.
All of the other values for the I'; were obtained with
confidence. The values for the I'; of AlAs obtained from
fitting L(wj, 1) with the surface-layer correction are given
later, with those for x; # 1.

Having found the values for the E; and I'; we proceed
to the second step in our fitting procedure. However, as
is shown in Fig. 1, the resulting fit to La(w;,1) with
purely Lorentzian broadening does not yield a good fit
to La(wj, 1), especially around Eq. One way to circum-
vent this difficulty is to perform the fit only above Ej,
setting the fitting function e2(w, 1) equal to zero below
Ey, as others do.18:19:26 Instead, we allow the line broad-
ening to be partially Gaussian in character, introducing
nonzero values for a; in order to improve our calculation
of e2(w,1). In principle, we should make each o; a free
parameter and determine its value by fitting La(wj,1)
and its numerical derivatives simultaneously. However,
we find that the values for a; are not well determined
and that any small values for the a; above E; greatly
improve the fit to La(wj, 1), especially around Ey. In or-
der to keep our fitting procedure simple, we use the same
values for the

as those used to produce the best fit for GaAs in the
previous paper.! Those values are listed in Table II. The
reason for making £; the same, rather than the «, is
explained in Sec. V.

Having chosen values for the §;, we repeated steps one
and two to find a new best fit to La(w;,1). This fit was
clearly better than the best Lorentzian fit shown in Fig.
1. In finding this fit, we found that many of the coeffi-
cients p, , and g,, were so small that the corresponding
contributions to e€3(w, 1) were unimportant. Upon allow-
ing only 16 of the p, , and g, to be nonzero, for a total
of 29 free parameters, we found the fit to Lz(w;, 1) shown
in Fig. 2(a). The corresponding best-fit values of the p, ,
and g, are given in Table III. The resultant rms frac-
tional deviation in the fit to Ly(wj,1) is 020 = 0.95%.
An increase in the number of free coefficients p,, and
Gn,, results in only a small decrease in 029. We believe
that this remaining small deviation results in part from
inexactness in our treatment of broadening and in part
from the neglect of several critical points in the high-
energy end of our fitting range and from the neglect of
critical points above that range. However, this deviation
is substantially smaller than the rms deviations found in
fits made using other models.

The last step is to calculate €;(w,1). The stars in Fig.
2(b) show the zero-parameter calculation of €; (w, 1) with
01,0 = 20.3%, with all of the parameters fixed at the val-
ues obtained above from fitting La(w;, 1). Notice that the
difference between L;(wj, 1) and this calculated €;(w, 1)
does not contain any sharp structure and gradually in-
creases as the photon energy increases. The substantial
difference between them arises from the contributions of
critical points above 6 eV. Those critical points were ne-
glected in the calculation of e3(w,1). We approximate
the contribution of those critical points to €;(w, 1) by the
power series Y b,(fiw)™. The fit to Lq(wj;,1) is greatly
improved by making the b, free parameters, even for
n < 2. We limit the maximum value for n to 2, be-
cause the unbiased estimator is minimized for that choice.
The values by = 4.29, b; = —2.63, and by = 0.534 lead
to the small rms fractional error 010 = 1.61%. With

&= I’_; (14) €(w, 1) known, all other optical constants such as R(w, 1),
?
TABLE II. Values for the £; taken from Ref. 1 and assumed to be independent of z.
Critical point | Eo(I')  Eo(T)+ Ao(l)  Ei(A)  Ei(A)+A1(A)  Ep(A)  Ex(X)  Eq(%)
&; l 7200 2000 3 1 0 0 0
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1 ! |
3 4 5

Photon Energy ('eV)

N

FIG. 2. Mixed Gaussian and Lorentzian fits to (a)
L3(wj,1) and (b) Li(wj,1). The bullets and the solid lines
show L(wj,1) and the resultant fits, respectively. The in-
set in (a) shows the fit to L2(wj,1) around Ep with the
scale expanded by a factor of 4. The stars in (b) show the
zero-parameter calculation with the parameters used to fit
La(wj,1).

N(w,1), and a(w,1) are easily calculated by the use of
the appropriate optical formulas.

IV. DETERMINATION OF E;(z) AND I';(z)

The calculation of e(w,z) with Eq. (11) requires
a knowledge of the critical-point energies E;(z) and
linewidths I';(z) as a function of z. It is possible to ob-
tain such knowledge from the literature, but it is not suf-
ficient, nor accurate, as is discussed below. On the other
hand, our model is capable of determining the values of
the E; and I'; directly and accurately from L(wj,a:k)‘27
Following the first step in the previous section, we first
determine the values of the E;(zx) and I';(zx) by fit-
ting L(wj,zx) and its numerical derivatives at each zx

TABLE III. Values for p,, and g, obtained by mini-
mizing Eq. (13). The values are multiplied by 87h%e?/m?.
Region Do p1 P2 do 721 q2

I -396.0 116.2 0.0 451.0 -130.7 0.0

r 2.9 0.0 0.0 0.0 0.0 0.0

II 48858.0 -11641.7 0.0 -7462.4 0.0 0.0

III 1736.8 -336.3 00 -328.0 0.0 0.0

v -429.3 135.9 0.0 0.0 0.0 0.0

v 234.6 0.0 0.0 0.0 0.0 0.0

VI 289.0 0.0 0.0 -265.7 0.0 0.0
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at which L(w;) is known. Then, we fit these values to
low-order polynomials to obtain E;(z) and I';(z).

Berolo and Woolley?® reported E;(z) for Al,Ga;_,As
from the analysis of electroreflectance (ER) data. They
determined the E; values from the photon energy at
the peak of each critical-point structure. Thus, their
E; values contain uncertainties approximately of the or-
der of the linewidth at each critical point. Also, they
reported two possible critical-point energies for E1(A)
and Ej(A) + A{(A). Aspnes et al.® applied their new
method?® to L(w,,zx) data and reported values for Eg
and E;(A), but did not report the values of the rest of
the critical-point energies. Recently, Logothetidis et al.3°
reported values for the E;(z) between 4.0 and 5.5 eV, but
only at low temperature. None of them reported values
for the I';(z), which are not available in the literature.

Table IV shows the values for the E; obtained from
following the first step in Sec. III assuming Lorentzian
broadening. The values found for the E; are very nearly
independent of the assumed nature of the broadening.
All the critical point energies below the Es complex
region are determined with confidence except those of
Eo(T") + Ap(T). Those are not well known because the
signal-to-noise ratio in the derivative spectra around the
Eo+ Ay region decreases as n increases and becomes less
than one for n = 3. The values for the E; in the F5 com-
plex region are hard to determine accurately because of
the closely packed critical-point structure in that region.
Of the three critical-point energies in this region, those
for E2(X) are most uncertain for two reasons. First, the

T T T T T T T T T T T
30 _W‘
450 AE5(D) .
o E,(X)
x Eo(D)
~ 4.0} —
3
R E1(0)+
2 35| 1(4)+A1(4) N
=
m
E |
,_.?" 3.0
=
L
S 25| i
Eo(T)+40(I)
20 -
15 .
1 1 1 1 1 | 1 1 1 1 I
0.0 0.2 0.4 0.6 0.8 1.0
x (mole fraction of Al)
FIG. 3. The seven critical-point energies of Al.Gai—zAs.

The discrete symbols show the values found by fitting the
L(wj,zx). The solid lines show the least-square cubic-
polynomial fits to those values.
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TABLE IV. Values of the critical-point energies E; determined by minimizing Eq. (12) using
the first step described in Sec. III. The values are given in units of eV.

c | Bo(D) Eo(D)+Acl) Ei(A) Ei(A)+A(A)  ENA)  Ex(X) Ei(%)
00| 1410 1.746 2.926 3.170 1.483 4781 5.002
01| 1574 1.889 3.005 3.241 4.566 4.761 4.989
02| 1711 2.030 3.059 3.306 4.635 4.793 4.982
03| 1.844 2.154 3.125 3.366 4.639 4.844 4.973
04| 1981 2.275 3.193 3.440 4.658 4.823 4.931
05| 2068 2.338 3.237 3.490 4.628 4.790 4.957
06| 2101 2.501 3.334 3.566 4.620 4.763 4.933
07 | 2360 2.610 3.419 3.677 4.636 4.752 4.913
08| 2541 2.805 3.596 3.747 4.610 4.743 4.918
1.0 | 2993 3.201 3.888 4.087 4.611 4.739 4.827

strength of E5(X) in the derivative spectra below z = 0.3
is very weak compared to that of the other critical points
nearby. Second, the strength of E;(X) in the deriva-
tive spectra increases above x = 0.3, but there appear to
be two dominant critical-point structures around F2(X),
not one. This is because the magnitude of the structure
at Fo(X) + Aa(X), which was set to zero in our model
based on the band structure?® of GaAs, is not negligible
for AlAs.30 This implies an uncertainty in our value for
E3(X) about half the magnitude of Az(X).

The discrete points in Fig. 3 show the values for the E;
listed in Table IV. Interestingly, the variation of Ej(A)
below =z = 0.3 is very different from that above = 0.3,
which is coincident with the change from a direct band
gap to an indirect band gap. Also, the value for E5(X)
at £ = 1 is a little lower than the value which can be
extrapolated from the values below z = 0.8. The value
given for E5(X) for AlAs by Onton3! (refer to Table I)
does agree with the extrapolated value. We can use his
value, but for consistency we did not use his value for
E3(X) at £ = 1; instead, we used our value, which is
accurately determined from fitting L(w;, 1).

There are several possible ways to obtain the E; as a
function of z from our values for the E;(zx). Convention-
ally, the values E;(zj) are fitted as a quadratic function
of = to obtain the bowing parameter. However, it has
been pointed out® that Eo(x) cannot be described over
the entire range of = by a simple quadratic equation. The
critical-point energies in the F2 complex region often are
fitted by a linear function.3? Since our main purpose in
fitting E;(xk) is to calculate the E;(x) as accurately as
possible, we use the cubic equation,

E;(z) = E;(0) + [E;(1) — E;(0)]z + (co + c12)x(1 — )
(15)

to fit the E;(x) for all critical points. Because the values

of the E; are determined most accurately for x = 0 and
z = 1 and because no errors in & occur at those points,
the values of the E;(x) are fixed at those points. This
leaves only two fitting parameters, ¢g and ¢;, which are
determined by fitting the values of E;(zx) at the eight z
points not equal to zero or one. The values for ¢y and ¢;
determined from this fit are listed in Table V. The solid
lines in Fig. 3 show the resultant fits.

Table VI gives the values for all of the I'; except I'(Ep+
Ap). The accurate determination of the I'; is generally
more difficult than that of the E;. The values for I'(Ep)
below & = 0.4 are much smaller than the energy spacing
between data points and are arbitrarily fixed at 5 meV.
The values for I'(Ey + Ag) are very hard to determine
because of the small signal-to-noise ratio in the derivative
spectra, and are fixed at 40 meV for all . The values for
all the other linewidths are obtained with confidence.

The discrete points in Fig. 4 show the values for I'; ()
listed in Table VI. One sees that the values for I'( Ep),
I'(E£1), and I'(E1 + A1) at = 0.8 are much higher than
the expected values. This clearly indicates that the qual-
ity of the samples for x = 0.8 is very poor, so that
L(w;,0.8) is not as reliable as L(w;,z) for the other
values of .

We use the equation

Ti(z) =T(0) + [[s(1) = T3(0))z + (co + c1z)z(1 — )
(16)

to fit the values for the I';(zx). This equation is exactly
analogous to Eq. (15), which we use to fit the E;(zx).
Table VII gives the values for ¢y and ¢; obtained from this
fit. In fitting the values for I'( Ep), I'(E1), and T'(E1+A,),
the values at z = 0.8 are not included, since they are
highly unreliable. The solid lines in Fig. 4 show the
resultant fits.

TABLE V. Values of ¢y and ¢; used to obtain the E;(z) in Eq. (15).

Class | Eo(T) Eo(D)+Ao(l) Ei(A) Ei(A)+A(A)  Eo(A)  Ex(X) Ea(D)
co 0.2242 0.1931 0.2124 -0.0734 0.8574  0.3260  -0.0336
a | -1.4235 -1.2160 -0.7850 -0.9393 -0.7413  -0.1993  0.3606
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TABLE VI. Values of the critical-point linewidths, I';, determined by minimizing Eq. (12) using
the first step described in Sec. III. The values are given in units of meV.

z ['(Eo) ['(E1) [(E1 + A1) T'(Ep) [(E2(X)) [(E2 (%))
0.0 5.0 34.6 78.9 82.7 111.9 125.6
0.1 5.0 40.1 77.9 95.7 109.4 133.2
0.2 5.0 44.5 91.7 113.4 120.8 135.5
0.3 5.0 60.3 109.2 114.8 84.4 89.2
0.4 5.0 63.8 113.2 102.4 65.7 63.8
0.5 9.5 79.6 123.8 102.5 73.7 82.7
0.6 17.5 81.2 163.0 84.7 56.4 69.1
0.7 15.2 104.0 166.7 62.3 46.0 57.9
0.8 35.7 175.9 248.3 53.4 52.6 65.4
1.0 5.0 75.7 149.3 48.2 43.3 64.1

V. OPTICAL PROPERTIES AS A FUNCTION
OF w AND z

Having found the E;(z) and I';(z) for all critical points
as a function of z, we proceed to the second step in our
fitting procedure. Because we know that the Lorentzian
approximation does not yield an accurate representation
for ex(w, z), we immediately introduce nonzero values for
the parameters o, so as to obtain a Gaussian component
to the broadening. For simplicity, and in order not to in-
troduce more variable parameters, we fix the values of the
a;’s using the values found for GaAs in our earlier paper.’
As in finding €(w, 1), for all z we set & = a;/T'? equal to
its value for €(w,0). We choose ; constant rather than
o; because of the form of D; in Eq. (10); the exponent
in that expression for D; is proportional to &;, not oy, for
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200+
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x (mole fraction of Al)

FIG. 4. The critical-point linewidths of Al;Ga;—_,As. The
discrete symbols show the values for I'; found by fitting the
L(wj,zx) except those under the dashed line (a) below the
E2 complex region and (b) in the E2 complex region. The
solid lines show the least-square cubic-polynomial fits to those
values.

fixed E; — hw. This choice was found to yield good fits
to the measured L(w;, zx). Table II shows the values for
the &;, which were obtained by fitting the spectral data
of GaAs.

Now we are ready to complete the calculation of e(w, x)
by obtaining the p,(z), gn(z), and b, (z) in Eq. (11). The
pn(z) and ¢, (z) can be obtained by minimizing the rms
fractional error Yo, defined by

> A{ea(ws, zk) — La(wj, zx)}?

22 — J .
5| Swmer o

One can leave as many of the p,, (z) and g, () free at
any given composition zx as one desires, with the remain-
der of the pn, (zx) and gn, (k) set to zero. Allowing too
many free parameters yields values which are not mean-
ingful and are not smoothly varying functions of z. On
the other hand, allowing too few free parameters seri-
ously worsens the fit to L{w,,zx). We have chosen 21
of the p,, and g¢,, in toto to be free for each zi, as is
shown in Table VIII, with these parameters relabeled as
¢k, k = 1,...,21. None of the p,(E) were allowed to
be higher than quadratic order, and none of the g, (E)
were allowed to be nonlinear. We now expressed each cy,
(each pp, and gy, ) as a polynomial in z according to the
equation

ck(a;) = Z Ckm(.’L' - 05)m, (18)

m=0

where the ¢y, are composition-independent parameters.
N}, gives the maximum order of the polynomial for each
ck(z). Notice that e(w, ) is linear in the cgy,. Thus, all
of the cxm are determined by minimizing Eq. (17) in a
single iteration. We find that the maximum number 3 for
Ny, is sufficient to produce a reasonable fit to the entire
La(wj, k). If all of the Ny, are set equal to 3, the total
number of free parameters ci,, is 84 = 4 x 21. The rms
fractional error X5 always decreases as the total number
of parameters increases. We try to obtain the minimum
value for ¥, with the least number of parameters. If
there is not much improvement in ¥, after adding more
parameters, those parameters are discarded. Table IX
shows the values for ¢k, with a total of 75 free parame-
ters, which results in X7 = 1.2%.
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TABLE VII. Values of co and ¢; used to obtain the I';(z) in Eq. (16).

Class |  T'(Eo) T'(E1) T(E: + Ar) T(Eb) L(Ez(X)) L(E2(K))
co 0.0380 -0.0414 -0.1164 0.3000 0.0818 0.0588
e 0.0000 0.2776 0.4169 -0.3502 -0.2493 -0.2766

Figure 5(a) compares our fitted model for ez(w,z),
shown by the solid curves, with La(w;,zx), shown by
discrete symbols, for zx = 0.0, 0.3, 0.7, and 1.0. As is
shown by the figure, the agreement between La(w;, k)
and ex(w,z) is excellent for these compositions. For
z = 0.8, which is not shown in the figure, the agreement
is not as good; in particular, €3(w,0.8) attains a maxi-
mum value of 27.3 in the E3 region, whereas La(w;, 0.8)
only reaches a maximum of 26.87. However, as has been
discussed by Aspnes et al.,® surface oxidation probably
substantially reduces the maximum of Ly(w;,0.8). Thus,
we believe that e2(w, 0.8) probably is more accurate than
L2 (wj ) 08)

The final step in the determination of e(w,z) is the
calculation of €; (w, ), which is done by finding the b,(z)
in Eq. (11). The b,(z) are obtained by minimizing the
rms fractional error X1, defined by

D Aealwyy zx) — Li(wj, zx)}

22=3"1< (19)
k Z{Ll(wjaxk)}2
J
We approximate the b, (z) as cubic functions of z,
m=N,
bn(x) = Y bnm(z—0.5)™, (20)
m=0

and determine the values of the b,,, by minimizing Eq.
(19). Table X shows the resultant values for the bnm,
which yield ¥; = 2.37%. Figure 5(b) compares the re-
sultant e(w, zx) with L;(wj, zx) for 2,=0.0, 0.3, 0.7, and
1.0.

Although Aspnes et al.® reported values for L(w;,0.9),
those values were not considered to be as accurate as
L(wj, z) for 0.0 < = < 0.8. Because the sample surface
with this high aluminum composition was very reactive
with the atmosphere, an ideal surface could not be ob-
tained by chemical treatment. His values for Ly(w;,0.9)

TABLE VIII. Selected parameters ¢, among the p,, and
gn,v; the zero values indicate parameters not allowed to be

free, but fixed at zero.

Region Po p1 P2 g0 q1 92
I c1 C2 c3 C4 Cs 0
I Cs 0 0 0 0 0
II Cr cs 0 Co 0 0
II1 c10 c11 C12 c13 Ci4 0
v Ci5 Ci6 c17 0 0 0
\4 cis 0 0 0 0 0
VI C19 0 0 C20 C21 0

were distorted by a surface film, as is evidenced by the
nonzero values of Ly(wj,0.9) at low energies and the rela-
tively low value of its maximum in the E; region. On the
other hand, our model yields reliable values for e(w, z) for
all z and thus can be used to calculate L(w,z) for any
z. On Fig. 6 the dots, times signs, and solid curve show
L(w;,0.8), L(w;, 1.0), and e2(w, 0.9), respectively. In con-
trast to the experimental La(w;,0.9), e2(w,0.9) shows re-
liable behavior at all w.

The other optical properties of Al,Ga;_,As are easily
calculated from e(w,z). We find N(w,z) and a(w,z)
from

N(w,z) = Ve(w,2) (21)
and
o(w,z) = 4Tﬂ-k(w,x) = —%c&)—k(w,x), (22)

where ) is the wavelength in vacuum. Figure 7 com-
pares N (w, zx) to v/ L(wj, zx), with £x=0.0, 0.3, 0.7, and
1.0. The rms fractional difference between N(w,z) and
v/L(wj, zi) is only 1%.

Let us compare our results with others in the literature.
Recently, Adachi'®3? calculated the optical properties of
Al,Gaj_,As with his model. Our model produces much
better results than his. In particular, our calculation of
€1(w, ) is much better than his, which leads our n(w, x)
to be much better. More recently, Jenkins!® improved the

TABLE IX. Values for the ckm. The values are multi-
plied by 87hi%e?/m?2. The zero values indicate parameters not
allowed to be free, but fixed at zero.

Ck Cko Ck1 Ck2 Ck3
c1 2094.3 -16.9 -3006.9 0.0
C2 -883.1 193.3 1585.9 0.0
c3 80.3 -30.9 -186.9 0.0
C4 -1118.7 168.4 1688.4 0.0
Cs 270.9 -103.5 -515.7 0.0
Cs 0.9 0.0 0.0 0.0
cr 8367.0 17902.0 2672.8 -14769.0
Cs -2296.2 -4516.4 491.2 5166.6
Co -1651.6 -3138.0 364 3241.6
c10 5181.7 -7300.5 23539.0 11526.0
c11 -1159.6 2655.4 -8900.2 -1299.1
ci12 27.5 -245.6 784.3 -170.8
c13 -2480.5 2394.5 -9842.4 -4818.0
Ci4 337.3 -423.5 2254.0 394.1
C15 -195490.0 214390.0 -594970.0 -3529900.0
cie 83395.0 -90786.0 254430.0 1505400.0
c17 -8882.6 9604.3 -27205.0 -160480.0
cis 168.0 -60.8 257.0 0.0
ci9 164.2 97.4 172.1 575.9
C20 -465.9 -209.7 -354.1 -2924.5
C21 64.3 20.9 28.1 386.2
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FIG. 5. Comparison of L(wj,zk) to €(w, z), but only with
z = 0.0,0.3,0.7, and 1.0 for the sake of clarity. The discrete
symbols show La(wj,zk) in steps of 40 meV, and the solid
lines show the resultant fits.
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FIG. 6. Calculation of ¢(w,0.9). The solid lines show the
calculated values for (a) e2(w,0.9) and (b) €1(w,0.9). The
bullet and times signs show L(wj,0.8) and L(wj;, 1.0) in steps
of 40 meV, respectively.

TABLE X. Values for the bnm,.

bn l bnO bnl bn2 bn3
bo 0.74225 -1.28150 2.49650 -0.28206
b -0.11830 0.25810 -2.35070 3.01670
b2 0.07550 0.01391 0.39486 -0.60463

model by Adachi?® and calculated the optical properties
of Al,Ga;_;As, focusing on n(w,z) in the photon range
between 1.0 and 3.0 eV. Over this small energy range,
his values for n(w,z) with z < 0.8 have a rms fractional
error of only 1%, which is much better than the 9.6%
rms fractional error in the values of Adachi. However,
his values for n(w, 1) from 1.0 to 3.0 €V have a 6% rms
fractional error.

The best previous results were obtained by Terry.!3
He improved the harmonic oscillator (HO) model and
fitted L(wj, zx) with his improved model. He used nine
harmonic oscillators, with a total of 36 parameters to
fit L(wj,zx) for each zx. Thus, he used a total of 144
parameters (36 x 4) to fit L(w;,xx) over the range 1.5
< hw <5.0eV and 0 < 7 < 0.8. The rms fractional dif-
ference between his e(w, z) and L(w;, zk) is less than 3%
for each ;. We use seven critical points with a total of
37 parameters to fit L(w;, ) for each z;. We use a total
of 119 parameters (see Tables V, VII, II, IX, and X) to
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FIG. 7. Comparison of y/L(wj,zx) to N(w,z), but only
with = 0, 0.3, 0.7, and 1.0 and for the sake of clarity.
The discrete symbols show the real and imaginary parts of
+/L(wj, zk) in steps of 40 meV, and the solid lines show the
calculated values for (a) n(w,z) and (b) k(w,z).
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fit L(wj, zx) over the full range of photon energies from
1.5 to 6.0 €V and for all z from zero to one.2” The rms
fractional difference between our e(w,z) and L(w;, )
is less than 2.5% for each zx. Thus, our results are only
slightly better than his, if one’s major concern is to model
L(wj, zi) as closely as possible with e(w, z). Also, the an-
alytic form of his model is much simpler than that of ours.
On the other hand, our model for €(w, z) satisfies all of
the required analytic properties for the optical dielectric
function, whereas his model does not. Thus, our model
is capable of predicting e(w, z) outside the range of avail-
able spectral data with much greater accuracy than his.
In particular, our model allows the accurate calculation
of ¢(w, z) and n(w, z) in the range below 1.5 eV and well
above the highest phonon frequencies, whereas the model
of Terry does not.

The ability of our model to allow accurate calculations
of ¢(w, z) and n(w,z) below the range of available spec-
tral data is a great advantage. One of the most impor-
tant factors in heterostructure lasers and optoelectronic
devices is the refractive index. Most active regions of op-
tical devices based on GaAs/Al,Ga;_,As are around 0.9
um (1.4 eV) in wavelength. Because optical data giving
L(wj,zx) or n(wj, k) is not available below 1.2 eV for
x different from zero or one and is not available below
1.5 eV for 0.38 < z < 1, values for n(w,z) in this region
must be obtained by extrapolation from higher energies.
Such extrapolation requires a model for €(w, ) or n(w, x).
Because our model satisfies all of the required analytic
properties of J(w, z) and of ¢(w, ), it yields much better
extrapolations to lower energies than do any of the other
existing models.

However, there are two problems in the use of even
our model to find n(w, z) for fiw < 1.5 €V from values of
L(w;,xy) for iw; > 1.5 V. The first is simple and could
be readily overcome. It is that the term

bo(2) + b (2)fuw + ba(z) (Aw)? (23)

which we use to represent the effect of critical points
above 6 eV on €;(w,z) is not sufficiently accurate and
does not give a good extrapolation of that effect to lower
energies. A term of the form

e 24

where each E; > 6 eV would be more physical and would
give better results, although it would be somewhat more
difficult to find the best values of the ¢;’s and E;’s, even
if one considered only one energy E;, than it is to find by,
b1, and b2. The second difficulty is more fundamental and
has nothing to do with our model. It is that the L(w,)
obtained from spectroscopic ellipsometry data is not a
perfect representation of the optical dielectric function
€(w) for a bulk material. For GaAs and AlAs the values
of L(w,) are inconsistent with measured values of n(w;)
over the energy ranges for which both sets of values are
available. As has been discussed by the authors in a pre-
vious paper,! that difficulty arises at least in part from
the fact that SE is very surface sensitive and that the
electron wave functions must vanish at a semiconductor
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surface, so that the near-surface region is optically differ-
ent from the bulk. It also can arise at least in part from
imperfect sample surfaces.

Both of these problems can be mostly overcome by the
simple expedient of replacing the term

8e1 = bo(z) + by (z)hw + ba(z) (hw)? (25)

by the constant 0.8 for all values of z. The result of this
simple substitution is shown in Fig. 8. It is clear that
one could obtain an almost perfect fit by replacing ée;
by the term

(doo + do1z) + (d10 + dy17)hw, (26)

with the values of the dp,,’s determined by fitting n(w;, 0)
and n(wj;,1). Of course, our model is valid only for Aw
substantially greater than the highest phonon energies
for any given material, because lattice vibrations are not
included in our model. However, Fig. 8 clearly shows
that our model gives good agreement with the available
experimental data over that range of energies. This is
possible because our model incorporates the proper an-
alytical properties of e(w,z) below and above the band
gap. The solid lines in Fig. 8 were obtained only from
the fitting of L(w,, zx) for hw; > 1.5 €V and were not ob-
tained from fittings over the energy range shown in Fig.
8.

Of course, it is always possible to fit the spectral data
below 1.5 eV if the data are available. Casey, Sell,
and Panish3® have measured the refractive indices of
Al,Gaj_,As with 0 < z < 0.38 from 1.2 and 1.8 eV.
Fern and Onton34 measured the refractive indices of AlAs
from 0.5 to 2.2 eV. Afromowitz3® calculated n(w, ) be-
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FIG. 8. Calculated values for n(w,z) below 1.5 eV. The
solid lines show the values calculated as described in the text.
The times and plus signs are the measured values of the re-
fractive indices for GaAs and AlAs, respectively.
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low the band edge with a parametrized model, but had
to use the composition as a fitting parameter, in order to

obtain good agreement with the spectral data. Recently,

Adachi!? used his model to fit these spectral data and
was able to obtain good agreement with n(w;,zx) data.
However, our model is the first which has been shown
to predict n(w,z) below the band gap from the spectro-
scopic data at higher photon energies, rather than just
to be able to fit n(w;, zx) data.

V1. DISCUSSION AND CONCLUSIONS

We have shown that our model produces a fit to
L(wj, zx) better than does any previous model. Con-
sequently, it yields better results for e(w,z) than does
any previous model. Our model is unique in that it both
determines the values for F; and I'; accurately and pro-
vides an accurate fit to L(w;,zx). No previous model
performs both of those functions. In addition, our model
contains all the correct analytical properties of e(w, z) as
was fully discussed in Ref. 1.

However, despite the great successes of the model pre-
sented here, it is necessary to issue a caveat with respect
to the use of SE data to find e(w) for any semiconduc-
tor, using any model. As was pointed out in Sec. V and
was discussed in Ref. 1, the experimental L(w;) deter-
mined from SE data does not correspond well to the true
bulk dielectric function. This is because the vanishing
of the electronic wave functions at the surface of a semi-
conductor modifies the local dielectric function near the
surface. This effect causes a rotation in phase of the mea-
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sured L(w;). This effect must be taken into account if
one is to obtain a highly accurate e(w) for the bulk. The
correction of this effect will be the subject of another
paper.

One obvious application of the model used here would
be to calculate e(w,z) for other alloy systems, such
as HgCdTe,36:37 GalnAsP,3® CdHgSe,?® InGaAs,40:41
ZnSSe, and so on by fitting L(w;, zx) for those systems.
We plan to do so in the future. Another important ap-
plication would be to express the dielectric function of
any semiconductor as a function of temperature. The
dielectric function of GaAs as a function of temperature
between 20 and 750 K has been measured by Lautensh-
lager et al.?! Adachi?? has obtained an analytical fit to
that data, using his most recent model. Recently, Yao,
Snyder, and Woollam*3 measured the dielectric function
of GaAs as a function of temperature between room tem-
perature and 900 K and used a HO model in order to
express their spectral data as an analytic function of w
and T. Our model should be able to accurately model the
spectral data obtained with the variation of temperature,
preserving all of the advantages we found it to possess in
Ref. 1 and in this paper.
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