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A very detailed ligand-field (LF) model is developed to account for the increase of one or two orders of
magnitude of the spin-lattice coupling coefficients (SLCC) of Mn + in the common cation series ZnS,
ZnSe, ZnTe, and CdTe. First, an overall LF model shows that the SLCC's are correctly given for all
studied compounds by a second-order perturbation scheme involving twice the molecular spin-orbit in-
teraction acting between the fundamental state A l and the three excited states T, at lower energy.
This model gives the contributions to the SLCC s of the strain-induced variations of the electrostatic
field of the crystal, of the ligand-ligand and metal-ligand group overlaps, and of the molecular spin-orbit
interaction. Second, a new analysis of the LF model gives the strain-induced variations of the splitting
of the states T&, of the monoelectronic molecular wave functions, and of the orbital operator of the
molecular spin-orbit interaction. Finally, by expressing the SLCC s as a linear combination of quadratic
terms in the spin-orbit constants gM of the electrons d of the metal and gL of the electrons p of the
ligands and bilinear terms in gstgt, it is shown that the terms in gM are approximately identical for all

compounds, while the terms in (MJL which are partly compensated by the terms in gL become prepon-
derant when passing from ZnS to ZnSe, ZnTe, and CdTe. These results account for the observed rough-

ly linear dependence of the SLCC's on gt for the common cation series ZnS, ZnSe, and ZnTe and show
that molecular spin-orbit interaction is essential to analyze spin-orbit-dependent spectroscopic constants
when the ratio gt /gM is greater than unity.

I. INTRGDUCTION

For d ions, the theory of the spin-lattice coupling
coefficients (SLCC's) has long been developed in great de-
tail in the framework of the classical' and relativistic '

crystal-field (CF) model. A covalent model for the
SLCC's of d ions has been developed by Sharma, Das,
and Orbach and used to interpret the SLCC's of Mn +

in oxides, fluorides, and chlorides. They showed that co-
valency effects were not preponderant in these com-
pounds with respect to the overall contribution of several
mechanisms involving the classical crystal-field model.

Experimental values for the SLCC's of d ions in II-IV
and III-V compounds show that they so strongly depend
on the nature of the ligands that these early theories have
to be reconsidered in order to determine the predominant
mechanisms contributing to the SLCC's.

The experimental values show that the SLCC's G»
and G44, which describe the coupling to E strains and T2
strains, respectively, can differ by almost two orders of
magnitude for Mn + in ZnS (G» = —0.02 cm
G44=0.20 cm '), ZnSe (G&& =0.34 cm ', G«= —0.02
cm '), ZnTe (G» =0.80 cm ', G«= —0.36 cm '),
and CdTe (Gii=0.46 cm ', G«= —0.51 cm '), and
that the signs of G» and G44 depend on the ligands. For
Mn in GaP (G„(0.1 cm ', G«&0. 1 cm '), and for
Fe + in GaAs (G» =1.4 cm ', G«= —2.2 cm '), GaP

(G&i = —7.74 cm ', G«=5.87 cm '), and InP
(G» = —2. 8 cm ', G«=2.4 cm '), the experimental
values are as scattered as for Mn + in II-VI compounds.

This strong dependence on the ligands clearly indicates
that the fairly well-known theory of the SLCC's in the
framework of the crystal-field model can only fail to ac-
count for experimental values in II-VI and III-V com-
pounds. As a corollary, the reasons for why the CF mod-
el approximately works in exceptional cases, as for Mn +

and Cr+ in ZnS, are not clear.
More precisely, in the case of Mn + in II-VI com-

pounds which will be considered here, the Blume-
Orbach' and relativistic CF models give the prepon-
derant contributions to the SLCC's and predict that G»
and G44 are almost identical for all II-VI compounds.
Therefore we will take as a reference for the theoretical
values of G» and G44, as given by the CF models, those
obtained in ZnS, that is; G

& &

= —0.26 cm ' and

G44 =0.15 cm
In order to tentatively relate the experimental values of

the SLCC's to constants intervening in covalent models,
we have represented the SLCC's and the Lande g factors
[2.0022 for ZnS, 2.0051 for ZnSe, ' 2.0106 for ZnTe, "
2.0067 for CdTe (Ref. 7)] in terms of the spin-orbit cou-
pling constant gL of the electrons p of the ligands'

(gL =384 cm ' for S, 1650 cm ' for Se, and 4200 cm
for Te) (see Fig. 1). Surprisingly enough, the dependence
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FIG. 1. Representation of the SLCC's and Lande g factors of
Mn in ZnS, ZnSe, and ZnTe in terms of the spin-orbit constant
of the ligand.

of the SLCC's and g factors on gl is almost linear for
ZnS, ZnSe, and ZnTe while the g factors and SLCC's are
given by a second-order perturbation scheme involving
the molecular spin-orbit interaction only once (and the
Zeeman interaction) for the g factors but twice this in-
teraction for the SLCC's.

In this paper we present a ligand-field (LF) model for
the SLCC's 6» of Mn + in the common cation series
ZnS, ZnSe, ZnTe, and CdTe. Although it has long been
shown that LF models give accurate multielectronic wave
functions to account for spectroscopic constants of the
fundamental state of d" ions in covalent crystals as the g
factors, ' it has only recently been demonstrated that it
can also account for optical constants in stressed crystals
as the orbit-lattice coupling coefficients' (OLCC's) which
describe the coupling of excited states to uniaxial stresses
and the SLCC's.

The calculations will be restricted to E strains (symme-
try D2d ) for the following reasons:

(i) A direct test of the validity of our method for ob-
taining the multielectronic wave functions in symmetry
Dzd was previously checked when computing the
OLCC's to E strains of the states T& and Tz of Mn + in
ZnS and ZnSe. ' Such a test for wave functions in sym-
metry C3, corresponding to T2 strains is not possible, be-
cause the OLCC's to T2 strains cannot be measured due
to a relatively strong Jahn-Teller coupling to E vibration-
al modes.

(ii) The interpretation of the SLCC s to Tz strains is
complicated by the piezoelectric effect and by eventual
displacements of the sublattices not described by the
stress tensor.

In Sec. II we present the molecular orbitals in symme-
try Td and D2d as given by the LF model for Mn + in
ZnS, ZnSe, ZnTe, and CdTe.

In Sec. III we briefly recall the LF model which was
previously used to compute the SLCC's of Mn + in ZnS
and ZnSe. ' The molecular spin-orbit interaction is
defined first. Then we present the second-order perturba-
tion scheme between the fundamental state A, and the
multielectronic states "Ti (n =4 and 6) and indicate that
the main contribution arises from the three orbital states

T&, at lower energy. This overall self-consistent model
gives the SLCC's in terms of a few constants or parame-
ters, such as the metal-ligand distance, the charges of the

metal and ligands, the cubic-Geld parameter, and a con-
stant describing the crystal electric field.

In Sec. IV we present a new analysis of the LF model
which clearly shows the physical processes contributing
to the SLCC's. It is first shown that the contribution due
to the strain-induced splitting of the relevant orbital trip-
let states Tj can be separated from the contributions of
the strain-induced variations of the monoelectronic wave
functions and of the molecular spin-orbit interaction.
Then a very detailed analysis is made of the uniaxial
stress effect on the monoelectronic molecular wave func-
tions and on the molecular spin-orbit interaction.

The theoretical results are compared to experiments in
Sec. V. First, the SLCC's are computed by using the
overall LF model as given in Sec. III. Second, an analysis
of the SLCC s is made in terms of the spin-orbit coupling
constants of the metal and ligands. Next, following the
procedure given in the preceding section, a very detailed
analysis is presented of the strain-dependent spin-orbit in-
teraction, multielectronic orbital triplet states, and
monoelectronic wave functions.

II. MOLECULAR ORBITALS
IN SYMMETRY Tg AND D2g

The molecular orbitals are chosen as linear combina-
tions of the atomic orbitals 3d, 4p, and 4s of Mn and the
valence orbitals ns and np (with n =3 for sulfur, n =4 for
selenium, and n =5 for tellurium). The correction for
ligand-ligand overlap and group overlap integrals in sym-
metry Dzd (and Td ) is given in Ref. 13.

As has long been known, the main problem of LF mod-
els for impurities in crystals is to correctly account for
the inhuence of the crystal on the cluster. The essential
difference between our LF model and previous ones lies
in the way of accounting for the electrostatic field of the
crystal. While previous models considered the electro-
static field of the nearest neighbors of the metal only, we
include in our model the diagonal and off-diagonal ele-
ments of the electrostatic field due to the nearest neigh-
bors of the ligands (see Ref. 14). Furthermore, the elec-
trostatic field of the remaining ions of the crystal is in-
cluded by approximating it as its contribution to the
Madelung constant (C,d).

The most striking effects of including the electric field
of distant ions are to reduce the electric charge of the
metal and to permit fitting of the experimental values of
the OLCC's and, as it will be shown in the following, of
the SLCC's by allowing slight variations of C,d.

The valence state ionization energies EvsI have been
calculated by the method of Basch, Viste, and Gray' for
Mn and from the atomic energy levels given by Moore'
for the ligands. The relevant Evs, 's in K cm are given
in terms of the charge QI of the ligands by

Evs, (3s)= —1.77QL +74QL + 166,

Evs, (3p) =7.9SQL + 84QL +93

for the electrons of sulfur,
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these values were considered to account for the presence
of Mn in the molecule.

The splitting of the monoelectronic orbitals 2e and 4t2
in symmetry Dzd was calculated following the procedure
developed in Ref. 13, that is, by diagonalizing the ma-
trices of the group overlaps in symmetry D2d and by cal-
culating the matrices of the energies including the Evs, s
and the crystal electrostatic field expressed in symmetry
D2d. The one-electron molecular energy levels and the
splitting of the monoelectronic orbitals 2e and 4t2 corre-
sponding to a strain Eo are represented in Fig. 2.

III. MODEL FOR THE SPIN-LATTICE
COUPLING COEFFICIENTS

For a S state, the most important term of the spin
Hamiltonian describing the influence of uniaxial stress is

FIG. 2. One-electron molecular energy levels of Mn + in
symmetry Td and strain-induced splitting of the monoelectronic
orbitals 2e and 4t2 (the energies are those obtained for ZnS).
The angle dP defining the strains of symmetry Ee is given in the
inset.

Evs, (4s) =6.9QL+91QL+ 168,

EVSI p) QL + QL +
for the electrons of selenium, and

Evs, ( 5s ) =3.73QL +98QL + 167,

Evs, (5p) =7.40QL + 76QL +89

for the electrons of tellurium.
The off-diagonal matrix elements were given by

Cusach's' approximation. The radial wave functions
were those calculated by Richardson and co-workers for
Mn, ' ' by Watson and Freeman for sulfur and seleni-
um, ' and by Roetti and Clementi for tellurium.

The interatomic distances as given from crystallo-
graphic data were 2.34 A for ZnS, 2.45 A for ZnSe, 2.64
A for ZnTe, and 2.81 A for CdTe. Slight variations of

or

y Gijklsklsi j
ij kl

~s pcjklo k!SSj'
ij kl

where c. is the strain tensor and o. is the stress tensor. In
cubic symmetry, the tensors 0 and C have only two in-
dependent components G», G44 or C», C44, which de-
scribe the coupling to strains of symmetry Eo and T2, re-
spectively.

For the strain of symmetry E which is considered
here, G» is given in terms of the matrix elements of ~s
and c33 by

AE
11 79

with

aE=&S=-,', jM, =-,' ~, ~-,', -', &
—&-,', —,'~~, ~-,'-,'& .

(E33 is related to the angle dl3 in Fig. 2 by dP= e33/&2. )

In the proposed molecular model' (Fig. 3) G&& is given
by

1
so~"Ti.Ms&& "Ti.Ms~~so~'~i-, '& —&'~i-', ~so~ "Ti.~s&& "Ti.Ms ~so~'

n, u, M~

1

E( 3, ) E("T,„)—
This expression involves states and operators which are
fundamentally different from those used in CF models.

First, the fundamental state 3, and the excited states
"T, (n=4 and 6) are to be computed for the strained
crystal. This procedure, which severely increases the
complexity of the model, is essential to account for the
strain-induced variations of the group overlaps and the
electrostatic field. Of course, for a symmetry lower than
cubic, the orbital triplet states are split, so that the sum-
mation is performed on the components u =x, y, or z of
these states.

Second, the amplitude of the molecular spin-orbit in-
teraction &so depends on interatomic distances and angles
so that, in the perturbation scheme, &so must be calcu-
lated for a molecule MX4 of symmetry D2d. More pre-
cisely, the molecular spin-orbit interaction which has
been defined by Misetich and Buch can be written as

~so y g~(r M )l'M s'+
i L

where I;M and I,-L are one-electron orbital operators for
the metal and ligands, respectively. JM and gL are the
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spin-orbit coupling constants of the electrons of the metal
and ligands, respectively.

&so can conveniently be written in terms of molecular
angular momentum ~'„of electron i and the complex
components of the spin operator as

2;(1)bE= —'(a +a )5 r 3 Eq
Z

~, (2)+ l (a'q)2
Z

q. (1)
Eq

~ (2)
Eq

&so g res
q, i

with

r. =PM(r, M)iM. +g, (r„)f). where

r, (t)r, (2 )+—'a q2 ( a f +a 3q ) ~

5 2 3 Eq
Z

~ (1)r (2)
Eq

with u =y if q =+1, and u =z if q =0, 0' being the angu-
lar momentum of electron i of the ligands.

The dependence on strain of &so can be explicitly put
into evidence by writing in detail the angular momentum
O'. For example, in the case of strain E& defined by the
angle P (see Fig. 2) we get

Eq=E( T[) E( —A, ),
with u =x, y, or z.

IV. ANALYSIS OF STRAIN-DEPENDENT
STATES AND OPERATORS

+X ( zl z2+ z3 z4) ( yl+ y2 y3 y4)

+ — ( 1 l i 2+l 3+1,4)
cosp

2

0 ) ——( lz) + lz2
—

lz3 lz4) + —( —l, + l 2
—l 3+ l 4)

+ ( l )+i 2 1 3+1 4)
cosp

2

Qz =cosP( 1„—l,2
—l,3+ l,4) +sinP( l, + l,2+ l„3+l„4) .

A very important simplification of the perturbation
scheme giving G» has been studied in Ref. 27, where it
has been demonstrated that if the states T, and T, of
the multielectronic configurations with three open shells,
such as 4tz2e nt2, 4t22e t], 4t22e ne; 4t22ent2, ' 4tz2et&,
are degenerate, then their contribution to G] &

is zero so
that only the three states T, at lower energy correspond-
ing to the configurations with two open shells 4t22e,
4t 22e, and 4t 22e are to be considered.

By diagonalizing the matrix of Sugano, Tanabe, and
Kamimura, whose elements are calculated using the
Racah parameters B,C and the cubic-field parameter Dq
which fit observed energies of the states T, at lower en-
ergy, these states can be expressed as

A. Contributions to hE linear in strain

with

+aq2(a q+a 3q )[r(1)hq(2)+r(2)br(1)]],

&(, )
=

—,
' [&.(j)+&,(j)]

«(j)= [r,(j)—r (j)] .

Of course the strain-induced variation of &so is due to
strain-induced variation of the molecular orbital momen-
tum 0 of the ligands which intervenes in the total molec-
ular orbital momentum ~.

EE2 is the contribution due to the strain-induced split-
ting of the states T, . Explicitly we get

—3aEqbE2= g 1O(Eq)2 1 3 2
[(aq+a ) r(l) +(a ) w(2)

q

In order to get a deeper insight into the physical origin
of the SLCC's we will separate AE into terms AE& and
bE2 both linear in c33 hE] is the contribution to bE of
the strain-induced variation of the monoelectronic molec-
ular wave functions and the strain-induced variation of
the molecular spin-orbit interaction, explicitly

bE, = g [(aq+aq3) q(1)bq(1)+(a2q) r(2)br(2)
2

I T,„q)=a fl T,„(4t22e))+a)l T,„(4t22e ))

+a)I T,„(4t22e )),
where q=1, 2, or 3 refers to one of the three states T,
and u =x, y, or z.

By defining the components of the relevant multiplets
2, and T] in terms of the monoelectric molecular or-

bitals and writing the matrix elements of the total orbital
momentum as

~.(1)= l &
'&

I r. I'T .(4t'2e) &,

&„(2)=i( A, lr„I4T)„(4t22e')&

(3r) =i ( A, Ir„ I T,„(4t22e ) ),

with

+2a (a, +aq)w(1)w(2)],

Eq= ,'(2Eq+E,q), —

EEq=hEq= —2bEq .

B. Strain-induced variation of the monoelectronic
molecular wave functions

then AE is given by the expression

Since our model (Fig. 3) involves only the three orbital
triplet states T, at lower energy which are issued from
the configurations 4t22e, 4tz2e, and 4t22e, the matrix
elements of the molecular spin-orbit interaction are
nonzero for the electrons of the orbitals 4t2 and 2e only.
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In symmetry D2d, the 6's are of the form

5/2

3/2

FIG. 3. Perturbation scheme for the SLCC's in symmetry
D2d. SO + ESO represent the molecular spin-orbit operator
defined in Sec. III and calculated for symmetry D2d. The
relevant orbital triplet states "T~ are split by Ez strains.

v~8 =S~+aS~,

for 4=d and m, and

b =hb8

b, =bb, =0

for N=s, o.s, cap. The b's are calculated following the pro-
cedure that gives the a' s

C. Strain-induced variation of the molecular
spin-orbit interaction

In symmetry D2d the molecular orbitals
l
nt 2 y ) are

lnt,'y ) =a„,ldt, y )+a(~ lpt, y )+a„,'lost, y )

+a rt'lopt2y &+a y lnt2y &+a r lately &

with y=g, g, g for the states t2 and y=x, y, z for the
states t, . ting, tzq, t,x, and t,y correspond to the repre-
sentation e of Dzd and t2$, t, z to the representations b2
and b&, respectively. Therefore, in symmetry D2d, the
states t2$ and t, x are mixed as well as the states t2g and

t,y. n refers to the filled levels when n=1,2,3, to the
half-filled level when n =4, to the empty level when n =5,
and to the nonbonding state t, in symmetry Td when
n =6.

By using a linear approximation to describe the strain-
induced variations of the monoelectronic molecular wave
functions in terms of strain of symmetry E8, the
coefficients of the wave functions 4t2 can be written as

a =a =a +ha 7

a~ =a~ —2b,a~,
when +=d,p, o.s, o.p, m t2, and

n't m't m t
a '= —a '=ha

when @=t,. The above coefficients a of the monoelect-
ronic molecular wave functions 4t2 are obtained follow-

ing the procedure given in Sec. II in symmetry Td and
the coefficients a+ ha from the same procedure in sym-
metry D2d'

In symmetry D2d, the molecular orbitals
l
je'y ) are

lje'B) =b e ldeB)+b e lmeB)+bj'eisa& )

+b.elosa, )+b glopa, ),
jle'E) =b , idee, )+b, lmee) ..

The index j refers to filled levels of symmetry e when

j =1 and to the half-filled level when j =2; for e'8, j =3
and 4 refer to the filled levels of symmetry a& in Td and

j =5 to the empty level of symmetry a &.

In our model which involves the states T, of the
configuration with two open shells 4t2 and 2e, the orbital
components of the molecular spin-orbit interaction which
intervene in hE, are given by

~(j)=i [('a, r, l'T, ) —('w, lr, l4T, ) ],
with

r(1)= 2a b g—M —(1/&3)b [a +&2a ](L

r(2)=+2[a a aJ'a~](M+—a [2a —a //2]gL

br(1)=3[2b "ba +a~Ah~]gM

+v'3 dP[a b "/&2 —a b /2]gL

++3[a hb /+2+ +2b b,a

+a b, b /2+b ha ]pl

br(2)=3&2[a ba —a~ha~]gM

+3dP[a a /+2+a a /2]gL

+3[a ha +a ba —a "ba /V'2

—a ba '/&3 —a ba '/&6]gL

where dP is the variation of the angle P (Fig. 2) giving the
orientations of the local orbital angular momenta of the
ligands and gM and gL are the spin-orbit coupling con-
stants of the electrons 3d (and 4p) of the metal and of the
electrons np of the ligands, respectively.

These formulas show that AE, is the contribution due
to (i) the variation of the components 3d and 3p of the
metal and npo. , np~, and np~t, of the ligands for the
monoelectronic molecular wave functions 4t~(g, rj, g); (ii)
the variation of the components 3d of the metal and np~
of the ligands for the nonoelectronic molecular wave
functions 2e ( 8, E ); and (iii) the angular variation of the
orientations of the local orbital angular momenta of the
ligands. Numerical computations of these contributions
are given in the next section.
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V. RESULTS AND DISCUSSION

A. Computation of the SLCC's

The computation of the molecular orbitals was per-
formed following the procedure given in Sec. II. The
6»'s were computed by using the following expressions
for the spin-orbit coupling constants (in cm ) of the
metal (gM ) and of the ligands (gL ):

(M(Mn) =286+47(QM —1),
gL (S)=298+65(gi + 1),
gI (Se)=1353+297(QI +1),
gL(Te)=3444+756(QI +1) .

These formulas, which explicitly show the dependence
of the spin-orbit coupling constants on the effective
charge Q~ of the metal or QI of the ligands, were ob-
tained by interpolating the spin-orbit coupling constants
given by Blume and Watson for various ionization
states of the atoms. For Mn, the value (M(Mn) was used
both for the orbitals 3d and 4p.

For ZnS:Mn the diagonalization of the matrix of
Tanabe and Sugano was performed by using the sets
B=730 cm ', C=2880 cm ', Dq= —420 cm ', and
B=762 cm ', C=2736, cm ', Dq= —440 cm '. For
ZnSe:Mn we used the following values: B=740 cm
C=2740 cm ', Dq= —405 cm ', and B=270 cm
C=3740 cm ', Dq= —500 cm '. ' For ZnTe:Mn, ab-
sorption bands attributed to the levels TI, T2, and
E (Ref. 33) at lower energy have been observed at rela-

tively high concentration in manganese. For CdTe:Mn,
at high concentration in Mn, two absorption bands have
been attributed to levels T, and T2. The Racah
parameters for Mn in ZnTe and CdTe were chosen to be
B=700 cm ' and C=2500 cm

The values of the elastic stiffness constants used to cal-
culate the CII's where those of Berlincourt, Jaffe, and
Shiozawa for ZnS, -Lee for ZnSe and Zn Te, and
McSkimin and Thomas for CdTe. The SLCC's of
Mn + in ZnS, ZnSe, ZnTe, and CdTe have been comput-
ed for slightly varying values of the metal-ligand distance
a, the Madelung constant C,d, the effective charge Q&„
of the lattice and QM of the metal, and Dq. A slight in-
crease of the value of the metal-ligand distance a has been
allowed for ZnS, ZnSe, and ZnTe, while a slight decrease
of the metal-ligand distance was considered for CdTe.
For all compounds the values for the crystal electrostatic
field due to distant neighbors (C,d ) were allowed to vary
between 1.40 and 1.63. This variation corresponds in fact
to a relatively small variation of the crystal electrostatic
field of 7%.

The charges Qi„of the lattice and the charges Q~ of
the metal, as obtained from the self-consistent calculation
of the charges, are between 0.7 and 0.9 for the lattice and
between 0.74 and 1.32 for the metal. It can be remarked
that the charges of the lattice are in good agreement with
the values 0.91 for ZnS and 0.85 for ZnSe as obtained by
Kunc from the rigid ion model.

For ZnS and ZnSe, the calculated values of Dq are in

excellent agreement with the experimental values. For
ZnTe and CdTe the computed Dq's are found to be ap-
proximately 300 cm '; the experimental values are not
known.

The detailed contributions to C» and 6» of the elec-
trostatic field due to the ligands and the nearest neigh-
bors of the ligands, the contribution of the ligand-ligand
overlaps and the metal-ligand overlaps, and the contribu-
tion due to the strain-induced part of the molecular spin-
orbit interaction have been computed. Except for CdTe,
the contribution of the ligand-ligand overlap was found
to be almost negligible with respect to the experimental
values for C» or 6». The contribution of the metal-
ligand overlap increases when passing from ZnS and
ZnTe. A relatively large contribution is found for CdTe.

No simple variation of the electrostatic field and of the
strain-induced part of the molecular spin-orbit interac-
tion was found for the set ZnS, ZnSe, and ZnTe. Howev-
er, for ZnS and ZnSe the contribution of the electrostatic
field is partly compensated by the other contributions so
that C» is very sensitive to slight variations of the values
of a, C,d, and Q~„.

For ZnS, by adding the relativistic contribution which
is —2. 1X 10 cm/N for Q~„=0.8, we obtain theoretical
values for C» which vary from 0.85 X 10 to
—2. 16X 10 cm/N. The experimental value is—0.5 X 10 cm/N.

For ZnSe, the relativistic contribution calculated for
Q„,=0.7 is —2. 1X10 cm/N so that the theoretical
value for Qii varies between 10. 1X10 and 26.6X10
cm/N. The experimental value is 9.7X10 cm/N.

For ZnTe and CdTe, due to the very large value for the
spin-orbit coupling constants of the ligands, C» varies
very fast when slightly varying the value for Q„,. By
choosing Q&„=0.7 for ZnTe and Q~„=0.8 for CdTe, the
theoretical values for C» are in good agreement with the
experimental values.

B. Analysis in terms of the spin-orbit coupling
constants of the metal and ligands

Since the SLCC's are correctly given by a second-order
perturbation scheme involving twice the molecular spin-
orbit interaction, these coe%cients can be expressed in
terms of the spin-orbit coupling constants of the electrons
d of metal and electrons p of ligands as

Cll =+0M+XI. + 1'CLAM

For ZnS, ZnSe, and ZnTe the term in gM is approxi-
mately equal to —5 X 10 cm/N. For CdTe this term is
approximately equal to —10X10 cm/N. For all four
compounds the term in PJL is negative and its modulus
increases rapidly when passing from ZnS to ZnSe, ZnTe,
and CdTe. The term in ygL(M is positive and increases
rapidly when passing from ZnS to ZnSe, Zn Te, and
CdTe. Therefore the CI&'s are primarily given by two
large contributions of opposite sign. While the quadratic
and bilinear terms in gM and gz do not critically depend
on the sets of constants a, C,d, QL, and QM, the overall
contribution to C» is very sensitive to the values deter-
mined for these constants.
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The variation of the parameters P and y for the three
compounds having the same cation have been represent-
ed in Fig. 4. Finally, it is shown in Fig. 5 that C&& almost
linearly depends on gL for gL & 300 cm

C11

( &08 cm)'N} I(

30'

C. Analysis of the strain-dependent molecular
spin-orbit interaction and multielectronic

orbital triplet states

Te

In Sec. IV A, it was shown that G» is given by

1
G},= (bEi+bE2) .

9c33

&0.

For brevity AE, will be written as

AE) —S/]K/I +S2$E22+s/pE/2 7 m }
-1

with

and

S}}=2~(1)hr(1),

S» =2m(2)b, r(2),

S,~
=r(1)b r(2)+ r(2)b r(1),

FIG. 5. Representation of the experimental values for C» in
terms of gl .

(a', +a,')',1

5Eq
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(t (err& )
2 -2

1E»= g (a', )',
5Eq

- 50. a)

Te

-100..
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F00.
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50.

0
ie5 i06 (cm }

FIG. 4. Contribution to C» of the terms in gL and /~GAL.

It is clear that the inAuence of the strain-dependent
molecular spin-orbit interaction is described by the S s
since r(1) and r(2) are, respectively, the matrix elements
of the orbital molecular kinetic momentum between the
fundamental state 3, and the state T, of the
configuration 4t22e for r(1) and the state T, of the
configuration 4t22e for r(2). The b, r's are the variations
of the ~'s due to a strain of symmetry Ez.

The mixing parameters and the energies of the mul-
tielectronic orbital states T, as given by the diagonaliza-
tion of the matrix of Tanabe and Sugano intervene in the
X's, which are therefore functions of the reduced values
B and C of the Racah parameters and of the cubic field
parameter Dq.

Figure 6 represents r(1) and ~(2) in terms of the spin-
orbit coupling constants gL of the ligands for ZnS, ZnSe,
and ZnTe. It shows that r(1) increases from —500 cm
for gL =0 to approximately —200 cm ' for gL =3600
cm ', while r(2) decreases from 380 cm ' for gL =0 to
—1150 cm ' for gL =3600 cm '. [We can remark that
for gL =0, the ratio ~(1)lr(2) = b&2/a = ——&2.]

Except for ZnS, b,r(2) was found to be negligible with
respect to hw(1). Er(1) is represented in terms of gL for
ZnS, ZnSe, and ZnTe in Fig. 7.
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