
PHYSiCAL REVIEW B VOLUME 47, NUMBER 4 15 JANUARY 1993-II

Plane-wave electronic-structure calculations on a parallel supercomputer

J. S. Nelson
Semiconductor Physics Division, 1112,Sandia National Laboratories, Albuquerque, New Mexico 87185

S. J. Plimpton and M. P. Sears
Parallel Computational Science Division, 1421, Sandia National Laboratories, Albuquerque, Net@ Mexico 87185

(Received 13 December 1991;revised manuscript received 24 August 1992)

We present a detailed description of the implementation on a parallel supercomputer (hypercube) of
the first-order equation-of-motion solution to Schrodinger s equation, using plane-wave basis functions
and ab initio separable pseudopotentials. By distributing the plane waves across the processors of the
hypercube many of the computations can be performed in parallel, resulting in decreases in the overall
computation time relative to conventional vector supercomputers. This partitioning also provides ample
memory for large fast-Fourier-transform (FFT) meshes and the storage of plane-wave coefficients for
many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by bench-
mark timings for both the FFT s and iterations of the self-consistent solution of Schrodinger's equation
for different sized Si unit cells of up to 512 atoms.

I. INTRODUCTION

The development of iterative solutions of Schrodinger's
equation in a plane-wave (PW) basis' ' over the past
several years has coincided with great advances in the
computational power available for performing the calcu-
lations. These dual developments have enabled many in-
teresting condensed-matter phenomena to be studied
from a first-principles approach. Static calculations (time
and temperature independent) that predict the ground-
state properties of surfaces or unit cells containing 10—20
atoms can now be performed on desktop workstations.
By contrast, dynamical calculations and larger unit cells
still require "mainframe" supercomputing. The largest
such static calculation that we are aware of has been on a
unit cell containing about 100 atoms. ' A dynamical com-
putation of 100 atoms often requires 50—100 h of central
processing time (CPU) and 100 megabytes (MB) of ran-
dom access memory (RAM) on a vector supercomputer
such as the CRAY-YMP. As the size of the unit cell in-
creases to 100 or more atoms (or transition-metal atoms
are included which require a larger PW basis set), the
CPU and memory demands become nearly insurmount-
able for even the largest of conventional supercomputers.

However, iterative PW solutions have the advantage of
being parallel in nature, meaning that much of the com-
putation can be distributed among cooperating proces-
sors. In particular, key components of the computation
include fast Fourier transform (FFT's), Cxram-Schmidt
(CxS) orthogonalization of a large number of wave func-
tions, and calculation of the operation of the Hamiltonian
on the wave function. As we shall see, each of these cal-
culations has a natural decomposition onto a parallel set
of processors.

The current generation of parallel supercomputers are
capable of multigigafiop computation rates (1 X 10 fioat-
ing point operations per second) and, equally important
for this application, have gigabytes of internal memory.

This additional compute power and memory increases
the size of electronic-structure calculations that can be
solved in a few hours of CPU time via these iterative
techniques.

In this paper, we present the details of the parallel im-
plementation of the first-order equation-of-motion solu-
tion to Schrodinger s equation on a 1024-processor
nCUBE 2 supercomputer. ' This processor is a
multiple-instruction, multiple-data (MIMD) computer,
meaning that each of its processors (nodes) contains its
own copy of the program and executes instructions in-
dependently on its own local data. The nodes communi-
cate data with each other (e.g. , during a FFT computa-
tion) by passing messages. Each of the nodes in the
nCUBE 2 has 4 MB of memory for a total of 4 gigabytes
on the entire machine. An important feature of the
nCUBE 2 is that the connectivity of the nodes is that of a
ten-dimensional hypercube (1024=2*"10), so that each
node is connected to ten "neighbor" nodes in the hyper-
cube. This high connectivity is particularly useful for ex-
changing data quickly during various parts of the compu-
tation.

It is useful to note that many of the parallel strategies
we will describe here are appropriate for any parallel
computer with a high degree of connectivity. In particu-
lar, they could be implemented on the single-instruction,
multiple-data (SIMD) Connection Machine. '" This pro-
cessor divers from a MIMD machine in that only one
copy of a program executes synchronously (one instruc-
tion at a time) on each processor's local data. However,
because the nodes have the underlying connectivity of a
hypercube, the parallel decomposition described herein
for the MIMD nCUBE 2 should also be an e6'ective
choice for the SIMD Connection Machine.

The remainder of the paper is organized as follows: In
the next section a formal discussion of the equation-of-
motion method for solving Schrodinger's equation and its
associated computations is presented. In Sec. III, the

47 1765

1766 J. S. NELSON, S. J. PLIMPTON, AND M. P. SEARS 47

partitioning of the computations and data onto the paral-
lel computer is described. In Sec. IV, the FFT routine is
presented in more detail and benchmark timings for
di6'erent sized FFT meshes are given. Finally, in Sec. V,
self-consistent iterations for Si unit cells up to 512 atoms
are performed and analyzed. These larger calculations
demonstrate the increased computational capability that
parallel supercomputing provides.

II. EQUATION OF MOTION METHOD: FORMALISM

A. Time integration

and

F„(g,t) = —g (Hs s
—A„„5ss)a„(g', t),

g

f„(g,t, ht) = [exp(x) —1]/x, x = —(Hs s
—A„„)bt .

Schmidt procedure). The result of the integration for a
small time step At is

a„(g,t+bt)=a„(g, t)+F„(g,t)f„(g,t, bt)ht, (5)

where

Ba„(g,t) = —(H —A„„)a„(g,t)+p„(g, t), (3)

There are several iterative approaches to the solution
of the Schodinger equation in a PW basis. ' ' Of these,
we focus on the first-order equation of motion approach
proposed by Williams and Soler. We begin with a brief
review of the formalism (Woodward et al.). One ap-
proach to the minimization of a function subject to some
constraints is the method of steepest descents. Here, the
function is minimized by moving in the direction of the
negative gradient. Williams and Soler improved on this
approach by introducing a first-order equation of motion.
In this approach, more information concerning the local
gradient is contained over a standard steepest-descent
description. The first-order equation is written as

B%'„k
k g A k, 'k'+ 'k'

where 8/Bt is the fictitious time derivative of the wave
function, 0'„k, H is the Hamiltonian operator, and n and
k are the band index and reciprocal lattice points in the
irreducible Brillouin zone, respectively. The second term
on the right provides the constraint of orthnormality, us-
ing the Lagrange multipliers A„k „k. For convenience,
in the following we let n represent both the band and the
k-point index. Note that Eq. (1) represents the
imaginary-time Schrodinger equation for band n. In a
PW basis, the wave function 4„ is expanded in a Fourier
series of reciprocal-lattice vectors (g):

V„(r,t)=(1/+V) g a„(g, t) exp[i(k+g) r], (2)
g

where V is the volume of the crystal and a„(g,t) is the
PW Fourier expansion coefficient. Substituting Eq. (2)
into (1), multiplying on the left by
(I/& V) exp[i (It+ g') —r], and integrating gives the
equation of motion for each wave-function expansion
coefficient a„(g, t):

Equations (5)—(7) are iterated until a„(g, t +ht)

=a„(g,t). After each iteration, the wave functions
%„(r,t +At) are orthogonalized using the GS procedure.
When the solution is converged [i.e. , a„(gt+ 6 t) is equal
to a„(g,t)], the residual vector, F„(g,t), is equal to zero
in Eqs. (5) and (6), and the Schrodinger equation is
satisfied.

It is instructive to compare Eq. (5) to the method of
steepest descents, ' where a function is minimized by
moving parallel to the negative gradient. If f„=1 in Eq.
(5), then the change in the wave function at a given itera-
tion is parallel to the residual vector F„(g,t). This is pre-
cisely the steepest-descent prescription. Its modification
when f„=[exp(x) —I]/x, contains information related
to the curvature of the steepest-descent path. It therefore
leads to faster convergence. Equations (5)—(7) are
guaranteed to give E(t+ht) (E(t), as long as the time
step is small enough for the approximation that H
A„„,and p„are constant to remain valid.

B. Evaluation of H%

The most time-consuming part of the solution to Eqs.
(5)—(7) is evaluating the operation of the Hamiltonian on
the wave function appearing in the expression for
F„(g,t). In the pseudopotential approach, the Hamil-
tonian is given by

H =Ek + V, + V~+ V,„, ,

where Ek is the kinetic energy, Vz, is the pseudopotential
describing the electron-ionic-core interaction, V~ is the
Hartree interaction between the electrons, and V,„, is the
exchange-correlation interaction of the electrons. More
explicitly, the individual terms are given by the following
expressions (units are in rydbergs):

E = —V

where

p„(g, t)= g'H .a„(g', t)+ QA„„a„.(g, t) .
n'

(4)

Vp, (r)= g Vp, (r —R —r),
r, R

V V~(r)= —8~p(r),

(10)

The primes on the summations in (4) indicate the diago-
nal terms, H and A, „,are omitted. To integrate Eqs.
(3) and (4) forward in time using the scheme of Williams
and Soler, we assume that Hs s, A„„,and P„are con-
stants and let the Lagrange multipliers A„„be zero (the
orthogonalization is taken care of later using the Gram-

and

V,„,(r)= V,„,(p(r)) . (12)

The summation in Eq. (10) is over all the atoms r, in the
unit cell, and lattice vectors R, in the crystal. The Har-
tree potential, V~, is constructed from the Poisson equa-

47 PLANE-WAVE ELECTRONIC-STRUCTURE CALCULATIONS ON. . . 1767

+ g YI) VNL(r —R—i)(Yi ~],
Im

(13)

were used, where YI are the spherical harmonics with
angular momentum lm, and VNL and VL are the nonlocal
and local parts of the pseudopotential. In a PW basis,

I

tion [p(r) is the pseudovalence charge density], and the
exchange-correlation potential, V,„, [a functional of
p(r)], through the local-density approximation. '

Before the usefulness of separable pseudopotentials'
was recognized, norm-conserving pseudopotentials of the
form'

V,(r)= g [VL (r —R —~)
r, R

with a potential of this form, one must evaluate
N(N+1)/2 nonlocal matrix elements for each
reciprocal-lattice point k, where N is the size of the PW
expansion. The memory required to store these matrix
elements, even for a small PW set (—1000 PW), is quite
large. In addition, eKcient coding of the iterative equa-
tion of motion method is dificult when the nonlocal corn-
ponent of the pseudopotential is given by Eq. (13). The
separable form of the pseud opotential introduced by
Kleinman and Bylander' has thus been extremely impor-
tant for the development of the iterative solutions to
Schrodinger s equation. A Kleinman and Bylander pseu-
dopotential is separable in both the radial and angular
components. It is of the form

V', (r) = g g [~QV&(r R ~)—g&
—) (5VI(r —R—~)p& ~]/N& + VL (r —R—i)

r, R Im

(14)

p(r)= gp(g)exp[i(g r)],
g

(15)

VH(r)= g VH(g) exp[i(g r)], (16)

and

V,„,(r)= g V,„,(g) exp[i(g r)] . (17)

The Fourier components of the Hartree, VH(g), and the
exchange-correlation potential, V,„,(g), can be easily
evaluated by first constructing the real space, p(r), and
reciprocal space, p(g), charge densities. This is most
easily accomplished by transforming (FFT) the
reciprocal-space representation of the wave function,
%„(g,t), to real space, to obtain %„(r,t). The real-space
density is then simply

where N& =[(P& 6V&(r R ~)~g—
&

)—], VL(r) is a com-
pletely arbitrary local potential (usually taken to be the
highest angular momentum of the valence states), ijj& is
the pseudoatomic wave function from which V, was
constructed, 5VI= V', —VL, and V', is the I component
of V, defined in Eq. (13). By construction,
V~, t/P&~

= V~, t/t&~, but V~, 1(r-V~, f, where g is an arbi-
trary wave function. The separable form given in Eq. (14)
necessitates the evaluation of only 1V matrix elements in a
PW basis. For details see Refs. 17 and 18.

In the momentum space formalism of the self-
consistent pseudopotential method, ' ' all local opera-
tors are represented in Fourier space:

cial k-point sampling schemes. The reciprocal-space
charge density, p(g), is obtained by a FFT on p(r). The
Hartree and exchange-correlation Fourier components
are given by

and

VH(g) =8~p(g)/g'

V,„,(g)= J V,„,(r)exp[—i(g r)]d r .

(19)

(20)

The form of V,„,(r) depends on the particular exchange-
correlation potential used. In general,
V,„,(r)= V,„,[p(r)], and can be easily evaluated by
operating on p(r) to obtain V,„,(r), and then performing
a FFT to get V,„,(g).

The evaluation of F„(g,t) in Eq. (6) is performed in the
diagonal representation of each operator (either real or
reciprocal space). The kinetic-energy operator [Eq. (9)] is
diagonal in reciprocal space; the potential-energy opera-
tors, Vt (r) [Eq. (14)], VH(r) [Eq. (16)], and V,„,(r) [Eq.
(17)] are diagonal in real space; and the nonlocal
potential-energy operator, 5 VI(r) [Eq. (14)], is diagonal in
reciprocal space. The kinetic-energy operator is just
~(k+g) . Let us first discuss the nonlocal contribution
to F„(g,t). For each wave-function coefficient,
a„(g, t + b, t), and band n (actually band and k point), the
expression of F„(g,t) must be evaluated. The second
term in Eq. (6) is straightforward and involves multiplica-
tion of the Lagrange multiplier [or expectation value for
band n E„=(%„(r,t) ~H ~%'„(r, t))] and the wave func-
tion. Consider the nonlocal contribution to the first term:

p(r) = g V„(r,t)*%„(r,t)tU„, (18) H%'(g)„"= g H, „(g' t) (21)

where w„ is the band and k-point weighting factor. In
Eq. (18) we have implicitly assumed a summation over all
k points in the irreducible Brillouin zone (IBZ). The
summation over the IBZ is usually accomplished via spe-

where we have defined a nonlocal function,
H 4(g)„(H4 " represents the nonlocal function and
does not imply H operating on ql). The off-diagonal non-
local matrix element, H g, is given by

1768 J. S. NELSON, S. J. PLIMPTON, AND M. P. SEARS 47

H =—f exp[—i(k+g) r] g 'g IVIVI(r R— r—;)QI)(5V&(r R— ~—;)QI I

'
(1/XI)exp[i(k+g') r]d rNL

i, ~;,R Im

(22)

or

HNL, = g g g [4~(21+1)/A]V/(Ik+gl)Fs(g, r;)V/(Ik+g'I)Fs(g', r;)PI(k+g;k+g'),
i ~, 1

(23)

where 0, is the unit-cell volume, i is a summation over all types of atoms in the unit cell, ~; is over all atoms of type i in
the unit cell, and / is over all angular momentum. Respectively, the quantities VI'(

I k+gl), Fz(g, r;), and P&(k+ g;k+g')
are the nonlocal potential form factor for atoms of type i and angular momentum l, the atomic structure factor for ~;,
and the Ith Legendre polynomial. They are given by the following expressions:

' 1/2
v/(Ik+gl)= f dr r j&(Ik+glr)5vI(r)g&(r) f dr r [QI(r)] 6v&(r) (24)

F~(g, ~;)= exp[—i(g r;)], (25)

and

1 for l=O
(k+g) (k+g')/lk+gllk+g'I for 1=1 . (26)

The expression for PI has been defined for (l =0, 1), since in most cases the d pseudopotential is taken as local, whereby
only s and p nonlocal corrections will be necessary. Using Eqs. (24) —(26) we can rewrite Eq. (21) as follows:

H'P(g)& = & & Fs(g &i) & g 4~(2i+1)V/(lk+gl)p~j(g) g [V/(Ik+g'1)pIJ(g')Fs (g', r;)a„(g', t)],
7 ~ I j 8

(27)

pIJ(g)=1, for l=0, (28)

p&, (g)=g~/lgl, j=x,y, z components of g, for /=1 .

The summation over g' in Eq. (27) is the same for all the
I components, so that this summation can be performed
and all the g components of H%'(g)„" update at once.

where we have separated the Legendre polynomial,
P&(k+g, k+g'), into a product of functions pIJ(g) and
PI, (g') by

We can similarly define a local function, HV(g)„
(again, H% represents the local function and does not
imply H operating on 4) describing the operation of the
local potential operators on the wave functions.

Hqj(g)„= QHs s. a„(g', t) . (29)

In order to see how to evaluate this expression, we can
write it out more explicitly.

HV(g)„= g f expI i((k+g)—r)] [VH(r)+ V,„,(r)+ V(Lr)]a„(gt) expIi((k+g') r)]d r .. (30)

This expression is the convolution of the total local po-
tential with the wave function. By transforming both the
local potential and the wave function to real space, multi-
plying them on the real-space mesh, then back transform-
ing the product to reciprocal space, all of the HV(g)„
can be computed with three FFT's. In practice, the total
local potential in square brackets in Eq. (30) is stored on
the real-space mesh, so that only one FFT is done on the
total local potential for all the bands.

With the updated wave functions from Eq. (5), using
the expressions given above, the new charge density can
be constructed from Eq. (18), and the new self-consistent
potential from Eqs. (19) and (20). The new self-consistent
potential and wave functions are used to reevaluate the
expression in Eq. (5), and the process is repeated until

g„(g, t+5t)=a„(g, t). With the converged wave func-
tions, charge density, self-consistent potential, and energy
bands other physical properties such as total energies,
atomic forces, density of states, etc., can be computed.
For a discussion of the total energies and atomic forces
see Yin and Cohen. To start the iterative solution, ini-
tial wave functions can be obtained from either direct di-
agonalization of a small wave-function basis or from a
random number generator. Typically, the wave functions
generated from the diagonalization converge faster.

C. Scaling relations for the computation

The overall scaling of the computational work involved
in the iterative equation-of-motion method can be deter-

47 C STRUCTURE CALCUPLANE-WAVE ELECTRONIC-STRUCT 1769

ex ressions. There are two seal&ngh. .h ~, f
mine

uld be distinguis e .op
xe

' - '
&or e uivalent y a x

X ' lddi h
'

crease in the PW s, , i
ill 1o i thvva, p

the

h M S Th h Npo ch FFT, then
2verall scaling is propor

'

1'as N. The second sca ing o
1

' f fi dPWthe unit-cell size or a
toff. In this case, t ee number o an

, th. .. b...f PW coefficients
each wave function, an

cell. Thus, e
1' ation now scale as N .(30) and the GS orthogona iza ion

d b the other processors.with coefficient v alues compute y
mpromise betweenwe im lement is a compThe partitioning we imp p

two-dimensiona yz) slice of t e
ith active g-vectorrocessors is shown wi

E hosed in the circle. ac

l f h FFTa contain many co umsquare in turn may c
1 four of the pro-ned in the figure, on yp

re an active coe cien s,
be idle during wave-v

d h 1 flleviate this imbalance consi e

, b dd) dl '
1subdomains (a, , c, an

1 2 and 3 each store one o e
for itself At times in thIt keeps subdomain D for itse

III. PARTITIONING THE PROBLEM
ON THE HYPERCUBE

(a)

a large calculation on pa arallelg g
machine with d istributed memory suc a

u-is how the data struc ut tures of the comp-
1 isTh' '

ned across t e procp
he computation t a ca

11 h hsimultaneously onn the data by a e
hat must be exchangedmount of data t a m

~ ~

minimizing the am

'h bd' 'd h bl
essors. A typica appr

k 'bl
le idea whic su i

'

a and then to see pin a convenient way an

o1 tio to E (1)—(30), thp g
p

ace and reciproca space
we

[1 p

of t}1
oefficients o t e a

shall see in the nex sext section, for as co
al number of meshable to have an equa nFFT's, it is desira e

f each processor, and topoints stored in ethe memory o eac p
he of the three imen

'd' sions of the meshave at least one o
or. This is accom-a articular processor.

1littin the mesh into a wo- '
plished by sp itting

-d' sional columns (x i-ray (yz dimensio
'

ns) of one-dimensio
rs are mapped onto

ht ht 1

ercube processors a
1the two-dimensiona, y g

'1(z) ridsot a ea

)i of }I
[Fi . 1(a)].

ea set (PW coefficien s
1he set of active coe c'

t}1 th -d' o 1in a cutoff sphe re embedded in t e r
the vector differenc"box" used for the FFT mesh. ince e

U contained in the box,vectors must e con a'
1

between any two g
the sphere of active gve vectors as ah diameter at most —,

nsion of the box ig.LFi . 1(b)]. If thethe shortest dimension
ated to the processo rs the same waycoefficients were alloca e

ral columns o t ef h "box" on eachhe FFT mesh is (several
uld have no

ast e
n —' of the processors wou

. 1(b)]. H, if hm ute on [see Fig.coefficients to comp
u 'ded evenly among thefficients were ivi evector of PW coeffic'

ld have to communi-ch rocessor wou apro
of h FFT hcate with many others to fi p t oll its ortion o

(b) Y
)(

= Z

in of the 3D FFT mesh onto the
d

ns

2 and 3) stores four x co umn
re ofD FFT mesh and sphere o

P

FFT's must be compute

ro'ection of the 3
sm dtwo dimensions. s m

l

acctive g vectors into
oints, but PW coe cien sts calculations on yon all the mesh points, u

n mesh values wi inthin the cutoA'sphere.need to be performed on m

1770 J. S. NELSON, S. J. PLIMPTON, AND M. P. SEARS

C' ba
(

FIG. 2. An x plane of the 3D FFT mesh and the sphere of g-
vector coefficients (shaded circle). If the problem is partitioned
onto 16 processors, each has one of the square blocks of
columns. Processor zero shares its work load with processors 1,
2, and 3 as described in the text.

tion when coefficients must be mapped onto the FFT
mesh or vice versa, the three partner processors (1, 2, and
3) communicate their data with processor 0. This can be
done very quickly on a hypercube, since each similar set
of four partner processors forms a subcube with com-
munication wires directly connecting the four processors
to each other. The net result of this subpartitioning is to
ensure that every processor has some g vectors to com-
pute on during wave-vector computations and is fully uti-
lized during FFT computations. However, the work load
is still not perfectly balanced since some processors have
a larger piece of the embedded sphere than others.

With this partitioning, each processor performs its por-
tion of the real- and reciprocal-space lattice summations
appearing in Eqs. (5)—(30), then communication routines
are used to obtain the global summation or total lattice
sum when necessary. Useful hypercube communication
routines can be found in the book by Fox et al.

IV. FAST-FOURIER- TRANSFORM ROUTINE

Three-dimensional 64-bit complex FFT's are a
significant part of the computational task for this prob-

lem. In each iteration of the self-consistent solution,
—3n FFT's are required, where n is the number of bands
for all k points. Two FFT's (forward and reverse) are
done for each band in the calculation of Eq. (30) and one
FFT is performed for each band to calculate the charge
density in Eq. (18). More details can be found in the Ap-
pendix.

Timings for our FFT's on various mesh sizes on the
nCUBE 2 hypercube are listed in Table I. Timings are
given for several powers-of-2 numbers of processors since
the nCUBE 2 allows subcubes of the full 1024-processor
machine to be used on a problem. The larger FFT's on
1024 processors spend about 65% of their time in com-
munication (transpose), while the computation portion
(one-dimensional FFT's) run at a speed of —1.5
megaAops on each processor. Thus the average speed of
the entire FFT on the full 1024-processor hypercube is
about 0.5 gigaAop. This compares to 290 MAops for a
single YMP processor.

We only list timings for FFT meshes that are power-
of-2 in all three dimensions since they are used fn the
benchmark calculations in this paper. However, we also
have a mixed-radix FFT routine (powers of 2, 3, and 5)
that we can use on problems that allow intermediate-size
meshes. The algorithm for computing the mixed-radix
FFT's is similar to that described in this section. The
timings are about a factor of 2 slower (for a given total
number of mesh points) than those in Table I due to the
mixed-radix one-dimensional FFT s being written in a
high-level language rather than assembler. Nonetheless,
for some problems, the advantage of a smaller FFT mesh
(e.g. , 40X40X40 instead of 64X64X64) in terms of
memory and total computational time required can offset
this speed difference.

V. BENCHMARK CALCULATIONS

In this section, benchmark calculations are performed
to assess the performance of the parallel code versus a
similar version of the code running on the CRAY-YMP.
Benchmarks for the nCUBE 2 will be given for 1024 pro-
cessors. The problems that we will consider consist of
bulk Si unit cells containing from 8 to 512 atoms. Tim-
ings on a single processor for the CRAY-YMP are given
for the 8- and 64-atom unit cells; larger unit cells could
not be computed on the CRAY-YMP because of memory
limitations. The 512-atom unit-cell computation demon-

TABLE I. Benchmark timings (in seconds) for the parallel fast Fourier transform (FFT) on the hy-
percube (nCUBE 2) for various numbers of processors, p. All the FFT's are 3D double-precision com-
plex and restore the transform data to their original locations on the mesh (no bit reversal). Single-
processor CRAY-YMP timings are all given for the current CRAY library routines (Ref. 28).

(32,32,32)
(32,32,64)
(32,64,64)
(64,64,64)
(64,64, 128)
(64, 128,128)
(128,128,128)

Np =128

0.046 09
0.091 6
0.178 1

0.360 2
0.730 5
1.480
2.998

Np =256

0.0270
0.0502
0.0975
0.1938
0.3891
0.7883
1.591

Np =512

0.0170
0.0294
0.0547
0.1063
0.2102
0.4211
0.8523

Np = 1024

0.011 88
0.018 7
0.031 2
0.058 9
0.1138
0.225 8
0.453 0

CRAY-YMP

0.0134

0.0846

0.762

PLANE-WAVE ELECTRONIC-STRUCTURE CALCULATIONS ON. . . 1771

strates the additional computational power that parallel
supercomputers bring to bear to first-principles calcula-
tions. It requires virtually all of the 4 Gbytes of nCUBE
2 memory to store the PW coefticients for the 1024
energy bands. The calculations employ the Wigner
exchange-correlation potential, a PW cutoff'of 10.0 Ry,
s and p nonlocal corrections, and one k point in the irre-
ducible Brillouin zone. For each unit cell, the FFT mesh
size and the total number of PW's and energy bands are
given in Table II.

In Fig. 3 a simple Bow chart of the program execution
is given. Here we are only considering the self-
consistency iterations. The subroutine genkg generates
the real- and reciprocal-space lattice vectors, and com-
putes all the local and nonlocal pseudopotential form fac-
tors. Since this routine is only performed once for a
given unit cell, the total CPU timings are an insignificant
portion of the overall computation. The initial wave
functions (subroutine ranmau) can be obtained by several
approaches: (1) diagonalization of a small matrix; (2) ran-
dom number generation; or (3) by FFT Gaussian-based
localized atomic wave functions. The self-consistency
iterations can be broken up into three main sections. The
first section (subroutine charge) involves constructing the
real- and reciprocal-space charge densities from the up-
dated orthonormalized wave functions. In the second
section (subroutine totpot), the local Hartree and
exchange-correlation potential form factors are computed
from the reciprocal- real-space charge densities. This
routine also mixes previous self-consistent potential cy-
cles. The third section (subroutine solue) solves the equa-
tion of motion for all the bands and reciprocal-lattice vec-
tors, and orthonormalizes the updated wave functions us-
ing the GS procedure. Timings for each of the three sub-
routines and the total CPU time for one self-consistent
iteration are given in Table II.

The benchmark timings in Table II indicate that the
dominant portion of the computation is the solution of
the equation of motion and the GS orthonogonalization
(subroutine solve). The total CPU time spent in the solve
subroutine can be further decomposed into the amount of

Subroutine Genkg:
Generate real- and
reciprocal-space
lattice vectors
Compute local and
nonlocal potential form
factors
Compute atomic
structure factors

Subroutine Ranwav:
Generate initial
wave functions using
random number or FFT
of atom centered
gaussians

Subroutine Charge:
Compute total charge
density from current
wave functions

Subroutine Totpot:
Compute Hartree and
exchange-correlation
potential from charge
density
Mix previous
self-consistent potentials

IS POTENTIAL
SELF-CONSISTENT?

)(NO

Subroutine Solve:
Compute new
wave function
Perform Gram-Schmidt
orthonormalization

Stop iterations and go
on to compute other
physical quantities:
Band structure
Atomic forces
Total energies

FIG. 3. Schematic diagram of the self-consistent calculation.
See text for descriptions of the subroutines given in the figure.

time for the computation of the operation of the total lo-
cal potential on the wave function [Eq. (29)], the compu-
tation of the operation of the nonlocal potential on the
wave function [Eq. (27)], and the time spent in the GS or-
thogonalization. We find that about 30%%uo of the time is
spent in the local part, 60% of the time in the nonlocal
part, and about 10%%uo in the GS orthogonalization. The
other two subroutines make up about 15% of the total
CPU time for one iteration.

The "total" timings in Table II also show how the
computation is scaling when the number atoms in the
unit cell is increased by a factor of 2. The scaling is less

TABLE II. Benchmark timings (in CPU seconds) for one self-consistent iteration of various sized Si unit cells on the 1024-
processor nCUBE 2. Timings for the CRAY-YMP (single processor) are also given for the 8- and 64-atom unit cells. All the calcula-
tions are performed for one k point and a 10-Ry plane-wave energy cutoff'. The 512 atom was done with an 8-Ry plane-wave energy
cutoff and a more computationally costly solve routine to conserve memory. The total entry is the total time for a self-consistent
iteration on each machine. The values in parentheses are the scaling ratio on the nCUBE 2 for a factor of 2 increase in unit-cell size.
The scaling is found to be less than N', but increases towards N with increasing unit-cell size.

Atoms

No. PW
No. bands
No. FFT pts
totpot
solve
charge
total (nCUBE)

587
17

(32,32,32)
0.03
1.06
0.28
1.37

16

1173
33

(32,32,64)
0.06
3.02
0.76
3.84
(2.8)

32

2335
65

(32,64,64)
0.10
10.28
2.50
12.89
(3.4)

64

4625
129

(64,64,64)
0.17
41.88
9.19
51.3
(3.9)

128

9261
257

(64,64, 128)
0.33

190.55
35.34
226.2
(4 4)

185 33
513

(64, 128,128)
0.64

1019.98
139.13
1160.75

(5.1)

512

31000
1025

(128,128,128)
1.30

11 211.0
553.9
11766

total (CRAY) 4.77 226. 1

1772 J. S. NELSON, S. J. PLIMPTON, AND M. P. SEARS 47

than N for unit cells less than 64 atoms and approaches
N thereafter. The N scaling for the larger unit cells is
due to the increasing dominance of the nonlocal part of
the computation.

Comparing to a similar version of the code running on
the CRAY- YMP, the nCUBE 2 is about a factor of 5 fas-
ter when running with all 1024 processors. Although
more optimization could likely be done on both versions
of the code, these timings show that significant perfor-
mance enhancements can be obtained with the current
generations of massively parallel supercomputors. More
importantly, the partitioning of the PW set over the
parallel set of processors has allowed a large increase in
the size of problems which can be addressed from a first-
principles approach.

VI. SUMMARY

We have found that a parallel supercomputer, the
1024-processor nCUBE 2 hypercube, is a factor of 5
times faster than a single processor of the CRAY-YMP
for large electronic-structure calculations. This perfor-
mance factor, along with the ability to store (in memory)
large numbers of PW coefficients and large FFT meshes,
allows for a significant increase in the unit-cell sizes that
can be investigated from a first-principles approach for
both static and dynamic calculations. We have con-
sidered only one approach to the iterative solution of the
Schrodinger equation in a PW basis. Other iterative solu-
tions (e.g. , the preconditioned conjugate gradient method
of Teter, Payne, and Allan) or programming strategies
may be equally good candidates for improvements by
parallelization. The next generation of massively parallel
supercomputers and new algorithms for electronic-
structure calculations should make the calculation from
first principles of much larger atomic systems possible.
This is an exciting time for the computational electronic-
structure theorist.

ACKNG%'LEDGMENTS

We would like to thank P. J. Feibelman, W. J. Camp,
S. P. Dosanjh, P. S. Peercy, and P. Gourley for many
useful discussions and encouragement during this project.
This work was supported by the U.S. Department of En-
ergy, under Contract No. DE-AC04-76DP00789.

APPENDIX: PARALLEL IMPLEMENTATION OF
FFT'S AND GRAM-SCHMIDT PROCEDURE

In this section we discuss some of the implementation
details for the three-dimensional FFT and the parallel
Gram-Schmidt algorithms. Both of these have in com-
mon that we attempt to do as much work as possible us-
ing standard serial programs with a rather small amount
of parallel programming. This is very typical of the style
of programming needed for parallel message-passing
machines like the nCUBE.

1. Parallel FFT's

In order to perform a three-dimensional FFT
efficiently, we first partition the processors into a two-

dimensional grid, and then partition the three-
dimensional data array into a corresponding two-
dimensional array of columns. After this partitioning
each processor contains a block of columns. Other possi-
ble decompositions are into a one-dimensional array of
planes or a complete three-dimensional decomposition.
The first of these has the great disadvantage that it does
not provide sufficient opportunity for parallelism except
for extremely large data arrays. For example, if the data
array was 32 by 32 by 32 then we could at most partition
onto 32 processors, or only about 3% of our 1024-node
nCUBE. The three-dimensional decomposition has the
disadvantage that it requires the implementation of truly
parallel FFT algorithms. Such algorithms have been
written, but they require the same data communications
as the serial FFT-parallel transpose method, and are
much harder to write. In addition, our approach allows
the implementation of non-power-of-2 multidimensional
FFT's. We are not aware of any other multidimensional
FFT implementation for non-power-of-2 lengths on
message-passing parallel computers.

The serial FFT algorithm may be a program written
and tuned for the particular architecture, or it may be a
portable routine. We have tested and used both. For the
nCUBE, a tuned assembly language FFT is available for
power-of-2 lengths and we wrote a portable FFT for the
case of lengths given as products of powers of small
primes. The tuned routine performs at about 1.5 MAops
per processor and the portable routine at about 1.0
MAops per processor on the nCUBE.

After the partitioning, the FFT along the first (i.e., x)
axis can be performed using the serial algorithm, since
each column of data is stored entirely within memory of a
single processor. We now reformat the data from [x y z]
order to [y x z] order using an (x y) parallel transpose al-
gorithm. Then each column along the y axis is now local
to a processor and we can use the same serial FFT algo-
rithm to perform the y FFT's. Finally we need an (x z)
transpose to put the data into [z x y] order, leaving the x
axis where it is. Then the z FFT's can again be per-
formed locally. The data array is then transposed back to
the original format with two more transposes. These two
additional transposes could be omitted if the forward and
backward FFT's are modified to be slightly different and
if the user's program is written to handle the different or-
dering of transformed versus untransformed data. This
would double the parallel efficiency of the FFT and im-
prove its absolute performance by about 30% but was not
done for the program at hand.

We now turn to the parallel transposes, which is where
all of the data communication occurs. We examine only
a simple two-dimensional transpose of an n by n matrix
on n processors, where each column of the matrix is
stored on a single processor. On a hypercube n is a
power of 2: n =2, where D is the dimension of the hy-
percube. Considering the first row of the matrix we see
that each of its elements is stored in a different processor.
Therefore the time required for a naive approach, where
each processor writes each of its elements to the proces-
sor which will contain that element, will be dominated by
the overhead for sending a single short message. Since

47 PLANE-WAVE ELECTRONIC-STRUCTURE CALCULATIONS ON. . . 1773

this time is several hundred times longer than the time
for the actual data transfer the resulting algorithm will be
very slow.

A better approach is to pack and send as much data as
possible in a multistage algorithm. The following algo-
rithm is based on a recursive decomposition of the tran-
spose algorithm. We note that a matrix transpose can be
accomplished by exchanging the two off-diagonal qua-
drants, followed by matrix transposes on each of the four
quadrants in turn (see Fig. 4). The resulting recursive al-
gorithm is easily adapted to the hypercube architecture,
where each processor in the lower half has a direct con-
nection to each processor in the upper half, each qua-
drant of processors is similarly connected, and so forth.
The algorithm will take D steps. At the first step, each
processor takes half of its column and exchanges with the
equivalent processor in the upper half. The processor in
the lower half takes the second half of its column while
the processor in the upper half takes the first half of its
columns. At the second stage, each processor takes two
quarters of its columns, packs them together into a
buffer, and exchanges with a processor which is one-
quarter of the hypercube away. This goes on, until at the
last stage even and odd processors pack every other ele-
ment of the column and exchange, then unpack the buffer
back into the matrix. At each stage the amount of data

(a) s 2 3 4 ggmp
9 10 11 12

17 18 19 20

25 26 27 28

~ 37 38 39 40

45 46 47 48

53 54 55 56

~ & 61 62 63 64

(b) 1 2 ggll 33 34 mph'
9 10 41 42

19 20 '' & 51 52

~ 27 28 : 59 60

5 6 : 37 38

13 14 ~ 45 46

23 24 ' 55 56

31 32 ~ ~ 63 64

(c) 1 a~ 17 Ia:I 33 Icbm 49 Isa
R:% 10 t&N 26 KSI 42 I+4 58

3 aa 19 W8 35 Ice% 51 I&4

~II 12 Isa 28 ERI 44 IS) 60

5 E% 21 FPA 37 Rf'I 53 ~ %I

~Ici 14 N) 30 B3 46 E:%I 62

7 E:% 23 54m 39 EP) 55 IM
~I8 16 53I 32 Rll 48 M 64

FIG. 4. Recursive matrix transpose for an 8X8 matrix. At
the first step of the transpose (a), the upper right quadrant is ex-
changed with the lower left quadrant. The next step (b), the
same algorithm is applied to all four quadrants. In each qua-
drant, the upper right and lower left subquadrants are ex-
changed. In the final step (c), the upper right and lower left ele-
ments of all 16 sub-sub-quadrants are exchanged. This will

leave the matrix in transposed form.

sent and received is the same: one-half of the column
length, and each communication is to a nearest neighbor
in the hypercube. Although much more complex, this al-
gorithm is about 40 times faster than the naive algorithm
on the full 1024-processor nCUBE. We should also point
out that there exist algorithms which are intermediate be-
tween the naive algorithm and the recursive one which
may perform better than both.

Both the (x y) and (x z) transposes are implemented
with this method. Generalizations in the actual code in-
clude allowing for multiple blocks and different possible
block sizes for the different axes, as well as for the use of
array dimensions which are not powers of 2.

2. Further optimizations of the FFT algorithm

Perhaps the most obvious improvement that can be
made to our program is to note that most of the data in
the 3D FFT are zero, since it lies outside the reduced
mesh. It is easy to see that we only need to do the start-
ing (x) FFT's on the core mesh. Then if we transpose x
and z, we again only need to do FFT's that intersect the
core mesh, and only in the last z step of the 3D FFT do
we actually need to use the full mesh. By taking advan-
tage of this savings, the amount of FFT work is reduced
by a factor of 4, and a similar savings is available for the
reverse FFT.

3. Linear algebra operations:
Gram-Schmidt orthogonalization

We now turn our attention to the Gram-Schmidt or-
thogonalization of the wave function. For each k point
we need to orthogonalize all of the wave functions for all
the bands. Our column decomposition for this orthogo-
nalization is excellent in one sense, since each processor
has identical pieces of all wave functions. However, these
pieces vary considerably in length on different processors
and therefore different processors have greatly different
computational loads.

The Gram-Schmidt (actually the modified GS) algo-
rithm is quite simple. For each unorthogonalized vector

we subtract off the overlap with each of the previous-
ly orthogonalized vectors P„', and when this is done we
normalize the vector and add it to the set of orthogonal-
ized vectors. This requires two kinds of parallel opera-
tions, a parallel saxpy (i.e., ax+y ~y, where x,y are vec-
tors) and a parallel inner product. The parallel saxpy is
trivial, since no communication is needed each processor
can perform it independently on its own wave-vector
coefficients. The parallel inner product is computed by
computing an inner product on each processor and then
accumulating the global sum of the local inner products
using an exchange and collapse algorithm. Both of these
operations can be computed at rates 1.5 —2 MAops/sec
per processor on the nCUBE 2. However, due to the load
imbalance of each processor not storing the same number
of active wave-vector coefficients (described in Sec. III),
the net aggregate computational rate for the GS orthogo-
nalization is about 400 MAops/sec.

1774 J. S. NELSON, S. J. PLIMPTON, AND M. P. SEARS 47

'R. Car and M. Parinello, Phys. Rev. Lett. 55, 2471 (1985).
2M. C. Payne, J. D. Joannopolous, D. C. Allan, M. P. Teter, and

D. H. Vanderbilt, Phys. Rev. Lett. 56, 2656 (1986).
A. R. Williams and Soler, Bull. Am. Phys. Soc. 32, 562 (1987);

see also C. Woodward, B. I. Min, R. Benedek, and J. Garner,
Phys. Rev. B 39, 4853 (1989).

4M. C. Payne, D. C. Allan, and M. P. Teter, Phys. Rev. B 40,
12 255 (1989).

5I. Stich, R. Car, M. Parinello, and S. Baroni, Phys. Rev. B 39,
4997 (1989).

P. Bendt and A. Zunger, Phys. Rev. Lett. 50, 1684 (1983).
7J. L. Martins and M. L. Cohen, Phys. Rev. B 37, 6134 (1988).
8Cr. W. Fernando, G. X. Qian, M. Weinert, and J. W. Daven-

port, Phys. Rev. B 40, 7985 (1989).
M. Needels, M. C. Payne, and J. D. Joannopoulos, Phys. Rev.

Lett. 58, 1765 (1987).
'OX. P. Li, P. B. Allen, R. Car, M. Parinello, and J. Q.

Broughton, Phys. Rev. B 41, 3260 (1990).
' G. Galli, R. M. Martin, R. Car, and M. Parinello, Phys. Rev.

Lett. 62, 555 (1989).
G. Brocks, P. J. Kelly, and R. Car, Phys. Rev. Lett. 67, 1728
(1991); recently two large-scale electronic-structure calcula-
tions using massively parallel SIMD (single instruction multi-
ple data) computers have appeared: K. D. Brommer, M.
Needels, B. E. Larson, and J. D. Joannopoulos, Phys. Rev.
Lett. 68, 1355 (1992); and I. Stich, M. C. Payne, R. D. King-
Smith, and J. S. Lin, ibid. 68, 1531 (1992).
nCUBE Corp. , 1825 NW 167th Place, Beaverton, OR 97006.

~4Thinking Machine Corp. , 245 First Street, Cambridge, MA
02142-1214.
W. H. Press, B. P. Flannery, S. T. Teukolsky, and W. T.
Vetterling, Numerical Recipes (Cambridge University Press,
Cambridge, 1986).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); see

also W. Kohn and L. J. Sham, ibid. 140, A1133 (1965); in ad-
dition, see Theory of the Inhomogeneous Electron Gas, edited

by S. Lundqvist and N. M. March (Plenum, New York, 1983).
L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).
D. R. Hamann, Phys. Rev. B 40, 2980 (1989); D. R. Hamann,
M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979);
G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev.
B 24, 4190 (1982). A program to generate the pseudopoten-
tials is available by writing to D. R. Hamann.
M. Schluter, J. R. Chelikowsky, S. G. Louie, and M. L.
Cohen, Phys. Rev. B 12, 4200 (1975);J. Ihm, A. Zunger, and
M. L. Cohen, J. Phys. C 12, 4409 (1979);K. C. Pandey, Phys.
Rev. Lett. 49, 223 (1982); I. P. Batra and S. Ciraci, Phys. Rev.
B 33, 4312 (1986).
W. E. Pickett, Comput. Phys. Rep. 9, 115 (1989).
G. P. Srivastava and D. Weaire, Adv. Phys. 36, 463 (1987).
D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).
E. Wigner, Phys. Rev. 46, 1002 (1934).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980); see parametrization by J. Perdew and A. Zunger,
Phys. Rev. B 23, 5048 (1981)~

L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259 (1982).
G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K.
Salmon, and D. W. Walker, Solving Problems on Concurrent
Processors (Prentice-Hall, Englewood Cliffs, NJ, 1988).

28M. Merchant (private communication).
M. P. Sears (unpublished).
M. P. Teter, M. C. Payne, and D . C. Allan, Phys. Rev. B 40,
12255 (1989). We are currently implementing a parallel ver-
sion of this approach, which has been shown to converge fas-
ter for larger systems than the above equation-of-motion ap-
proach.

