PHYSICAL REVIEW B

VOLUME 47, NUMBER 1

1 JANUARY 1993-1

Bond-dependent symmetric and antisymmetric superexchange interactions in La,CuQ,

L. Shekhtman, Amnon Aharony, and O. Entin-Wohlman
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
(Received 30 December 1991; revised manuscript received 23 July 1992)

The effective spin Hamiltonian that describes the magnetic properties of La,CuQj, is derived from the
nearest-neighbor superexchange interactions. It is shown that the spin system of the CuO, plane of the
compound is frustrated; the principal axes of the symmetric parts of the one-bond anisotropy tensors are
not the same for all the bonds. We also show that, due to a hidden symmetry of the one-bond anisotrop-
ic superexchange interactions, the symmetry of the lattice alone leads to the identification of the largest
eigenvalue of the mean-field superexchange anisotropy tensor. The derived mean-field spin Hamiltonian
is identical to that used previously on a phenomenological basis to account for the magnetic properties
of La,CuO, in the orthorhombic phase. Similar arguments explain the magnetic structure in the low-
temperature tetragonal phase. These structures cannot be obtained without the inclusion of the sym-
metric part of the anisotropy tensor, neglected in other papers. Finally, we show how the addition of
direct exchange may explain the observed spin-wave gaps.

I. INTRODUCTION

The phase diagrams of all the lamellar copper oxide su-
perconductors contain an antiferromagnetic phase in the
vicinity of the superconducting one.! This led to the idea
that magnetism is the progenitor of high-temperature su-
perconductivity, serving as a basis for many recent
theoretical models. To understand better the hopping of
holes or electrons in the CuO, planes, one needs to under-
stand the magnetic structure and magnetic interactions in
these planes. Much of the study of these magnetic prop-
erties has been carried out on undoped La,CuQO,, which
becomes superconducting upon doping.?

Although the two-dimensional S'=1 Heisenberg anti-
ferromagnet is a good approximation for La,CuO,, ex-
periments have shown small gaps in the spin-wave spec-
trum® and a finite ferromagnetic moment of each plane,
due to canting of the spins out of the plane.* Both of
these have been attributed to an antisymmetric>®
“Dzyaloshinsky-Moriya” (DM) superexchange interac-
tion.

The most general effective spin Hamiltonian describing
the nearest-neighbor interaction between Cu spins may be
written in the form
H;= (2) {(JkiSk S+ Dy S, X8, +8; - 4y;-8,} .

Kl

(1.1)

The first term represents the isotropic symmetric ex-
change, and it is commonly agreed that J,;=J has the
same value for all nearest-neighbor Cu-Cu bonds in the
CuO, plane. The second and the third terms represent
the antisymmetric (Dy;=-—Dy) and symmetric
(A= Ay.) anisotropies. Coffey and co-workers”® em-
phasized that in general the one-bond vectors D,; cannot
be the same for all the bonds. The relations between vari-
ous D;,’s are not arbitrary. These relations are deter-
mined by the symmetry transformations, allowed under
the given crystalline structure. Coffey, Rice, and Zhang’
appended the symmetry analysis of Ref. 7 with micro-
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scopic calculations of the vectors D;; (“Moriya vectors”
below) in the framework of the Moriya® theory of the an-
isotropic superexchange interactions. They followed
Moriya® in assuming that the antisymmetric anisotropy
D, is the leading anisotropy, because |D,;|~(Ag/g)J
while | 4,;| ~(Ag /g )%, where Ag is a shift in the value of
the free-electron gyromagnetic ratio g due to the spin-
orbit interaction. With this assumption they derived an
expression for the Dzyaloshinsky-Moriya _interaction
concentrating only on D;,, and disregarding A;;.

Recently,'® we followed Moriya’s derivation of the an-
isotropic superexchange contribution to Eq. (1.1) from
the Hubbard Hamiltonian for hopping between the sites
k and [, and showed that the tensors 4,; can never be
neglected. We stressed that, generally, both D;; and Ay,
may vary from bond to bond. However, for each bond
Ay, and D, are not independent; they are related to each
other in such a way that a rotation of the spin axes on k
and / maps the single-bond Hamiltonian onto an isotropic
one, S} -S;, with no preferred direction of the staggered
magnetization. This hidden degeneracy results from_an
exact cancellation of terms of order (Dy;)? and J- 4y,
which is related to an invariance of the original hopping
Hamiltonian under a gauge transformation.!® We further
showed that this degeneracy persists for the whole lattice
if there is no frustration among the spin rotations re-
quired on the individual bonds. This happens only if the
Moriya vectors Dy,’s point along special directions, so
that the tensors 4,; become bond independent.

The classical ground state of Eq. (1.1) is easily dis-
cussed in the case when the spins order in two sublattices,
so that all the neighbors of each spin belong to the other
sublattice. In this case, Eq. (1.1) may be reduced to the
energy

F=JM,;"M,+D”M,XM,+M,-4-M, , (1.2)

where M; and M, are the two sublattice magnetizations
and D? is the Dzyaloshinsky® vector. For this special
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case, one has!®!!
1
DD=—A70- S Dy, (1.3)
!
Ls4 (1.4)

where k belongs to sublattice 1, and the sums are over its
N, nearest neighbors (which belong to sublattice 2).

In the present paper we identify microscopically the
macroscopic anisotropy parameters D? and A for the
low-temperature orthorhombic (LTO) phase of La,CuO,,
investigate the corresponding classical ground-state spin
configuration, and compare it with that of the low-
temperature tetragonal (LTT) (Refs. 9 and 12) phase of
the compound. Our results are summarized as follows:
(a) For the lattice symmetry of the LTO phase, Eq. (1.2)
yields no ferromagnetic moment only in one of two cases,
i.e., when D, points along the orthorhombic @ or T axes.
In all other cases, there is a definite weak ferromagnetic
moment and the ground state is uniquely determined by
superexchange alone. Derived from superexchange,
D,; has almost equal @ and ¢ components. Hence, 4y,
depends on the bonds and superexchange is sufficient to
explain the weak ferromagnetism of the LTO phase. (b)
The classical superexchange ground-state spin
configuration of the LTT phase is always purely antifer-
romagnetic. This is in contrast with the weakly fer-
romagnetic ground state resulting in the approach of
Coffey, Rice, and Zhang.9 (c) Due to the hidden single-
bond symmetry of the superexchange interaction, sym-
metry arguments alone are sufficient to show that the
ground state has only two sublattices, and to identify the
direction of the antiferromagnetic moment and of the
weak ferromagnetic moment. (d) The superexchange in-
teraction in an isolated CuO, plane cannot account in
principle for the observable difference of the in-plane and
out-of-plane gaps in the spin-wave spectra.’ For all
quasiplanar systems (without an interplane
Dzyaloshinsky-Moriya coupling) the superexchange con-
tributions to the two gaps are exactly equal to one anoth-
er. This “residual” symmetry of the superexchange,
which survives under frustration, is broken by the direct
exchange interaction. (e) At the level of a classical
mean-field theory, one recovers the phenomenological
model of Thio et al.,* provided that one replaces the
“Dzyaloshinsky-Moriya vector” in their expressions by
the absolute value of the component of the microscopic
Moriya vector along the @ axis. This results from Eq.
(1.3), in which (combined with the symmetry of the or-
thorhombic La,CuQ,) all the ¢ components of the D,’s
cancel. It would be very interesting to consider new ex-
periments, e.g., with magnetic fields in general directions
or with microscopic local probes, to check our predic-
tions concerning the other components of D, and the de-
tails of the tensors Ay,.

In outline, we start in Sec. II with a derivation of the
spin Hamiltonian for the CuO, plane of La,CuO,. In Sec.
IIT we establish the relation between the microscopic spin
Hamiltonian and the mean-field anisotropies and investi-

gate the classical ordered state assuming that it can be
discussed in terms of two interpenetrating magnetic sub-
lattices. Section IV is devoted to the justification of the
assumptions about the symmetry relations between the
various one-bond anisotropy tensors employed in Sec. III.
In Sec. V we discuss the role of the direct exchange in-
teraction. Details of the symmetry arguments are given
in Appendix A, estimates of the magnitudes of the matrix
elements are discussed in Appendix B, and Appendix C is
devoted to the determination of the leading-order direct
exchange contribution to the spin Hamiltonian of the or-
thorhombic La,CuO,.

II. DERIVATION OF THE SPIN HAMILTONIAN

We start with the Hubbard Hamiltonian, describing
the hopping and the interactions of the holes residing in
the CuO, plane of La,CuO, (see Fig. 1). It includes
copper 3dx2_y2 and oxygen 2p, , orbitals (represented, re-
spectively, by the creation operators d;[, and p,L for site i
and spin o) and the copper on-site Coulomb correlation,
U. It is convenient to separate the Hamiltonian H into
the on-site part H, and the hopping part H,

H=H,+H, , 2.1)

Ho=¢; 3 d},dvote, Spipio+U S nfind, , 2.2)
ko io k
H,=3 StZ°dlpiy+He. 2.3)
(ki) oo’
with nf, =dJ d,,.

The calculation of the hopping matrix elements tZ° in-
volves two steps.® First, the on-site spin-orbit coupling
mixes excited crystal levels (m) into the ground states (0)
of the Cu and O ions. These renormalized ground states
are then used to calculate the hopping between neighbor-
ing Cu and O ions. The latter calculation also involves
inter-ion spin-orbit terms. The resulting 2X2 matrix (in

spin space) may be written in the general form
tki :/t\kiIH—*- itki g, (2-4)

where o represents the Pauli matrices and T is the unit

o>

5 x >< 0
U
6 X [e) 4 |

FIG. 1. CuO, plane of La,CuO,. The squares represent Cu
ions, the crosses (circles) are oxygen ions, which in the ortho-
rhombic phase are tilted down (up) out of the plane. The vec-
tors @ and ¢ denote the orthorhombic axes.

o>
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matrix. It was shown by Moriya® that

)*
mo
t=— 2 CUE el — 14i(d,sp0)
0
2 p jop Akt(dO’Pm)-l-ck: ) (25)
€0
where
tkl m’pO <¢km!V|¢p0 ’ (26)
and
__# d
ck'_ﬁ<¢ko|VVXP|¢€o> (2.7)

' 4m?c

Here LY, and L?,, are the matrix elements of the angular
momentum, A, and Ag are the strengths of the spin-orbit
coupling for Cu and O, respectively, and V is the tight-
binding perturbation part of the crystal potential.

In the undoped case (i.e., one hole per unit cell) the
Hamiltonian [Egs. (2.1)—(2.3)] can be mapped®!® onto a
spin Hamiltonian of the form of Eq.(1.1), with spin de-
grees of freedom on the Cu sites. This was the approach
taken by Coffey, Rice, and Zhang.® We repeat the pro-
cedure here in order to include in the resulting spin Ham-
iltonian the symmetric anisotropy terms neglected by
them.

Consider the undoped La,CuQO,. To derive the spin
Hamiltonian describing an effective interaction between
the Cu?* spins, we assume that

|t2%| << {U—A,A}, (2.8)

where A=€,—¢€,, and treat H, [Eq. (2.3)] as a perturba-
tion. In the ground state of H, [Eq. (2.2)] each Cu ion is
occupied by one hole and each O ion has no holes. This
state is highly degenerate, due to the absence of correla-
tions between the orientations of the hole spins occupying
neighboring Cu ions. The perturbation lifts this degen-
eracy. The lowest-order [O(z*)] spin-dependent contri-
bution arises from virtual excited states in which two
holes reside on the same ion. The resulting effective spin
Hamiltonian is thus

1
Hsz‘— AZUPOHIPPHIPZdHlplePO

—;i?POHIPlePZlePlePO , (2.9)

where Py, P,, P,,, and P,, are projection operators onto

the ground state, the state with one empty Cu and one

occupied O ion, the state with one doubly occupied O

and two empty Cu sites, and the state with one doubly

occupied Cu and one empty Cu ion, respectively.
Defining

dio=dio(1—n; ), a\ko:dkonkfa ’ (2.10

and similarly p;, and p;,, we have

P0H1Pp 2 9% Udkapza ’
(ki)
P,HPyy= 3 17°d} Biy » @.11)
(ki)
_ 0_1A~'- —
Py H\P,= 3 1% disDio -

(ki)

Using S, =d,:radk, Eq. (2.9) can be rewritten in the form
(1.1) with

Ju=J=2Kt*, (2.12)
w=8K1’By, , (2.13)
AFZ=—8K[(BY)*+(B})*],

ARF=— Aly=8K[(B)*—(B})’], (2.14)

A;i‘z”=A;fi‘=16KB;sz{z ,

A= Ali= AF=AF=0.

Here

K=5i3+ﬁ , (2.15)

and

2= (12— (12— (¥)? (2.16)

are independent of the bonds (7 and t can be taken from
any Cu-O bond). The vector By, is given by

B =thite —Tuti
R 2.17)
Bl = —tith —Tutl, Bi=0,

where i represents the oxygen which resides on the bond
(kl). Note that D,; and A7F, with a,f=x,y, have a
nontrivial dependence on the specific bond.

Taking into account that [cf. Egs. (2.13) and (2.14)]

4T A= —4J A= (D5)*— (D} )
4JAE=—

’

(2.18)

|Dy 1%, 2J4=D}D}; ,

it is possible to rewrite the superexchange one-bond part
of Eq. (1.1) in the form

Hy= |7, 20 g

ki ki 4l k91
+Dk1'Sk XSI_'_—Sk'DkIDkI.SI Py (219)

2Jy
where Dy;Dy; is a diadic. We stress (see Ref. 10) that

the two-spin ground state of the Hamiltonian (2.19) is as
degenerate as that of the Heisenberg Hamiltonian
describing the isotropic exchange. Indeed, expression
(2.19) is just the scalar product!® of two spins, S} and S,
obtained from the original ones by rotations around the
D,; axis with angles —6 and 0, respectively, where
tan0= le[ | /2‘]k1'
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III. THE ORDERED STATE

We next turn to the superexchange spin Hamiltonian
for the entire CuO, plane. Let us assume that (see Fig. 1)
for the bonds in X direction Dy, ==xD, and for those in )
direction D;,; =*D,, where D, ,=Dy; ¢,. Clearly, this is
true in all the situations when the plane can be construct-
ed from the plaquettes depicted on Fig. 1. Assume also
(see Sec. IV and Refs. 7 and 9) that the D,,’s alternate
their sign from bond to bond along a straight line and
that the ground-state spin configuration and the low-
lying excitations can be described in terms of the magne-
tizations of two interpenetrating sublattices. All these as-
sumptions will be justified in Sec. IV. With these as-
sumptions, the Dzyaloshinsky vector D? and the macro-
scopic anisotropy tensor 4 [see Egs. (1.3) and (1.4)] can
be written as
1 +12 1207 L+t -
4J(|D >+ D~ |*)-I+ 57(D'DT+D"D )(; )

DDE D +
where D*=1(D,+D,). The expression Eq. (1.2) for the
free energy takes the form

i

_ D" +
F"‘ J‘-T Ml'M2+D 'MIXMZ
+51JM1-D+D+-M2
-2
- “?u‘ MI-M2+$M1-D*D‘-M2. 3.2)

Let us decompose the free-energy Eq. (3.2) onto two
parts. The first part (F*) corresponds to the first two
lines of Eq. (3.2) and does not depend on D~. The
second part (F~ ) contains the contribution from D™.
When D™ =0, F=F"* becomes exactly of the form of Eq.
(2.19). Therefore, it can be mapped onto an isotropic
spin Hamiltonian, by appropriate unfrustrated rotations
of M| and M,. In this case the classical ground-state
configuration is as degenerate as that of the one-bond su-
perexchange Hamiltonian, and cannot be characterized
by any definite net ferromagnetic moment.!® In this
ground state the vector of staggered magnetization
MTZ%(M1~M2) is free to point along any direction in
space. The largest net ferromagnetic moment arises
when M' is perpendicular to the Dzyaloshinsky vector
D*, while the state with M'[|D' is completely antiferro-
magnetic.'® A nonzero D~ breaks this (hidden) symme-
try and picks as the ground state the configuration with
M’ parallel to the (antiferromagnetic) easy axis of F ™,
which in turn is parallel to D~ [see Eq. (3.2)]. Clearly,
the directions of the vectors D¥ are unambiguously
defined by the symmetry of the given crystalline struc-
ture. Thus the superexchange interaction provides us
with an example of an unusual situation, when symmetry
analysis alone allows not only the classification of the
possible ground states according to the symmetry group
irreducible representations, but also to predict which of
the representations yields the lowest energy. We con-
clude that under frustration (D~ =0) the staggered mag-

netization of the ground state is directed along D~ and
the net ferromagnetic moment is proportional to
D~ XD%. This statement may also be verified directly
by minimizing the free-energy Eq. (3.2) with respect to
the staggered magnetization and the net ferromagnetic
moment.

These predictions are quite different from those based
on Moriya’s statement that the antisymmetric anisotropy
is the leading order. Indeed, neglecting the symmetric an-
isotropy (see, e.g., Ref. 9) we would find that the stag-
gered magnetization always lies in the plane perpendicu-
lar to D™, and that the role of the symmetric anisotropies
is to fix its direction in this plane. We would also find
that a nonzero DV always leads to a nonzero net fer-
romagnetic moment. Thus in the framework of such an
approach DV is the only relevant vector and D~ does
not play any qualitatively important role. In this sense
we would not be able to differentiate between the LTO
and LTT phases of La,CuQ,, because in both cases D is
nonzero. Thus the approach taken by Coffey, Rice and
Zhang® predicts in both cases (and not only in that of
LTO as is stated in Ref. 9) a weak ferromagnetic ground
state with the spins ordered in the plane perpendicular to
the Dzyaloshinsky vector.

In fact, the classical superexchange ground-state spin
configurations of the LTO and LTT phases are indeed
different: only that of the LTO phase is weakly ferromag-
netic. This follows from the fact (see also Ref. 9 and Sec.
IV) that the symmetry of the LTO phase confines the vec-
tors D, , to be of the same magnitude, while the symme-
try of the LTT phase implies that D, and D, point along
the same direction. Thus in the LTO phase D"1D™,
while in the LTT phase D*||D™. Recalling our results
we conclude that in the LTT phase the spins in the classi-
cal ground-state spin configuration are ordered complete-
ly antiferromagnetically along the Dzyaloshinsky vector
D", because D" XD~ =0, while in the LTO phase the
vector DT XD~ is generally nonzero, leading to weak
ferromagnetism. Let us stress once again that in order to
come to this conclusion one must take into account the
symmetric part of the superexchange anisotropy tensor,
neglected by Coffey, Rice, and Zhang.’

The above discussion implies that the only two special
cases when the theory of superexchange does not predict
a nonzero net ferromagnetic moment in the classical
ground-state configuration of the LTO phase are those in
which either the “vector of frustration” D~ or the Dzy-
aloshinsky vector D% vanishes. By the definition of these
vectors, this would happen only if all the Dy,’s in the
LTO phase were not only of the same magnitude but also
aligned along the same direction (D;==D,). This con-
dition is equivalent to that of the bond independence of
the A;;’s [see Eq. (2.19)]. We have already pointed out
that, if D™ =0, then the ground state is as degenerate as
that of the one-bond Hamiltonian Eq. (2.19). This degen-
eracy leads to gapless spin-wave spectra, contrary to the
assumption of Coffey, Bedell, and Trugman,7 that in this
case the Dzyaloshinsky-Moriya interaction produces an
easy plane anisotropy. In the case D=0, the Dzy-
aloshinsky vector vanishes and [see Eq. (3.2)] the classical
ground-state spin configuration is completely antiferro-
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magnetic. In Appendix B we show that, in fact, in the
LTO phase each Dy, is almost perpendicular to the corre-
sponding bond (k! ). Hence, D, and D, are almost per-
pendicular to each other, and the vectors D™ and D™ are
both nonzero and perpendicular to each other. Only due
to this fact is it possible to explain®* the experimentally
observed properties of La,CuO, on the basis of the theory
of anisotropic superexchange interactions.

IV. THE LOW-TEMPERATURE
ORTHORHOMBIC PHASE.

This section is devoted to the justification of the as-
sumptions employed in Sec. III for the case of the LTO
phase, and can be skipped by a reader uninterested in
technical details. In order to show that the various Dy;’s
are indeed related to each other as was assumed in Sec.
111, we first apply symmetry considerations to the various
1, and t;;. In the LTO phase, the lattice of La,CuQ, is
orthorhombically distorted'* as a result of a small stag-
gered rotation of the CuOg octahedra around the @ axis
(Fig. 1). Alternate rows of oxygen ions, parallel to this
axis, move up and down (crosses and circles in Fig. 1) rel-
ative to the CuO, plane. As a result of this rotation, the
inversion symmetry about the in-plane oxygen site, which
prevails in the tetragonal phase, is lost. This gives rise to
the Dzyaloshinsky term [see Eq. (1.2)] in the effective
spin Hamiltonian.” Using rotations, reflections, and in-
versions, we show in Appendix A that (the site notations
are those of Fig. 1)

1= 71~ t15 13 (4.1)
Y =y ==y, (4.2)
th=—t5=—1tis=t3 . (4.3)

We also show in Appendix A that ¢#* and ¢’ are odd,
while 7 and ¢? are even functions of 0, the rotation angle
of the octahedra. To leading order, 7~6° t%Y~0, and
t:~6%

It follows from Egs. (2.13), (2.17), and (4.1)-(4.3) that
(see also Refs. 7 and 9)

D;=D;;=D;, Dg=D;=D,, 4.4)
Di=D}, Di=D3, Di{=D35=0. (4.5)

The fact that the relations Egs. (4.4) and (4.5) hold for
each plaquette leads to the conclusion that all the Dy;’s
can be constructed from D, , just as it was assumed in
Sec. III. It also follows from Eq. (4.5) that |D,|=|D,|,
meaning that in the LTO phase D7 is indeed perpendicu-
lar to D~. Moreover, Eq. (4.5) shows that DV is directed
along the orthorhombic @ axis while D™ |[2.

Let us discuss next the validity of our assumption that
the classical ground-state spin configuration of the
copper oxide planes and the corresponding low-lying ex-
citations can be described in terms of two interpenetrat-
ing sublattice magnetizations. We first note that the clas-
sical ground-state energy (per spin) of the spin system on
the lattice is higher than or equal to that of a cluster con-
sisting of a finite number of the lattice elementary cells.
Equality is reached only when one can construct a lattice

spin configuration by translations of this supercell, i.e.,
when the cluster ground-state spin configuration does not
frustrate the translations. The magnetic elementary cell
is represented by the smallest supercell possible in this
sense.

Clearly, the one-, two- and three-bond clusters do not
satisfy this condition, because the corresponding spin sys-
tems are not frustrated (the corresponding graphs are not
closed). Indeed, in these cases the frustration associated
with the bond dependence of the anisotropy parameters
will enter the problem by frustrating not the cluster spin
system, but rather the lattice construction from the cor-
responding supercells. The smallest cluster with the spin
system as frustrated as the entire system is the four-bond
one, corresponding to the plaquette (see Fig. 1) S, S;, S,
and S;. In what follows, we shall show that its ground
state is translationally invariant, and therefore corre-
sponds to the ground state of the whole system. Thus,
analyzing the ordering of the plaquette spins enables us
to determine the number of sublattices.

Considering the plaquette, we start by rotating the spin

coordinates into the orthorhombic directions. In these
coordinates
D{;=D%;=D%=D§ =D, D=0,
Di{y;=—D%;,=D%=—Dg, =D",
ac — ac — ac — ac — ac (4‘6a)
=I5 =J%=—Jg=I*,
W= =g =IE=I" a=abc,
where
(D%)?*—(D°)?
JU=J+ A=+
I A= 47 ’
Jo=j+ az—y— D (4.6b)
kt 4y '
(D —(D*)?
Je=J— A= ———""—
o 4
are bond independent, and
JiE= A5 . (4.6¢)
Introducing the notations
Vi=(S,£8,), Vi=(S;%S), 4.7

we express the energy of the plaquette in the form

E=Jev v ety itvyt+yeviovye
+DUV V=V
+DVIV, =V V)

+I VTV VIV . 4.8)
If the (classical) magnitude of S; is §, then
(ViIP+HV =V )2+ (vy P=1. (4.9)

This equation allows us to consider the Hamiltonian (4.8)
formally as an exchan%e Hamiltonian for two six-
dimensional unit vectors ¥, and V,, with the direct prod-
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uct of the “positive” (p) subspace, containing the vectors
Vl*,’ 5 and the “negative” (n) subspace, where the com-
ponents of Vi, reside. The 6X6 anisotropy tensor (4.8)
does not mix components belonging to these p and n sub-
spaces. Hence we can diagonalize (4.8) by separate or-
thogonal transformations in the two subspaces. The
necessary transformation in the p subspace is a site-
dependent rotation around @, analogous to the one dis-
cussed in Ref. 10 [namely, a rotation of V{" by an angle
—6 and a rotation of V; by an angle 0, where
tan20=2D°/(J“+J"")]. In the n subspace, the transfor-
mation is also a site-dependent rotation. In the new
basis, the energy becomes

E=Jtaptapiay grovp byt jrecprepite
SR A 7t 7L fald 7kl 7Sl Al 7PNl S
(4.10a)
where the diagonal exchange tensor Tis given by
(D*?*—(D°)*
4J ’
(4.10b)

Jraa=grhh=gu=g 4 4=J+

Jte=g— AZ=J+|D|*/4J ,
JTa=J"h=pV1+(D*)?/4J%, J “=0.

Note that J 1 is always the largest eigenvalue. Thus,
with the exception of the special cases of accidental de-
generacy (with two or more identical largest eigenvalues)
the antiferromagnetic order-parameter vector of the clas-
sical ground-state configuration of orthorhombic
La,CuO, is directed along the orthorhombic ¢ axis. Note
that this is not a quantitative result. In order to obtain it,
it is sufficient to consider the symmetry of the lattice, tak-
ing into account the hidden symmetry of the one-bond
superexchange interactions, without any need to calculate
and compare various anisotropy parameters.

Clearly, when D°<<J the ground-state configuration
and the low-energy excitations can be described in terms
of the p-subspace coordinates only. Indeed, to excite the
“negative” degrees of freedom, one needs to overcome a
gap of order J, while the gap for the low-energy spin-
wave excitations (confined to the p subspace) is of order
D€ <<J [see Eq. (4.10b)].

We therefore conclude that V; =V, =0, and therefore
S,=8, and S;=S§ (see Fig. 1). We thus arrive at the situ-
ation with two sublattices,

M,=8,=8;, M,=8;=S§;. 4.11)

Clearly, translations of the plaquette with the spins con-
strained by Eq. (4.11) are not frustrated and such a pla-
quette indeed represents the magnetic elementary cell.
The corresponding thermodynamic potential is naturally
written in terms of two sublattice magnetizations [cf.
Egs.(1.2) and (3.2)],

F=J“M{M§+J®MM3+T“M{M$
+DYAMME—MSMS) . (4.12)

It follows from Eq. (4.12), that the Dzyaloshinsky vector
[see Eq.(1.2)] is identified microscopically by the projec-

tion of the Moriya vector Dy, onto the orthorhombic @
axis. This explains the agreement between the experi-
ments and calculations>* based in fact on Eq. (4.12),
when J% of Refs. 3 and 4 is interpreted as |D®| rather
than |D|.

V. CONTRIBUTION FROM DIRECT EXCHANGE

So far we have concentrated solely on the (antiferro-
magnetic) superexchange'’ interaction which is believed
(see, e.g., Refs. 6 and 13) to dominate the exchange in an-
tiferromagnetic insulators. On the level of the electron
Hamiltonian, this assumption means that the Hubbard
on-site energy U is the only relevant electron-electron
correlation parameter. The exchange part of the two-site
Coulomb correlations, neglected in the Hamiltonian (2.1),
gives rise to the direct exchange!? interaction, which is al-
ways ferromagnetic (see Ref. 13). Let us stress that even
though the isotropic part of the spin Hamiltonian is deter-
mined by superexchange, the direct exchange contribu-
tion to the anisotropy parameters may still be qualitative-
ly important, especially in the cases when frustration
does not completely wipe out the hidden symmetry of the
one-bond superexchange interaction. Specifically, it fol-
lows from Eq. (4.10b) that the in-plane and out-of-plane
gaps of the spin-wave spectra are equal to one another.
The origin of this hard-plane symmetry is easy to under-
stand. It follows from Eq. (3.2) that the (superexchange)
O(3) symmetry of F* is broken by an easy axis anisotro-
py of F~. Clearly the O(2) symmetry is left untouched by
the frustration and is manifested in the abovementioned
equality of the gaps.

This is in contrast to the experimental fact (see Ref. 3)
that the out-of-plane gap is twice larger than the in-plane
one. One possible source of this breakdown of the hard-
plane symmetry may involve the direct exchange contri-
bution to the anisotropy tensor. In Appendix C we show
that the leading-order direct exchange anisotropy is
symmetric,with an (antiferromagnetic) easy plane which
is indeed parallel to the copper oxide plane. This may ac-
count for the fact that the out-of-plane gap is the largest
one. Taking into account the direct exchange contribu-
tion, one ends up with the spin Hamiltonian which is
identical to the phenomenological Hamiltonian of Refs. 3
and 4.

VI. CONCLUSIONS

(1) We presented a derivation of the macroscopic spin
Hamiltonian describing the CuO, planes of La,CuO,,
based on nearest-neighbor superexchange interactions.
The importance of including the symmetric superex-
change anisotropies was demonstrated. The assumption
that the antisymmetric anisotropy represents the
leading-order anisotropy is unjustified, and may yield in-
correct results.

(2) We have shown that if the superexchange anisotro-
py is bond independent, then it does not lift the degenera-
cy of the ground state of the spin system. The weak fer-
romagnetism of the orthorhombic La,CuQO, can be ex-
plained on the basis of the theory of superexchange in-
teractions only due to the nontrivial bond dependence of
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the one-bond Moriya vectors Dy, and the symmetric an-
isotropy tensors A;.

(3) Considering only the superexchange terms, our ap-
proach predicts the absence of weak ferromagnetism in
the classical ground-state spin configuration of the low-
temperature tetragonal phase.

(4) We showed that the single-plane superexchange in-
teraction alone cannot account for the experimentally
measured difference in magnitudes of the spin-wave in-
plane and out-of-plane gaps. The leading-order direct ex-
change contribution to the anisotropy, which is of an
easy-plane type, may explain this difference.

(5) The resulting macroscopic mean-field Hamiltonian
is identical to the one used phenomenologically by Thio
et al.* to account for the observable magnetic properties
of La,CuO,.
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APPENDIX A: SYMMETRY PROPERTIES
OF7TAND t

Referring to Fig. 1, we denote by ¢‘11’3 the orbitals on
the 1 and 3 copper ions and by ¢ , s the orbitals on the 2,
4, and 5 oxygen ions. We also denote by L the angular
momentum operator. The lattice potential is invariant
under the following three transformations: (a) rotation
by 7 around an axis perpendicular to the CuO, plane and
containing an oxygen ion; (b) refections in the plane per-
pendicular to the @ axis and containing a Cu ion; (c) in-
version about a center located on a copper ion. Under
these symmetry transformations,

T~ didi» ti~ kL, (A1)
where a~f3 means that a transforms like 8 and 7 and t
are defined in Eqgs. (2.5)-(2.7).

Let us now analyze the relations among the various t’s
resulting from the three transformations.

(a) Under this transformation (where the coordinate
origin is located on an oxygen ion)

_ d
P——¢h, ¢1,3—*¢§,1,

L®——L*, L*L*. (A2

The first two relations hold due to the nondegeneracy of
the 2p, , oxygen levels and 3dx2—y2 copper levels in the
orthorhombic phase. From Egs. (A1) and (A2) we find

th=—1yp=1,

(A3)
1 =15 =%V
th=—"t5=t*

(b) Under this transformation (where the coordinate
origin is on the 1 Cu ion)

#h— —¢5, ¢‘1i'_’_¢‘11 ’

(A4)
L*» L»* L?*—»—L*.
Hence
T,=1s, tF=t], t,=—1ts. (AS5)

(c) Under this transformation (where the coordinate
origin in on the 3 Cu ion)

- —¢h, ¢3¢, L® L™, (A6)
Hence we find

T5,= T3, tp=—ty . (A7)
From Eqgs. (A.3) and (A.7) it follows that

T =Ty, =—137, =13 . (A8)

Clearly, upon inverting the sign of the distortion angle
0 [i.e., the O(2)-0O(5) row of oxygens goes down and the
row containing O(4) moves up] the new 7, and t;, must
be identical to the old 73, and t;,, and vice versa. This
yields, according to Eq. (A8) that 7 and ¢* are even in the
distortion angle 8 (leading to the orthorhombic phase),
while ¢* and t” are odd. Clearly, t* emerges only to
second order in 6 (while 7 is nonzero even in the undis-
torted lattice). Indeed, when 6=0 the lattice is invariant
under reflections in the planes containing the particular
bond and parallel and perpendicular to the CuO, plane.
It is easy to show that a nonzero t;; violates these addi-
tional symmetries (while a nonzero 7 is still allowed).
Thus to leading order, 7~ 6°, t™”~ 0 (see also Ref. 9), and
t?~0. It follows from Egs. (2.13) and (2.17) that to first
order in 6 the vectors D,, and t;; are parallel to one
another.

APPENDIX B: THE RELATIVE MAGNITUDE
OF THE COMPONENTS OF t,;

In this appendix we demonstrate that the vector
T =(t5,t}:,0) [Egs. (2.5)-(2.7)] is almost perpendicular
to the bond {kl). Since to first order in the distortion
angle 6 Moriya’s vector Dy, is parallel to 7;; (see Appen-
dix A), it follows that D, is almost perpendicular to the
bond (kI).

To show this, we take as an example the bond {(12) in
Fig. 1, directed along the X axis, and focus on the ratio
t1, /t},. In the undistorted lattice t,, is zero. In order to
estimate the ratio in the distorted system to first order in
0, it is sufficient to consider the overlaps of the orbital
|#8) with the orbitals L|¢¢). Hence we have

th _ (giIL*]48)
ty, (fIL*|48)
In the local coordinate system (x’,y’,z’), defined by the

oxygen octahedron, the 3d,, ,» orbital l¢d,)

=|x"2—y'?) is the ground state. The operation of the
angular momentum on this state produces the orbital
ly’z') in the case of L* and |x’z’) in the case of L” (both

(B1)
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with matrix elements of the same order of magnitude).
Expressing these orbitals in the ‘“undistorted” coordi-
nates, it is easy to show that to the first order in the dis-
tortion angle their overlaps with the 2p, orbital
|¢5) =|x —a ) (where a is a length of the bond) can be es-
timated as

(@4|L*|¢8) ~(y*—2z2|x —a)
(LY gE) ~(z2—x2|x —a) .

It is clear that the overlap of [x?) with |x —a) dom-
inates in Eq. (B2), leading to the conclusion that
ty, >>t1,.

(B2)

APPENDIX C: THE PRINCIPAL AXES
OF THE DIRECT EXCHANGE
ANISOTROPY TENSOR

In this appendix we show that the leading-order direct
exchange contribution to the spin Hamiltonian is an
easy-plane anisotropy.

In order to account for the direct (or “potential,” see
Ref. 15) exchange interactions in the meaning introduced
by Anderson,'3 one has to append the Hubbard Hamil-
tonian (2.1) with terms describing the Coulomb interac-
tion of the holes occupying neighboring copper and oxy-
gen ions and then to repeat the calculations of Sec. II.
Below, however, we avoid the necessity to eliminate the
oxygen degrees of freedom by considering the simpler
problem of the “pre-Anderson” direct exchange, result-
ing from the Coulomb interaction of the holes occupying
two neighboring copper ions. We are allowed to do so
because we are concerned here not with the magnitudes
of the different eigenvalues of the direct exchange anisot-
ropy tensor but rather with their ratios. It will be clear
from the following that these ratios do not depend on de-
tails of the relevant orbitals and are determined, in fact,
only by their symmetry properties, which are the same for
the otherwise two different situations.

Consider the bond connecting the two copper ions 1
and 3 of Fig. 1. To leading order, the symmetric part of
the direct exchange anisotropy contribution to the bond
exchange energy is given by!®

J(mQ)

H‘{3=_2}‘22 )2 Si-[2L,.0L7o

m (em —€p

—(L,,o'L%o)T]'S; . (C1)

Here m and 0 label, respectively, the excited crystal levels
and the ground state of the hole on the Cu ion, A is the
strength of the spin-orbit coupling, L,,, are the matrix
elements of the angular momentum and

2
Jm0)= [ [ ¢t (r1)$3(r3)== 1 (r3)
13

X¢30(l‘|)dr1dr3 . (C2)

It is easy to check that J(mO0) has nonzero components
even in the undistorted (i.e., high-temperature tetragonal)
phase. Clearly, this “tetragonal” contribution, which is
~6° represents the leading-order contribution to the
direct exchange anisotropy. Note also that L, ||X for
transition to the ¢,, orbital, L,,,|[y for transition to the
#,, orbital, and L,,,||2 for transition to the ¢,, orbital.
In the tetragonal phase the ¢,, and ¢,, orbitals are de-
generate and their energy (for holes) is higher than that of
#5,- Next, in order to compare the various J(mO0) note
[see Eq. (C2)] that J(mO) is proportional to the square of
the overlap of ¢,,, and ¢;;,. Thus we conclude that for
the bond along the X direction

J(xy)=J(xz)>J(yz) , (C3a)

and

€y, <€, =€, . (C3b)

xy yz

Collecting these observations we may rewrite Eq. (C1) in
the form

Hd,=—S,-{K,3%% +K,9 +K,22}-S; , (C4)

where K, > K, > K, >0. For the bond along the J direc-
tion we have to replace K| by K, and vice versa. Assum-
ing now that we have only two sublattices and summing
over all the one-bond expressions we obtain for the direct
exchange contribution to the free energy

Fi=—JM;-M,+[K,—(K,+K,)/2)(MTM5+MiM}) ,
(C5)

which represents an easy-plane antiferromagnet.
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