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Magnetic-flux-induced conductance steps in microwires
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We predict a new type of steplike fluctuations in the magnetoconductance of three-dimensional ballis-
tic microwires. These mesoscopic fluctuations, which appear on a scale corresponding to a small frac-
tion of the quantum unit of magnetic flux ®,=hc /e, are a novel manifestation of the Aharonov-Bohm
effect. The sharp conductance steps are caused by the shift of electronic levels through the Fermi level
in a magnetic field. The flux-induced steps should be observable in, e.g., submicrometer Bi whiskers at
temperatures of order 0.1 K. Sample-characteristic fluctuations are predicted to appear in fields as low

as a few gauss.

In this paper we present a theory for the magnetocon-
ductance of a three-dimensional (3D) microwire suspend-
ed between macroscopic leads. For a ballistic wire we
predict sample-characteristic fluctuations in the form of
sharp steps in the trace of the conductance as a function
of a weak magnetic field. These mesoscopic conductance
fluctuations appear on a new scale corresponding to a
longitudinal magnetic flux through the wire of only a
small fraction of the quantum unit ®,=hc /e. The sharp
conductance steps are caused by the energy shifts of elec-
tronic levels in a magnetic field; the new scale is set by
the flux change needed to shift energy levels a distance of
the order of the average spacing between quantized trans-
verse energy levels in the 3D wire, Ep/(kpa)? (Ep,kp is
the Fermi energy and wave vector; a is the radius of the
wire). These shifts result in charge carrying single-
particle modes in the wire being “switched” on or off as
energy levels move across the Fermi level and get
(de)populated. The small magnetic flux scale is charac-
teristic for a wire—a solid cylinder—and does not appear
in the ballistic hollow cylinders first studied.! This is be-
cause the average spacing between transverse modes is
larger by a factor kpa in such a geometry, which makes
the corresponding magnetic scale coincide with the scale
@, of the usual Aharonov-Bohm (AB) oscillations.

The concept of a quantized conductance that changes
in a steplike manner with the number of current-carrying
modes is familiar from studies of quantum ballistic trans-
port in constrained 2D electron gas systems (for a review
see, e.g., Ref. 2). In such systems a current can be forced
to flow between two large 2D reservoirs through a micro-
constriction defined by the electrostatic field of a split
gate. For a smooth enough constriction adiabatic charge
transport occurs in an integer number of effectively one-
dimensional modes that each contribute a quantum unit,
G,=2e?/h, to the total conductance.’® Without a mag-
netic field the number of active modes and hence the con-
ductance is determined by the minimum width of the
constriction, which can be conveniently controlled by a
gate voltage.

The effect of a magnetic field on the conductance of a
microconstriction is also known.? Because of the 2D
character of the transport process, a magnetic field has a
substantial effect only if it is so strong that the radius of
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the cyclotron orbit, I, =%ikgc /eB, is of the order of the
constriction width or smaller. For typical GaAs-based
heterostructures this criterion corresponds to large fields
of several tesla.

The situation changes qualitatively if we consider elec-
tron transport in 3D ballistic wires. In this case the cross
section of the wire is 2D and (specular) surface scattering
produces closed orbits in the transverse directions
without the help of a strong magnetic field, i.e., even if
I, >>a. The transport properties of a number of systems
are sensitive to a weak magnetic field (for a review see,
e.g., Refs. 4 and 5 and references therein); the magneto-
conductance or magnetic moment (persistent current) of
doubly connected systems like cylindrical metal films or
contacts, metal rings, and even a singly connected sys-
tem® like a solid microwire”? may have an oscillatory
component with a period corresponding to a quantum
flux unit ®,. These smooth conductance variations with
field are associated with the AB effect and depend on the
changing amount of magnetic flux enclosed by typical
electron trajectories. The conductance steps predicted by
our theory may be considered to be a discrete manifesta-
tion of the AB effect.

The geometry of the transport problem considered
here is shown in Fig. 1. The ballistic microwire is
modeled as a cylindrical channel attached to two large
reservoirs. A bias voltage between the reservoirs drives a
current through the thin cylinder. The channel length L
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FIG. 1. A ballistic microwire modeled as cylindrical channel
between two large electron reservoirs. The probabilites for
scattering at contact 1 (2) between modes in the reservoir and
the channel (transmission) or between modes in the reservoir
(reflection) are given by the elements of the matrices 7,.,, and
P12
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is assumed to be, on the one hand, small compared to the
elastic and inelastic mean free paths of the electrons (cor-
responding to the ballistic limit), and, on the other hand,
large compared to the normal metal coherence length
fivp /kgT. The latter criterion ensures that the interfer-
ence between different single-particle wave functions in
the cylinder are unimportant. Hence it is sufficient to de-
scribe quantum transport through the microwire in terms
of probabilities rather than probability amplitudes for
electron transmission and reflection at the entrance
and/or exit of the cylindrical channel. There is no need
for the passage between the cylinder and the reservoirs to
be adiabatic. On the contrary, we predict sharp conduc-
tance steps, albeit of smaller magnitude, even if scattering
is strong in the contact regions labeled 1 and 2 in Fig. 1.

Current is a conserved quantity in our problem and is
most conveniently evaluated in the microwire. We
parametrize the spatially quantized electron states in the
wire by ¥y =(m,n,p) where m and n are discrete trans-
verse quantum numbers and the continuous variable p is
the longitudinal momentum. The corresponding electron
states in the reservoirs are denoted by k=(k,,k,). It fol-
lows that the current through a cross section of the
cylinder can be expressed as

1=Q2e/km*) 3, [© dppf(E,), (1)

m,n

where m™* is the effective mass of the electron. To
proceed it is convenient to write the distribution function
f(E,) for electrons inside the channel as a sum of the
two functions f~(E ») for right-moving electrons (p >0)
and f =(E,) for those moving to the left (p <0). These
functions can then be expressed in terms of the equilibri-
um distribution functions in the two reservoirs and the
probability for electrons to enter the microwire. One
finds that

FUE)= 3 T7ky)fo[(E, +eV/2—u)/T]
k,E, =E,
+ 3 T5ky)fol(E,—eV/2—p)/T],
k,E,=E,

(2)

where T is the temperature, u the chemical potential,
71 (k,y) and T, (k,y) are the probabilities for an
electron in state k in the left (right) reservoir to enter the
microwire and end up in a state ¥ with momentum p >0
and p <0, respectively. R

The probabilities 7', and 7’1, discussed above are re-
lated to the probabilities for single elastic scattering
events at the contacts between wire and reservoirs, either
for transmission from one mode i in the reservoir to
another mode j in the wire 7, ,(i, j), or for reflection back
into the wire, 7, ,(,j). It is reasonable to assume that the
scattering of electrons in the contact regions is strong,
which means that there is a large probability of mode
mixing. This is enhanced if the transmission probabilities
are low so that each electron suffers multiple reflections
before it escapes from the wire. In this situation there is
an equal probability for an electron that tunnels into the
cylindrical channel from any of the M modes of the reser-
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voir to eventually end up in any of the N cylinder modes.
With the approximation that the mode mixing is com-
pletely random in each single scattering event, the prob-
lem becomes effectively one dimensional and the proba-
bility matrices for single tunneling simplify to read

?1,2:t1,2(1/M)f, ?1,2:r1’2(1/N)./f . (3)

Here ¢, , and r,, are ¢ numbers while T and J are ma-
trices of order M XN and N XN, respectively, with all
elements equal to unity. The current through the mi-
crowire is determined by the difference T —T
=(T,+P P8+ - )= (B8, +7, 7, 70+ -0, which
is trivial to evaluate because of the simplification (3).
Summing over the M reservoir modes one finds

2(?5_f1<):t2t1/(1—r1r2)_ (4)
kl

Finally, by appealing to the Landauer formula, we can re-
late the coefficients ¢, ,(=1—r,,) to the contact resis-
tances R, ,=R/(t, ,N), Ry=h /2e* which allows us to
express the linear conductance as’

G =(2e*/W)T, [ de(—3f,/9¢) S O(e—E,,,) , (5)

where Ty=(Ry/N)/(R,+R,—R,/N). In Eq. (5) E,, ,
is the transverse part of the electron energy in the micro-
constriction, and we have used a sum rule,

S (TT+15)=1, (6)

k;

obtained from the definition (2), which simply expresses
the obvious fact that an electron occupying the state y in
the microwire has to come from either the left or the
right reservoir. The presence of the term R,/N in the
denominator of the expression for T, distinguishes our
result for the ballistic microwire from the usual result for
a diffusive system for which the contact resistances sim-
ply add.

The geometry discussed here, with an abrupt transition
region between microwire and leads causing strong elas-
tic scattering, differs significantly from that of an adiabat-
ic contact whose dimensions change slowly on the scale
of the Fermi wavelength (some properties of 3D adiabatic
contacts are discussed in Ref. 10). An adiabatic contact
causes no scattering and the probabilty matrices 7, , are
simply unit matrices. In spite of this difference, the ex-
pression for the conductance of a microchannel with adi-
abatic contacts to the reservoirs coincides with Eq. (5) if
we set To=1.

We now proceed to analyze the current through the
microwire in the presence of a longitudinal magnetic field
using (5). The field is taken to be so weak that the cyclo-
tron radius is much larger than the radius of the wire,
I.>>a or equivalently kpa >>®/®, where ®=7a?B is
the magnetic flux through a cross section of the wire.
The transverse energy eigenvalues in a weak magnetic
field of an electron in a microwire approximated as a per-
fectly smooth cylindrical channel are'!
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In this expression a=® /P, is the dimensionless mag- o = [
netic flux, and y,, is the nth root of the mth Ll —
Bessel function, ie., J,(v,,,)=0, n=12,... o F '
and m =0,%1,%+2,.... In the semiclassical approxima- * — [ .
tion the electrons whose energy spectrum is given by (7) 4 5
propagate along complicated trajectories. However, - J

when projected onto a cross section of the cylinder they
do not penetrate inside a region bounded by a circle
(caustic) whose radius a is connected to the magnetic
quantum number m by the expression’

m =tka,+ma3B/®, . (8)

It follows from Eq. (8) that the radius of the caustic
grows when the absolute value of m increases.

The states corresponding to the largest values of m are
localized in a narrow layer near the surface of the
cylinder. These edge states are responsible!? for the AB
effect, i.e., they give rise to an oscillatory dependence of
the conductivity on magnetic flux with period ®,.”% The
spectrum of these states is obtained from Eq. (7) by using
the approximation 1y, ,~m +im!?[3m(n —1)]*”

+ - -+, which follows from an analysis of an asymptotic
form of the Bessel functions.® The result is

ﬁZ
Epn=7 zllm +a)2+m*3[3m(n — )27} . 9)

We wish to analyze the expression (5) for the conduc-
tance using the energy spectrum (9) for small wires (small
values of kpa) at low temperatures. This is best done nu-
merically. In contrast, at slightly elevated temperatures
and larger wires it is convenient to use the Poisson sum-
mation formula as in Refs. 11 and 7 to get an analytical
expression for the conductance. At temperatures such
that kz T > Ep /(kga), only the leading term in a Fourier
series expansion contributes and gives a smooth oscillato-
ry contribution of period ®, to the magnetoconductance.

In order to better understand the numerical results it is
useful to consider first the zero magnetic field and zero-
temperature limit. It follows then from Egs. (5) and (7)
that a variation of the parameter kra leads to nonequidis-
tant conductance steps. The distribution of the steps is
determined by the roots ¥, , of the Bessel functions. In
zero magnetic field (¢=0) the height of the conductance
steps are either T(2e2/h) or 2T(2e?/h). The “double
height” steps appear because the states with nonzero
magnetic quantum number m are degenerate at a=0
(since ¥,, , =V —mn)- An infinitely weak magnetic field
removes the degeneracy, see Fig. 2. Note also that the
conductance steps occur more frequently for larger kra,
when the roots of the Bessel functions are more densely
spaced.

Conductance steps can also occur when the magnetic
field is varied, obviously a more convenient parameter
from an experimental point of view. To see this, let us re-
turn to the conductance formula (5). Electronic states in
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FIG. 2. Conductance of a microwire as a function of the Fer-
mi wave vector ky (or radius a). Results are given for zero mag-
netic field (a=0, lower two curves) and finite field (¢=0.2,
upper two curves). For each field the conductance is plotted for
zero temperature (7 =0, sharp steps) and finite temperature
(T=0.2#*/m*a’ky, rounded steps). The step height is either
To(2e?/h) or 2Ty(2e%/h) as explained in text, and the curves
are offset for clarity. The value of T, is related to scattering at
the contacts between the ballistic microwire and the macroscop-
ic leads and is unity for adiabatic contacts.

the channel are characterized by two quantum numbers
m and n; for illustration we fix n and determine the max-
imum value of m as a function of «a (field). This is most
easily done for small n. The spectrum of these states is
given by (9). Since m is large and of the same order as
kra, the second term can be omitted. The remainder cor-
responds to the electronic states in a one-dimensional
ring. The allowed values of m in this case are confined to
the interval —kpa —a<m <kpa —a. It follows that the
number of allowed states (m values) varies periodically
between two values as a function of a. The period in « is
unity and the plateau width (corresponding to an “extra”
allowed state) depends on the fractional part of kpa. At
integer or half-integer values of kpa the plateaus degen-
erate into points. With increasing n the fluctuation pat-
tern gets more complicated; for large values of n the max-
imum magnetic quantum number m is smaller, corre-
sponding to a smaller flux enclosed by the electronic orbit
and thus larger periods in a (Aa>1). The full result
with a fairly complicated structure of conductance steps
is a superposition of the magnetic flux dependence of all
the states as shown in Fig. 3.

As expected the conductance steps are broadened at
finite temperatures, as can be seen in Figs. 2 and 3. The
temperature scale for broadening is related to the average
energy level spacing, Ep /(kpa)?>~#*/m *a?, of transverse
(i.e., 2D) states in the wire, which is not changed by a
weak magnetic field. This scale differs substantially from
the temperature scale E /(kpa) associated with the ordi-
nary AB oscillations.

In conclusion we have identified a new type of fluctua-
tions in the magnetoconductance of a 3D ballistic mi-
crowire. These fluctuations are reproducible for a given
sample and form its “magnetic fingerprint.” In order to
resolve the steplike conductance fluctuations the surface
of the wire has to be nearly perfect with a high degree of
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kza=50 timate'? leads to the criterion that o <Ap/(kgpa), where

v o is a length characterizing the surface roughness. Re-

T30 e~ cently magnetoconductance fluctuations were observed in

o _— ballistic gold nanobridges in a transverse magnetic field. 14

\ B \j& /_/ N The scale of these oscillatory fluctuations were related to

R - SN /4 o . \.\/ N the separation of energy levels in the system. Our theory
RS R W o [\/\\/ FIELE RSPV \\ : would predict steplike conductance variations on the
8 L et \; e e TG e\ same scale in a longitudinal field. We propose that suit-
= VM e e ey able ballistic microwires can also be made from bismuth
© - it rﬂﬁ - s o whiskers. The AB effect in the form of smooth magneto-
bl f Tl F)LL e L I conductance oscillations has already been observed in

L I such systems.!* The new type of submicrometer-size

lUf I bismuth microbridges used in Ref. 16 may be even more
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FIG. 3. Conductance as a function of normalized magnetic
flux through the microwire. Results are shown for 7=0, 0.2,
1.5, 5.0, and 15.0 (in units of #*/m *a’ky). At temperatures
below unity in these units, sharp fluctuations appear on the
scale of only a fraction of a flux quantum ¢,; a new scale for
mesoscopic phenomena. At higher temperatures only smooth
conductance oscillations on the scale of ¢, remain. All curves
were calculated for kra =50.

specular reflection. In addition a small variation of the
radius on a scale smaller than the Fermi wavelength is re-
quired. Nonspecular surface scattering will, like temper-
ature, broaden the sharp conductance steps. A simple es-

suitable. The Fermi wavelength in bismuth is a few hun-
dred angstroms, and Ep /kgz ~200 K. For a submicrome-
ter bismuth wire a surface roughness of at most about
5% of the wire radius would be sufficient to make it pos-
sible to observe sharp conductance steps in magnetic
fields of about a few gauss and at temperatures about 0.1
K.
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