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Thermoelectric figure of merit of a one-dimensional conductor
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We investigate the effect on the thermoelectric figure of merit of preparing materials in the form
of one-dimensional conductors or quantum wires. Our calculations show that this approach has the
potential to achieve a significant increase in the figure of merit over both the bulk value and the
calculated two-dimensional superlat tice values.

For a material to be a good thermoelectric cooler, it
must have a high thermoelectric figure of merit, ZT. The
figure of merit is defined by
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where S is the thermoelectric power (Seebeck coefficient),
o is the electrical conductivity, and r is the thermal con-
ductivity. In order to achieve a high ZT, one requires
a high thermoelectric power S, a high electrical conduc-
tivity cr, and a low thermal conductivity r. In general,
it is difficult to improve ZT for the following reasons.
Increasing the thermoelectric power S for simple mate-
rials also leads to a simultaneous decrease in the elec-
trical conductivity. Also, an increase in the electrical
conductivity leads to a comparable increase in the elec-
tronic contribution to the thermal conductivity because
of the Wiedemann-Franz law. So with known conven-
tional solids, a limit is rapidly obtained where a modi-
fication to any one of these parameters adversely affects
the other transport coeKcients, so that the resulting ZT
does not vary significantly. Currently, the materials with
the highest ZT are Bi2Te3 alloys such as Bio 5Sbi 5Te3,
with ZT 1.0 at 300 K. Only small increases in ZT
have been achieved in the last two decades, so it is now
felt that the BiqTes compounds may be nearing the limit
of their potential performance. 2

In an earlier paper, s we considered the effect on ZT of
using materials in two-dimensional (2D) structures such
as 2D quantum-well superlattices. We showed that this
approach could yield a significant increase in ZT. Re-
cently, new fabrication technology has made it possible
to confine an electron gas to one dimension, 4 thus mak-
ing it possible to produce a one-dimensional conductor.
Within the last few months, one-dimensional conductors
were obtained by a different method: the encapsulation
of metal filaments in carbon nanotubes. 4 5 Some of these
tubes are 1.5 nm in diameter, s so it is now possible to
fabricate very narrow quantum wires. In this paper, we
investigate theoretically the effect on ZT of using ma-
terials in the form of 1D conductors or quantum wires.
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indicating free-electron-like motion in the x direction and
a bound state (for infinite potential barriers) in the y
and z directions. Note that only the lowest subband has
been considered in Eq. (2). This is consistent with the
original assumption of a one-band model. The results for
the transport coeKcients are shown below:
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These structures will significantly alter ZT since the elec-
trons are now confined to move in a single dimension. In
addition there will be increased phonon scattering from
the surfaces of the wires. This will lead to a reduction in
the lattice thermal conductivity and hence an increase in
ZT.

Expressions for S, cr, and r have been derived for trans-
port in a 1D quantum wire. The calculations are for
a general, anisotropic, one-band material (assumed for
convenience to be the conduction band). The only other
assumptions are that of a constant relaxation time ~, and
that of parabolic bands in the direction of conduction.
Note that the calculation is not restricted to semicon-
ductors. The material can be a metal, semiconductor, or
semimetal, as long as it is effectively a one-band material.
A similar method was used in Ref. 3 to derive expressions
for ZT of a 3D bulk material and a 2D quantum well.
The 3D results agreed well with the experimental values
for Bi2Te3, so the assumptions are likely to be valid.

Let the conductor be square in cross section, with a
side of length a. Take the current to fiow in the x direc-
tion. General expressions in Ref. 7 were used to derive
the transport coefficients for a 1D conductor. The elec-
tronic dispersion relation used is
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where rf = (/kisT is the reduced chemical potential (g is
the chemical potential relative fo the lou&est bound state),
r is the relaxation time, m~, m„, rn, are the effective
mass components, p, is the mobility in the x direction,
and e, is the electronic thermal conductivity. The Fermi-
Dirac functions F, are given by

F; = F, (rf) = x'dz
e(& '9) + ]

So, using
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where e& is the lattice thermal conductivity gives
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For a given value of B, the reduced chemical potential
ri = g jkrsT may be varied to change the value of ZT.
The maximum value of ZT occurs when g is equal to
its optimal value, g'. B is determined largely by the
intrinsic properties of the material, but g may be varied
by doping. To maximize ZT for a material, one first
calculates B for the intrinsic material, then determines
the value of g', which maximizes ZT for this value of
B. The next step is to adjust rl so that g = ri": this
may be achieved by doping. It may be necessary to keep
the dopant ions spatially removed from the conduction
path to avoid impurity scattering. This form of doping
(modulation doping) has been used in 2D quantum-well
heterostructures. ZT(rf") rises monotonically with B,
so it is necessary to maximize B in order to achieve the
maximum ZT. Since p~ m ~, B p, so the highest
mobility direction will give the highest B. Also, B a 2,
so a narrower wire will give a higher B and hence a higher
ZT.

One of the best materials for thermoelectric refriger-
ation is BizTes, with a bulk ZT of 0.7 at 300 K.' The
expressions derived previously are now used to calculate
ZT for Bi&Te3 in a 1D quantum-wire structure.

BigTe3 has a trigonal structure, which can be expressed
in terms of a hexagonal unit cell of lattice parameters
ao = 4.3 A and co = 30.5 A. The compound has
an anisotropic effective mass tensor, with components
rn = 0.02rno, m„= 0.08mo, and m, = 0.32rno. The
lattice thermal conductivity is eL, ——1.5 Wm ~ K

and the mobility along the ao or x axis is p
1200 cm2 Q—1 s—1 1

The equation for ZT derived so far assumed a single
carrier pocket in the Brillouin zone of the bulk material.
For multiple pockets, the value of B in Eq. (9) needs
to be multiplied by a number of the order of the num-
ber of pockets. BigTe3 has six carrier pockets, each with
a slightly difFerent orientation in the Brillouin zone. In
our earlier paper, in order to make simple numerical
estimates of ZT for both bulk and superlattice BiqTe3,
we assumed that all six pockets have the same orienta-
tion. This assumption in fact gave a value for bulk ZT
in good agreement with the experimental value. In order
to make numerical estimates of ZT for one-dimensional
Bi2Te3, we made the same assumption. This consistent
approach enabled us to make direct; comparisons between
the calculated values of ZT for 3D, 2D, and 1D Bi2Te3.
The exact values of the parameters of Bi2Te3 are not of
crucial importance since the material is used mainly as
an illustration of the efFect on ZT of going to lower di-
mensions. Since six carrier pockets are assumed for 1D
Bi2Te3, the expression for B becomes
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Ef the wire is fabricated for conduction along the y or z
axes, then the variable rn p~ is replaced by rn„p,„or1/2 1/2
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In a 1D quantum wire, as the electrons are con6ned
to 1D motion parallel to the wire, there is no scattering
off the surface, so the mobility in the direction parallel
to the wire is unchanged. However, phonons in Bi2Tes
still move in three dimensions, so that they may scatter
o8' the surface. In thin wires this will reduce the lattice
thermal conductivity. Now

Kl. ——3t „vl,

where f is the mean free path, C„ is the lattice heat ca-
pacity, and v is the velocity of sound in the material. For
Bi2Te3, C„=12x106JK m 3 and v = 3x10 ms 1 xo

giving a value of / = 10 A.. If the wire thickness a is
greater than 10 A. , then surface scattering does not se-
riously afFect the mean free path t, and KI, should then
be the same as its bulk value. This is a conservative as-
sumption used to make numerical estimates for ZT, as
surface scattering will still occur for a ) 10 A. ; this scat-
tering will cause a slight decrease in rr, and an increase
in ZT. If n is less than 10 A. , then t and Kl. are limited by
surface scattering and a good estimate for el. is obtained
by setting t = a and using Eq. (11). From the expres-
sion for B in Eq. (10), decreasing the wire thickness a
increases B, and therefore increases ZT. Also, if a & 10
A, then rr, is reduced fro. m its bulk value, resulting in an
additional increase in ZT. So to achieve the best ZT, it
is necessary to make the wire as narrow as possible.

UVhen calculating g* for a material, one must check
that it does not lie above the energy of the next-to-lowest
subband of the quantum wire. If rl* does indeed lie above
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FIG. ] . Plot of ZT(rl') vs wire width a for 1D wires fabri-
cated along the x, y, and z directions.

FIG. 2. Plot of g' vs wire width a for 1D wires fabricated
along the x, y, and z directions.

the energy of the next subband, then more than one sub-
band will contribute significantly to ZT: this is inconsis-
tent with the assumption of a one-band system and one
would need to extend the model in order to get meaning-
ful results.

ZT(rI") was calculated as a function of width a for
quantum wires of Bi2Tes fabricated along the x, y, and
z directions. The mobilities p& and p, were estimated
using the fact that m~p = m„p& ——m, p, . The results
of the calculations are shown in Fig. 1, with the corre-
sponding values of g' in Fig. 2. The calculations were
done for values of a starting from 5 A, since it is unlikely
that much narrower wires can be made for Bi~Tes since
the ao dimension of the unit cell is 4.3 A. .i For values of
a ( 10 A, eL, was estimated using Eq. (11) with l = a.

Before any conclusions can be drawn, it is necessary to
check the validity of the results by making sure that g*
does indeed lie below the energy of the second subband.
From Fig. 2, g* is always negative, so it lies even lower
than the Lowest subband, so the results calculated using
a one-band model are valid.

From Fig. 1, for a given value of a, ZT for the wire in
the 2: direction is always higher than for the other two
directions. This is expected since the highest mobility
direction is along the x axis. For all three orientations,
ZT increases with decreasing a. ZT starts to increase
significantly when a drops below a width of the order of
the thermal de Broglie wavelength (h2/2m, k~T)i~2 for
each orientation. A value of ZT 14 was calculated for
a wire of width 5 A oriented in the x direction. In a pre-
vious paepr, swe calculated the best ZT for bulk Bi2Tes
to be ZsDT = 0.5. i For a 2D quantum well of width 10
A. , the best calculated figure of merit was Z2DT = 2.5,
and for a 5-A. quantum well, Z2DT = 5. For comparison,

the best calculated ZT for a 10-A-wide quantum wire is
ZiDT = 6 and for a 5-A wire, ZiDT = 14. So the maxi-
mum ZT for a 1D wire is greater than ZT for both the
bulk material and for a 2D quantum well. These results
indicate that a significant increase in ZT can be achieved
by going to lower dimensions, with the highest ZT oc-
curring in one dimension. This increase is due mainly
to the change in the density of states, but an additional
factor is the reduced lattice thermal conductivity due to
increased phonon surface scattering.

It may not be easy, however, to fabricate one-
dimensional wires of BigTe3 of the required thickness.
The best hope seems to lie with the technique of en-
capsulating materials in carbon nanotubes, since some of
these tubes have the necessary narrow diameters of about
1.5 nm. 5

In conclusion, the thermoelectric figure of merit of
a one-dimensional conductor or quantum wire depends
strongly on the width of the wire. For widths narrower
than the order of the thermal de Broglie wavelength of
the carriers, the figure of merit increases significantly
with decreasing a. If Bi2Tes, the best present thermo-
electric material, is made in the form of a 1D wire, then
a ZT of up to 14 is predicted for a wire of square cross
section and width 5 A. The results of this calculation
show that quantum-wire structures have the potential to
significantly improve the thermoelectric figure of merit
above the best present values.
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