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Quasi-zero-dimensional states in ballistic quantum wires
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We study transport properties of ballistic quantum wires in which transverse modes of electrons are
strongly mixed. It is shown that there are zero-dimensional quasibound states in these structures. The
conductance reflects the existence of these states in two ways: one is a transmission peak and the other a
dip. These two distinctive features appear due to the background conductance.

Recent progress in microfabrication techniques, such
as planar process or epitaxial growth, has made it possi-
ble to observe quantum effects in semiconductors with
effective low-dimensional structures.! When the electrons
are confined in every dimension, discrete zero-
dimensional (0D) states are formed and the strongest
quantum effects are expected. Recently, transport prop-
erties of such systems have been extensively investigated
in both lateral’”> and vertical®’ structures. In both
structures, the analyses are mainly based on the picture
of the resonance tunneling in which the conductance
reaches a maximum when the Fermi energy coincides
with discrete levels of the quantum box. However, when
a strong magnetic field**> inducing adiabatic transport is
absent and the mixing of modes cannot be neglected, the
transport properties are severely affected by mode mix-
ing, so the simple one-dimensional picture mentioned
above is insufficient.®

Although vertical structures have the advantage of
thin barriers that can be fabricated by an epitaxial tech-
nique, the cross section cannot be well formed and it is
difficult to see the effect of the mode couplings in this
structure. Moreover, current-voltage characteristics are
usually analyzed in the nonlinear region, and electron-
electron interaction directly affects the transport.*° On
the other hand, in the lateral structure, it is hard to make
well-formed thin potential barriers using the gate voltage
in order to make the OD states well defined and to allow
appreciable electron transmission.! Transverse momen-
tum, however, is well defined in the lateral structure and
the linear-response regime can be examined by changing
the system size or Fermi energy using the gate voltage.
Therefore, the lateral structure is more useful in investi-
gating the effects of mode coupling if the potential barrier
is not introduced into the wire.

Some authors examined lateral structures experimen-
tally without introducing a magnetic field or a potential
barrier in the wire.>!%!! Hirayama and Saku investigat-
ed double-ballistic point-contact geometry. In their anal-
yses, they suggested that transmission through the 0D
states occurred.> Wu et al. observed resonance effects in
the conductance of double-bend structures.!® These wires
have been analyzed numerically and the conductance of
these wires has been reported.'*!3 However, there is still
no clear explanation because such analyses are usually
based on the transport coefficient or conductance. It is
rather difficult to obtain a physical picture of the trans-
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port process by only examining this quantity. Also, it is
not clear whether OD states are well defined in such un-
bounded structures.

Recently, we introduced the local density of states per
unit length and its expansion, in terms of the transverse
momentum, to analyze a wire with a stub.!%!> The direct
comparison of these quantities with the transport
coefficient allows us to see if the increase in conductance
merely reflects the increase in the density of states.
Moreover, the expansion of the local density of states, in
terms of the transverse momentum, gives an insight into
the nature of the wave function that constructs the local
density of states. This approach is extended to the analy-
ses of wires with a long stub or a double bend, where the
transverse modes strongly mix and cannot be defined con-
tinuously throughout the wire. We will show that well-
defined quasi-zero-dimensional states can be formed in
such ballistic quantum wires and that the transport prop-
erties of these wires reflect the existence of these states ei-
ther as a reflection or a transmission.

Our calculational method is the tight-binding Green-
function method introduced by Sols ez al.,’* which is an
extension of the conventional recursive Green-function
method.!® The detailed procedure for the calculations is
given elsewhere.!>!* We define the local density of states
per unit length D (7., E), and the local density of states
per unit length for modes at r,,p,, (rx,my,E), as

D,(ry,E)=3 p(r,E)=3 p,(r.,m,,E), (1)

¥y y

Pm(re;my, E)=3 8(E —E, )@, (r,m,)p,(r,m,) , (2)
(p,,(rx,my)=2fmy(ry)¢n(rx,ry) , 3)
Ty

where ¢,(r) and E, are the complete sets of orthonormal
eigenfunctions and eigenvalues for the Hamiltonian H,
respectively. The eigenfunction with respect to the trans-
verse mode m,, is f, my(ry ), and p(r, E) is the local density

of states per unit area. The system considered is the
modulation-doped GaAs-Al,Ga,;_, As heterostructure,
and the effective mass m* of GaAs is thus taken to be
0.067m,, where m,, is the rest mass of an electron. The
energy is measured from the bottom of the two-
dimensional tight-binding band. The spin degeneracy is
taken into account in both the conductance and the den-
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sity of states.

First, we investigated the stub structure depicted in the
inset of Fig. 1(a). The conductance g is shown in Fig. 1(a)
as a function of Fermi energy E. The solid line represents
the result of the lattice spacing of @ =1.25 nm and the
dashed line represents that of @ =0.625 nm. It is clear
that the lattice spacing of 1.25 nm has sufficient accuracy
for our purpose. We therefore use a lattice spacing of
a =1.25 nm throughout our calculations. The conduc-
tance profile shows an irregularly oscillating structure,
implying strong mixing of transverse modes. In addition,
five narrow dips located at E =3.7, 6.8, 9.0, 20.2, and
21.9 meV were observed. To clarify the origin of these
dips, the local density of states per unit length for modes
D, (r.,E) at position C [see the inset to Fig. 1(a)] is plot-
ted in Fig. 1(b). Well-defined peaks, which are regarded
as quasibound states, are clearly seen. Comparing Figs.
1(a) and 1(b), the first, second, and fifth dips, in the con-
ductance profile, have corresponding peaks in the local
density of states. Although such correspondence is also
observed in the wire with a short stub,'* there is a clear
difference. In Fig. 1(b), the quasi-one-dimensional sub-
band spectrum, which has dependency of (E —E,) /2
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FIG. 1. (a) Conductance g: lattice spacing of 1.25 nm (solid
line) and 0.625 nm (dashed line). Inset: The structure with a
stub. The dashed line represents position C. O is the origin of
r.. The dot-dashed lines indicate the region of the virtual quan-
tum box. (b) D,(r,,E) at C in the inset of Fig. 1(a). (c)
Pm(ry,my, E) at C for m, =1 to 6, for a stub structure.
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and corresponds to extended states, is not observed. E,
is the propagation threshold of the nth subband.

To investigate these quasibound states in more detail,
D,(r.,E) was expanded in terms of transverse momen-
tum m,. The result at position C, denoted as
Pm(ry,my, E), is shown in Fig. 1(c). While the peak at 3.7
meV breaks into two modes and the peak at 21.9 meV
into three modes, the other three peaks remain as single
modes. Subsequently, let us compare the energy that
creates the peak for each mode with the discrete eigenen-
ergy of the virtual quantum box, which is represented by
the rectangle bounded by dot-dashed lines in the inset of
Fig. 1(a). The eigenenergy is marked by lines on the top
of Fig. 1(c) and is represented by me m,
=h%/2m*{(m, /2W, )+ (m,/2W,)*}, where W, and
W, are the length of the box in the x and y directions, re-
spectively. From the figure, a correspondence is ob-
served, except for the peaks corresponding to m, =2.
This is because p,,(r,,m,,E) is calculated at C where the
wave function with even mode has a node. This will be
shown in detail later.

Since the leads are attached to the virtual quantum
box, the states of the quantum box acquire finite probabil-
ities of decaying outside the box. As a result, these states
acquire finite width and become quasibound states. The
lifetimes of these quasibound states are governed by the
couplings at the interface and can be estimated from the
width of these peaks by using the uncertainty principle.
The lifetimes of these states are on the order of 1 ps. The
positions of the peaks also shift from the discrete levels as
the quasibound states at the peaks extend over the larger
region. Only the lowest state remains as a real bound
state. This is confirmed by evaluating the real diagonal
part of the Green function.'>'* The energy of this real
bound state is shown by an arrow in Fig. 1(b) and agrees
with the results in Sols ez al.!?> The real bound state and
the lowest quasibound state are considered to result from
the combination of E; and E,.

Since the transverse modes change at the interface, the
local density of states per mode is not necessarily con-
tinuous. The sum over the modes, D, (r,,E), however, is
continuous even at the interface. To clearly show the
difference in the local electronic structure between the in-
side and outside regions of the stub, D (7., E) was calcu-
lated for both regions. The results are shown in Fig. 2,
where Fig. 2(a) shows the stub region and 2(b) the lead re-
gion. As expected, a quasi-one-dimensional subband
spectrum, which is the sum of (E —En)_]/ 2. is seen in
Fig. 2(b). The oscillating structure is attributed to partial
reflection of the electron waves at the interface. Figure
2(a) shows a quite different profile from Fig. 2(b); the am-
plitude increased strikingly at the quasibound states,
which means that these states are likely to be confined
within the box. The mode index m, of these quasibound
states can be determined by the number of peaks along
the r, direction. Note that the amplitude of the two
quasibound states at E =9.0 and 20.2 meV become near-
ly zero at r, =25 nm and they are not visible in Figs. 1(b)
and 1(c). These quasibound states have the mode index of
m, =2 and correspond to the third and the fourth dips in
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FIG. 2. Local density of states per unit length D, (r,,E) vs
energy E and position 7, (a) in the stub and (b) outside the stub.
r, is taken from the origin O in the inset of Fig. 1(a).

Fig. 1(a). Therefore, all dips in the conductance have the
corresponding quasibound states at the same energy.

These dip characteristics have also been observed when
the small stub or an attractive potential was introduced
into the wire.!””'* In such systems, the dips are explained
by the quasibound states splitting off from higher-lying
confinement subbands. In a system with a long stub,
however, width discontinuity is so large that there is no
one-to-one correspondence of the transverse modes be-
tween the stub and the wire regions, and strong reflection
of the electron wave occurs at the interface. Consequent-
ly, to explain the nature of these quasibound states, a pic-
ture based on the levels of the quantum box employed
here is much more appropriate than the picture in terms
of the quasibound states splitting off from the propaga-
ting modes. Therefore, the device proposed by Sols
et al.'? can be regarded as a zero-dimensional device con-
trolling the discrete levels of a quantum box, rather than
a one-dimensional device controlling the phase of the
modes.

Next, the double-bend structure, which is shown in the
inset of Fig. 3(a), was investigated. In this case, quasi-
bound states contribute differently to the transport prop-
erties of the wire than in the case of the long stub. The
conductance g is plotted in Fig. 3(a). Although the curve
shows an oscillatory structure similar to Fig. 1(a), there is
a clear difference. In the curve shown in Fig. 1(a), the
narrow dips are dominant, while the peaks dominate the
curve in Fig. 3(a). The nine peaks are observed at 2.8,
4.0,5.5,7.1, 85,9.3, 11.4, 13.6, and 18.8 meV. To inves-
tigate these characteristics in more detail, the local densi-
ty of states D, (r,,E) was calculated and is shown in Fig.
3(b). The peaks in Fig. 3(a), except that of 9.3 meV, have
corresponding peaks in Fig. 3(b). This characteristic con-
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trasts to that of the stub structure where peaks are found
at the energy of the dips in the conductance. In the
double-bend structure, quasibound states contribute
directly to the current, and the transmission occurs
through these states. In the single-mode regime (E <9
meV) in particular, the maximum conductance reaches
unity for five peaks. This feature of the conductance is
similar to that of resonance tunneling in one dimension.
Figure 3(c) shows the expansion of D (7,,E) in terms of
the transverse modes of the central region. Comparing
Figs. 3(b) and 3(c), most of the peaks in Fig. 3(b) result
from single modes, whereas the first peak in Fig. 3(b) con-
sists of three modes. As seen previously in the system
with a stub, clear correspondence is observed between the
quasibound states and the discrete levels of the virtual
quantum box, indicated by dot-dashed lines in the inset of
Fig. 3(a). In investigating the real part of the Green func-
tion, two real bound states were found for this system.!®
These states and the lowest quasibound state are con-
sidered to originate from the combination of the three
lowest levels of the quantum box. In Fig. 3(a), two dips
are also observed at E =16.1 and 25.9 meV. They have
corresponding quasibound states at the same energy [Fig.
3(b)], and their origin is considered to be the same as the
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FIG. 3. (a) Conductance g: Inset: the structure with a dou-
ble bend. The dashed line represents position C. The dot-
dashed lines indicate the region of the virtual quantum box. (b)
D, (r,,E) at C in the inset of Fig. 3(a). (c) p,,(7s,m,,E) at C for
m, =1-10, for a double-bend structure.
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dips in the system with a stub.

In the two structures presented here, it is seen that
“zero-dimensional” quasibound states appear in the con-
ductance profile in two ways: one as transmission and
the other as reflection. This feature is analogous to that
explained by Nakazato and Blaikie!” in the case of weak
mode mixing. When the lower mode is opened, the back-
scattering lower mode contributes as a dip, and the
higher mode contributes as a peak when the lower mode
is closed. In this case, however, these quasibound states
couple strongly with both the propagating lower mode
and the evanescent higher mode. Therefore, it is not pos-
sible to classify the quasibound states by the subband in-
dices in the leads. In the real systems, because of the
wider width of these quasibound states, these states are
expected to be observed more easily than in the case of
weak mode mixing.

Although the analysis presented so far has been re-
stricted to the coherent process and we have not taken
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electron-electron interaction into account, we can consid-
er that one-electron analysis is applicable to the interact-
ing electron systems, as far as the linear response regime
is concerned.* Therefore, it is considered that the struc-
tures presented in this paper will provide a way to ob-
serve quasi-zero-dimensional states in ballistic quantum
wires. In fact, the resonance structure observed by Wu
et al.'® would imply the occurrence of the resonance
transmission through these states.

To conclude, we analyzed ballistic quantum wires with
a stub or a double bend. We showed that quasibound
states arise in geometrically unbounded systems and that
they correspond to discrete levels of the virtual quantum
box in a wire. These ‘“quasi-zero-dimensional” quasi-
bound states appear differently in the transport properties
in these two structures.

The authors would like to thank M. Yamamoto for
helpful discussions and K. Hirata for his encouragement.
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