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The Hamiltonian of the interaction between an electron and surface vibrations for a three-layer
symmetrical structure is obtained. In the limiting case of infinite outer-layer thickness, the known re-
sults by Mori and Ando are reproduced.

Early achievements in theoretical investigations of the
phonon spectrum and the electron-phonon interaction in
a separate thin polar layer, both surfaces of which inter-
face with a vacuum, were described in Refs. 1 —3. Subse-
quently, papers appeared concerning the vibrational
states and electron-phonon interactions in compositional
structures. We draw attention to Ref. 4 as an early
publication on the problem. In Ref. 4, the theory of po-
lar vibrational excitations and the electron-phonon in-
teraction in multilayer structures composed of an arbi-
trary number of polar layers was developed, and
represents a generalization of the results of Refs. 2 and 3.
Based on theory, the states of both the polarons at the
polar-polar crystal interface, and the polaronic excitons
in thin layers ' were considered, and the theory of Ra-
man scattering in superlattices' was developed. All the
above problems are discussed in detail in Ref. 11.

The recent papers' ' and also Ref. 6 report on the in-
vestigation of three-layer symmetrical structure, contain-
ing the polar layer (layer n =2) of finite thickness
sandwiched between two semi-infinite polar layers (layer
n =1 and 3), the host materials of which are the same.
Here we aim to find analytically the normal phonon fre-
quencies and the Hamiltonians of the electron-phonon in-
teraction for such a structure.

We investigate the case of the symmetrical three-layer
structure when the electric potentials at external surfaces
are zero. Symmetry consideration, both of thicknesses
and dielectric permittivities, make it possible to obtain
the general solution of the problem in explicit form.

To solve the problem we use the general formula ob-
tained in Ref. 4 for the Fourier transform of the potential
resulting from the polarization vibrations in the multilay-
er structure with an arbitrary number of layers. Here, we
reproduce the surface part of the potential,

Eo Vg(zl, z) =—g
I lk 2 tanh(gk /2)

' 1/2
k

sinh
2

2

X ~ g Aln IkPlk( 9~0) coshwn

2

+ g Az„ ik PIk (zl, O) sinhw„
1=1

(1a)

In Eq. (la) lk is the thicknesses of the kth layer of the
multilayer structure, gk =zilk, %'i„ tk are the coefficients
given in Ref. 5 in their explicit form; j,l=1,2 are the
numbers of surface polarization modes Ptk(ri, O); k is the
number of layers, w„=zi[z —(z„+z„&)/2] where z„ is
the coordinate of the interface between the nth and
(n —1)th layer, zl is the two-dimensional (2D) wave vec-
tor perpendicular to the stratification axis OZ.

Let us write down the formula for the surface part of
the potential in the middle (n =2) layer. For the con-
sidered three-layer structure, the symmetry properties are
of the following form: the thicknesses of the first and
third layers are equal to each other l, =l3, and the dielec-
tric permittivities of the corresponding layers are one and
the same, E.

&
=c.3, c.&o=c3o. Then

Eo Vz ( 1Z ) = [zr /z) si nh( gz /2 ) ]( ( 1 /c, 1, ) [A', z z, [ 1 + tanh (g, /2 )] '
[Pz & ( tl, 0 ) —Pz, ( zl, 0 ) ]cosh w z ]

+%'zz z, [1+tanh (g, /2)]' [Pz, (g, O)+Pz, (zl, O)]sinhwz

+ ( 1 /czlz ) [A]z &zP &z( zl, O)coshwz +A'zz z~Pzz( zl, O)sinhwz ] ) (1b)

where we have introduced the polarizations P' related to
the polarizations P by the definitions

[1+tanh (g, /2)]' Pzz =——tanh(g, /2)P, z(sl, O)+Pzz(zl, O) .

(2b)

[1+tanhz(g, /2)]'~zPz', —:tanh(g, /2)P»(zl, O)+P»(zi, O), (2a) From Eq. (1) we can easily see that the chosen symmetry
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properties of the matrix N„,. are of the following form:

Ni4=N4l = —Nl3y N42 N24 N23p N43 N34y N44 N33

Thus, the set of two equations of motion for the an-
tisymmetrical modes is written as

+2N23 W2+ (N33 +N34 ) W+ =0,
N22 8'2+ &2N23 8'+ =0,

(4a)

(4b)Pz&(g, 0)+Pz3(g, 0)=—+2P+,

P2i(g, 0)—Pz3(g, 0)—=&2P

(3a)

(3b) and the set for the symmetrical modes is

of the structure leads naturally to the hybridization of the
polar vibrations of the first and third layers, generating
two types of contributions into the potential. First is the
symmetrical one with respect to the reAection in the mid-
dle plane of the second layer, while the other is an-
tisymmetrical. Henceforth we call the corresponding po-
larizations antisymmetrical (3a) and symmetrical (3b),

For the structure under consideration, we use short no-
tations for the mode indices

(n =1,j=2)—+r=3; (n =3,j=2)~r=4,

3/2Nt3Wz+(N33 N34)W =0,

Nil 8'2+ &2Nl3 8' =0,
(Sa)

(5b)

(n =2,j=1)~r =1; (n =2;j =2)~r =2 .

Now the set [see Eq. (35c) in Ref. 4] of four equations of
motion for the normal vibrational modes

iN„„.W'„.=0 reduces to two mutually independent
sets of equations. This occurs because the symmetry

P„(z),q»)=co„V'L„L~l„(E„Q E„) E(p—2 zr) 'W„. (6)

For the coefficients in Eqs. (4a), and (4b), using their
definition we find

where in Eqs. (4a), (4b), (5a) and (5b), W is the amplitude
renormalized by the definition

N33 +N34 = —coth( gz /2 ) /Ez"

Nzz Nz4 =co— cot[Ez—+Ezpcothg, coth(gz/2) ],
N„= —

—,
' [l+tanh (gt/2)]' cotcoz[(E&p —Et)(Ezp —Ez)/tanh(g, /2)tanh(gz/2)]' /Ez",

Nz3= z[l+tanh (g&/2)]' tanh(gz/2)co, coz[(Etp —E, )(Ezp —Ez)/tanh(g, /2)tanh(gz/2)]' /Ez ',

N& ]
=u —co&(c,zo'/c, z"),

N22 N M2(820/62 )

where

Ezp: Ezp +E,cothg, tanh( gz /2 )

EzQ =EzQ+ E tcothgtcoth(gz/2)

{7a)

(7b)

(7c)

(7d)

(7e)

(7f)

(8a)

(8b)

From the equations of motion, (4a) and (4b) and (5a) and (5b), the dispersion equations for the antisymmetrical nor-
mal vibrations are found,

N22(N33+ N34 ) 2N23 0

co [cozEzo +co&[Ez+Etpcothgttanh(gz/2)]] /Ez '+co, coz[Ezp+E&pcothgttanh(gz/2)]/Ez '=0

with the frequencies

0 t 3
= [ [ cozEzp + cot [Ez+Etpcothgttanh(gz/2) ] ]

(9a)

(9b)

2( [cozEzp +cot[Ez+ Etpcothgttanh(gz/2) ] ] 4cotcozEz [Ezp+ Etpcothg, tanh(gz/2) ] )' ]/2Ez (9c)

In a similar way, for the symmetrical normal modes we obtain the following equations:

N] l (N33 N34 ) 2N l3 0

co co [cozEzp +cot [Ez+Etpcothgtcoth(gz/2) ] i /E', "+[co',coz[Ezp+ E,pcoth(, coth(g z2/) ] ] /Ez '= 0

with frequencies

Q3 4 [ [cozazp'+ co, [Ez +E,pcothg&coth( gz /2 ) ] ]

(10a)

(10b)

+( [cozEzp'+ cot [Ez+Etpcothglcoth(gz/2) ] ] 4cot cozE'z [Ezp+ Etpcothgtcoth(gz/2) ] ) ]/2Ez" . (10c)



47 BRIEF REPORTS 16 599

Owing to the conditions (9a) and (10a) imposed on the
coefficients in the equations of motion, (4a) and (4b) and
(5a) and (5b), it is possible to use one equation at a time in
each set, relating the amplitudes of one and the same fre-
quency inside the second layer 8', 2

= 8', 2 22 and out of it
W'~-Pz&(g, O)+Pz&(q, O) in order to obtain the normal
vibrational amplitudes. By making use of the definition

m2(Q, ) =C, (Q, )Z, (Q, )

and a corollary from the Eq. (4b)

8'+ (Ql ) ——(N22/ 2N23 ) 8'2 ——F21(Q1)Cl (Ql)Z1(Q1),

(11a)

+21(Q1) (N22/+ N23 ) (11c)

we find the amplitude of the normal mode Zi(Q, ) with
frequency 0,. This mode is a characteristic of the whole
structure and is normalized by the condition

2 2
1

2
2( ~1,2+ ~+ ) 2Z$ s S=1,2, 3~4

with the normalizing constant

C)(0|)=1/'1/ 1+F',, (0, ) .

(12)

(13)

+( 2) — 2( 2) 2(

8;(0,) = —[(N33+N34)/&2N23]CQ(0$)Z2(Qp)

F12(Q2)C2(Q2)Z2(Q2),

with the normalizing constant

C, (02)=1/Ql+F'|2(0, ) .

(14a)

(14b)

For the symmetrical modes with frequencies Q3 and Q4,
the similar procedure gives, respectively,

03 ~ Wj (03) C3(03)Z3(03) C3(03)= 1/ 1/ 1 +F423

N 1 1~—(Q3) = — — 8', = —F43(Q3)C3(Q3)Z3(Q3)
&2N13

04'. W (04)=Cg(04)Zg(0~); C4(04) =1/+1+F2i~

W'i(04) = —[(N33 N34)/&2N~3]W (0,)

F34 ( Q4 )C4 ( Q4)Z4 ( Q4 )

From the same set, Eqs. (4a) and (4b), the amplitude of
the second antisymmetrical mode Z2(Q2) is determined
analogously as

The values Z„Z2, Z3, and Z4 are the normal ampli-
tudes.

Next, to deduce the Hamiltonian of the interaction be-
tween an electron and the field of polarizational vibra-
tions, we multiply the potential V„by a factor ( —e)
(where e is the charge of an electron) and then express the
polarization vector components in terms of the mode am-
plitudes Z„Z2, Z3, Z4 and represent the latter in the
form of second quantization, assuming

Z, (Q, ) = [(fi/20, )]'~ [b, (
—s1,0)+b, (g, O)] .

with the notations

X [b,t( s))+—b, (g)] (18)

~l ( & 10 ~ 1 )P„—=P, (0, )= 2 cath/„[s=1, 2),
(Q, —

CO1)

coth(g, /2);s = 1,2
P2s ~2 ~ s ~ (02 ~2)2 tanh{g&/2). s —3 4R =A(Q )= $2
f &

=sinhw2/sinh($2/2),

f,= —sgn(Q', —co, )f, ,

f3
—coshw& /cosh( g2/2 )

f4 =sgn(04 —p)i)f3,

Zl Z Z2

(19a)

(191)

(20a)

(20b)

z, 2 is the coordinate of the external surface of the first
layer. The Hamiltonian for an electron in the outer layer
differs from the Hamiltonian (18) only by the form of the
coordinate function, which becomes one and the same for
all s,

tanh(g, /2)coshw, +sinhw,
(21)

and has no definite parity.
The Fourier transform of the polarization vector in the

second layer has the explicit form

In a particular case, for an electron placed in the second
layer, the above-mentioned procedures are performed by
use of Eqs. (lb), (3a), (3b), and (1 la) —(16). In order to
simplify the transition to the limit (la pp) described in
Ref. 6, we obtain after some transformations the results
in the following form:

e&% ' e'&& „,f ~»8, , p„(p,z)= — g ~—(P|,+Pp, )
2 L„Leap „,,=| &q 0,

P2(vy, z) = —co21/7)L L (e2p a2)Ep/(2m)'1/sinhg2

a',"(Q, )
X . (ig sinhw2+e3coshw2) —Z, (Q, ) 1+

a2 (Ql)

—1/2
a', '(Q )+Z2(Q2) 1+ (2)a2"(Q2)

—1/2

where

al (Q3)
+(ig coshw2+e3sinhw2) Z3(Q3) 1+ (, )a',"(Q,)

1/2 '
(1)

)
1/2

+Z'(Q) 1+ 1 4

a',"(Q,)
(22a)

a' '(0)=0 —co (a' '/E"') a' '=0 —co [e +s cothg tanh(g, /2)]/a' '

a"'(0)=0' —co (a'"/E2 '); a,' '=0 —co [E +a,pcothg, coth(gp/2)]/a2" .

(22b)

(22c)
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It is seen from Eqs. (22) that two components P2, =P—J
and P2 „=P—2, being due to the normal modes Z&(Q&) and

Z2(Qz), are antisymmetrical when refiecting in the XOY
plane chosen in the middle of the second layer. At the
same time, P2, and P2, which are due to the normal
modes Z3(Q3) and Z4(Q„), are the symmetrical ones un-

der the above-mentioned reQection.
Notice that the results of Ref. 7 follow immediately

from Eq. (18) in the limit l
&
~ oo. The further

simplification e,o~E, (nonpolar outer layers) and E, =l
(polar layer in a vacuum) gives the results of Refs. 2 and
3, respectively.

In conclusion, we consider the evolution of the surface
vibrational spectra of three-layer symmetrical structure
when varying l& at the fixed value of lz. At g~0 from
Eqs. (9c) and (10c) for antisymmetrical and symmetrical
branches, respectively, in the limit l, ~~, it follows that
Q

&

—max(co2o co&) and Qz =min(co20 col) whereas
Q3 max(co, o, co2) and Q4 =min( co,o, co&). In the other lim-
it case l

&
~0, we have Q

&

=max(co &o, co&) and
Q2=Q4=min(co, o, co2). From the formulas (9c) and (10c)
it can be seen that in the limit g —+0 only the frequencies
of antisymmetrical branches 0& and Q2 depend on l, .

As a numerical example, the structure InAs-GaSb-
InAs is considered and the following parameters are
used: co =30 meV, m, =272 meV, E&p=145 meV,
c.&=11.6 meV, ct)2p=29. 8 meV co&=28.6 meV, c&p=16. 1

meV, and F2= 14.4 meV. For these values, at l, ~~ and
g~0, the limit values of Q, are arranged in the following
order: 03)Q, & 04) 02 where it follows unambiguously
that Q &( l, )~Q3 =co,o= const and Q2(l, ) ~Q~ = co&

=const. The results of the calculations of Eqs. (9c) and
(10c) are shown in Fig. 1 demonstrating explicitly the
evolution of the frequencies.

We have arrived at the following general conclusions:
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(1) The hybridization of the vibrations from the outer lay-
ers as well as the projective transition from the variables
describing the polarization states in the separate layers to
these, which are general for all the structure, creates the
normal symmetrical and antisymmetrical modes in these
layers. (2) At g~O and for l, varying from oo to 0, the
limit frequencies 0, , and Q2 of the antisymmetrical vibra-
tions are shifted towards the frequencies of symmetrical
vibrations 03 and A4, respectively, coinciding in pairs in
the limit l& ~0. The concrete scheme of the transforma-
tion is determined by the relative magnitudes of the para-
metnc frequencies ~io ~& ~2o and ~2

FIG. 1. The dispersion law of the surface modes as the func-
tion of the outer-layer thickness of the three-layer structure.
l2 =10 nm and l

&
=4.5 nm; 2.5 nm, and 0.5 nm, respectively; 1,

2, and 3 are the dispersion curves of the nonsymmetrical fre-
quencies 0&,A2, depending on l

& ,
'3' and 4' are for the symmetri-

cal frequencies 03 and 0&.
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