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Dimerization structures of metallic and semiconducting fullerene tubules
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Possible dimerization patterns and electronic structures in fullerene tubules considered as one-
dimensional ~-conjugated systems are studied with the extended Su-Schrieffer-Heeger model. We
assume various lattice geometries, including chiral and achiral tubules. The model is solved for
the case of half-filled vr-electron states. (1) When the undimerized systems do not have a gap, the
Kekule structures are prone to occur. The energy gap is of the order of the room temperature and
metallic properties are expected to appear. (2) If the undimerized systems have a large gap ( 1 eV),
the most stable structures are the chainlike distortions where the direction of the arranged trans-
polyacetylene chains is almost along the tubular axis. The electronic structures are semiconductors
due to the large gap.

I. INTRODUCTION

Recently, a new form of carbon, "fullerene tubules, "
has been synthesized. A tubule has the structure like
a cylinder made from a graphite sheet. Usually, tubules
are observed in multilayered structures. Several tubules
interpenetrated. The distance between nearest tubular
sheets is about 0.34 nm and is near to that of the sep-
aration between the layers in the graphite. The typical
diameter of the tubules is of the order of I nm. The max-
imum length of the tubules is more than 1 p,m. Thus, a
tubule can be regarded as a new class of one-dimensional
materials.

The electronical properties have been theoretically
calculated. s A tubule can show metallic or semicon-
ductorlike properties, depending upon its geometry and
diameter. In these studies, all of the carbon atoms
have been assumed to be equivalent. All the bonds with
the equivalent geometry have identical length. The pos-
sibility of bond alternation patterns (namely dimeriza-
tion) has been considered briefly with reference to the
in-plane3 and out-of-plane dimerization. It was con-
cluded that the strength of the dimerization might be
quite small even if it occurs.

It is, however, well known that the one-dimensional
systems are unstable with respect to Peierls distortions
if a weak electron-phonon interaction is present. Dimer-
ization will appear in fullerene tubules due to the Peierls
instabilities. The dimerization patterns will depend on
the structure of the tubules. The possible patterns have
not been investigated in detail in the previous works.
Therefore, it would be interesting to study what pat-
terns can appear when we regard tubules as quasi-one-
dimensional 7t.-conjugated systems.

In this paper, we extend the Su-Schrieffer-Heeger
(SSH) models of conjugated polymers to the honey-

comb network system in order to apply to fullerene
tubules. The electronic properties and the possible
dimerization patterns are analyzed using the finite-size-
scaling method. 7 We obtain the "Kekule structure" for
the metallic tubules, and the "chainlike distortion" for
the semiconducting tubules as the most stable state. The
Kekule structure is a network of hexagons with the alter-
nating short and long bonds like in the classical benzene
molecule. The chainlike distortion is a pattern where
trans-polyacetylene chains are connected by long bonds
in the direction perpendicular to the chains. The Kekule
or chainlike patterns will be important as fluctuations,
even though the amplitude of dimerizations is of the same
order as that of the fluctuations and therefore it is diK-
cult to observe the static distortions.

In the next section, we explain our model and ideas
of the investigation. In Sec. III, the Kekule structures
in the metallic tubules are reported. In Sec. IV, the
chainlike distortions in the semiconducting tubules are
discussed. We close this paper with several remarks in
Sec. V.

II. MODEL AND FORMALISM

We use the extended SSH Hamiltonian7s for investi-
gation of dimerization patterns. The model is

H = ) (—tp+ay, , )(ct c, +Hc)+ —) y;, ,

(~i) ~ (' )

where c, is an annihilation operator of a 7t electron,
quantity to is the hopping integral of the ideal undimer-
ized system, o. is the electron-phonon coupling, y, 1 indi-
cates the bond variable which measures the length change

0163-1829/93/47(24)/16563(7)/$06. 00 16 563 1993 The American Physical Society



16 564 KIKUO HARIGAYA AND MITSUTAKA FUJITA 47

of the bond between the ith and jth sites from that of the
undimerized system, and the sum is taken over nearest-
neighbor pairs (ij). The second term is the elastic energy
of the lattice, and the quantity K is the spring constant.
This model is numerically solved by the iteration method
used in the previous studies7'~c under the assumption of
the adiabatic approximation.

We shall look at the dependences on parameters. The
value of to ——2.5 eV is taken from that of graphite
and polyacetylene, and has been used in the previous
papers. 7 ~o We fix the spring constant K = 49.7 eV/A2
and change the coupling constant n, so that the dimen-
sionless electron-phonon coupling A—:27ra /vrKta, anal-
ogous to that in BCS superconductivity, has various val-
ues. Although the realistic value would be about 0.2 as
we have used for Csp, C7a, and tubules in the previous
papers, 7 ~0 we scan the parameter space up to A = 1.4 to
see the relative stability among possible solutions.

In Fig. 1, we show a set of vectors which spec-
ify the tubules on the honeycomb lattice. The lattice
points in the honeycomb lattice are labeled by the vector
(m, n) = ma+ nb, where a and b are the unit vectors.
Any structures of tubules can be produced by connect-
ing the two parallel lines which pass (0,0) and (m, n) and
are perpendicular to the vector (m, n) Here. after, we

use this vector (m, n) to specify the tubules. When the
electron-phonon coupling does not exist, i.e., A = 0, the
electronic state of the tubule is classified into metal or
semiconductor depending on the vector. When the ori-
gin of the honeycomb lattice pattern is superposed with
one of the open circles to make a tubule, the metallic
properties will be expected because of the presence of
the Fermi surface. This case corresponds to the vectors
where m —n is a multiple of 3. If the origin is super-
posed with the filled circles, there remains a large gap
of the order of 1 eV. The system will be a semiconduc-
tor. The similar properties regarding the metallic and
semiconducting behaviors have been discussed in several
recent papers.

When there is a nonzero electron-phonon coupling,
several kinds of bond-ordered configurations can be ex-

0,0)' -..

FIG, 1. Possible way of making chiral and achiral tubules.
The open and closed circles indicate the metallic and semicon-
ductoring behaviors of the undimerized system, respectively.
The Kekule structure is superposed on the honeycomb lattice
pattern. The heavy lines indicate the short bonds.

pected. One of them in the two-dimensional graphite
plane is the Kekule structure. The pattern is superposed
with the honeycomb lattice in Fig. 1. The short and
long bonds are indicated by the thick and normal lines,
respectively. This pattern is commensurate with the lat-
tice structure for the tubules when m —n is multiples of 3
in the vector (m, n), because the Kekule structure is the
three sublattice system. Therefore, we expect that the
Kekule structure is one of the candidates for the most
stable solutions. For other tubules, the Kekule pattern
misfits the boundary condition of the tubule due to the
structural origin. In contrast, one-dimensional chainlike
patterns, where trans-polyacetylene chains are connected
by the long bonds in the transverse direction, can be re-
alized for any set of (m, n).

We shall explain our strategy of the investigation.
When the origin (0, 0) is combined with (5, 5), we obtain
an achiral tubule which has a reflection plane. In Ref.
5, this tubule has been named as the "armchair" fiber.
Both the Kekule and chainlike patterns are the candi-
dates for the stationary solutions. Furthermore, when
we make the tubule (6, 4), we cut all the rings of ten car-
bons in tubule (5, 5) and connect the neighboring rings
to each other. The tubule loses the reflection symmetry
and becomes chiral. In this tubule, the Kekule pattern
misfits the structure and the chainlike distortions will be
realized. If we connect next-nearest-neighboring rings,
we obtain the tubule (7, 3). The tubule becomes more
chiral. There will be chainlike patterns. For the tubule
(8,2), both the Kekule and chainlike structures become
possible again. Repeating the above procedure further,
we obtain the achiral "zigzag" fiber at (10,0). We pursue
changes in dimerization patterns and electronic energy
levels, starting from the tubule (5, 5).

III. KEKULE STRUCTURES IN METALLIC
TUBULES

When Kekule structures are commensurate with the
honeycomb lattice pattern, we actually obtain such pat-
terns as one of stationary solutions. These are for the
cases of the tubules (5,5) and (8,2). We mainly report
the results of the tubule (5,5) with brief comments for
the tubule (8,2). The system size N is varied within
300 & N & 600. The periodic boundary condition is
applied for the direction of the tubular axis.

For the tubule (5,5), we consider several dimerization
patterns, which are indicated in Fig. 2. In Figs. 2(a) and
2(b), the lattice patterns are Kekule type. In Fig. 2(b),
the positions of the short and long bonds are reversed
from those in Fig. 2(a). Figure 2(b) contains hexagons,
where all the sides are short bonds. Such short bonds are
not the double bonds of ordinary meaning, so they are
denoted by the dashed lines. Figures 2(c) and 2(d) show
the chainlike patterns. There are several directions of the
chains. For the tubule (5,5), we only consider the direc-
tions of chainlike patterns shown in the figure, because
numerical data for the set of the bond lengths and en-
ergy levels for patterns with the other directions are the
same. There are other possible patterns where the signs
of the bond variables become opposite from those in Figs.
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FIG. 2. Dimerization patterns of the stationary solutions
for the tubule (5,5). Front and back views are shown by the
normal and thin lines, respectively, See the text for notations.

FIG. 3. Total energy per site vs A for the tubule (5,5).
The system size is N = 600. The closed squares are for the
patterns (a), (c), and (d) (the plots are not discernible), while
the open squares are for (b) in Fig. 2.

2(c) and 2(d). We have tried to obtain such kinds of so-
lutions by changing initial bond variables appropriately.
But, we have never obtained them, possibly because the
energy might be much larger or unstable. Thus, we shall
report the results for the patterns depicted in Fig. 2. We
note that the Kekule pattern of Fig. 2(a) has been dis-
cussed in Refs. 3 and 7 but chainlike patterns have not
been considered previously. We have analyzed possible
patterns more extensively.

First, the total energies of the above patterns are
shown against the coupling A in Fig. 3. The number
of carbons is N = 600. The energy decreases almost lin-
early for the strong coupling A 1. The energies of the
patterns (a), (c), and (d) seem to be almost the same.
However, there are differences larger than 1 eU. This is
clearly reBected to values of the energy gap, which will
be discussed in association with Fig. 4. The energy of
pattern (b) is much larger than that of the others. Thus,
the pattern with the reversed alternation of the short and
long bonds is energetically unfavorable.

The energy gap is plotted against A for each pattern in
Fig. 4. Pattern (a) has the widest gap for 0 ( A ( 0.8.
This indicates that the Kekule structure is most stable for
the realistic parameter A 0.2. The other patterns are
the metastable states. When 1.0 ( A ( 1.4, pattern (d)
becomes most stable. The energy gap E~ = 6to = 15.0
eV is realized for all patterns from (a) to (d). This is due
to the fact that the order parameters are extraordinarily
large at the strong coupling.

Hereafter, we shall discuss properties of the system
with A = 0.2. The data for 300 & N & 600 are used
for the analysis. This region of N might yield sufBcient
data for estimation of electronic and lattice structures.
We shall concentrate upon properties of the stable solu-
tions, i.e. , the Kekule structure of Fig. 2(a).

20

10-

0
0.0 0.5 1.0 1.5

FIG. 4. Energy gap vs A for the tubule (5,5) with N =
600. The closed and open squares are for the patterns (a) and
(b), respectively. The closed and open circles are for (c) and
(d).

In Fig. 5, the total energy per site is plotted against
1/N. Data points can be fitted well by the parabola
curve. The extrapolated value to infinite N is —3.9341
eV. This value does not change if we fit data by a third-
or fourth-order polynomial.

Figure 6 shows the energy gap E~ of the tubule (5,5).
The gap varies linearly as a function of 1/N due to the
one-dimensional nature. When N 100, Ez is of the
order of 1 eV. When N 500, it becomes of the order of
0.1 eV. The extrapolated value at N —+ oo is 4.39 x 10
eV. This is apparently lower than room temperature. In
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FIG. 5. The 1/N dependence of the energy per site of the
tubule (5,5).

addition, we should pay attention to the thermal fluctu-
ation of phonons. Thus, we can expect nearly metallic
behaviors even at low temperatures.

Figure 7(a) shows the average of the absolute values of
the bond variables, (~y, ,~ ~). This measures the strength
of dimerizations. The value of Cso is 2.22 x 10 2 A. The
average (~y, z~) decreases linearly as a function of 1/N
due to the one dimensionality. The extrapolated value at
N ~ oo is 7.52 x 10 A. This is more than one order of
magnitude smaller than the observed value in Cso (Ref.
10) and polyacetylene. s s Figure 7(c) displays the 1/N
dependence of the bond variables with the labels of the
bonds in Fig. 7(b). The length difference between the
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FIG. 6. The I/N dependence of the energy gap Ez of the
tubule (5,5).

FIG. 7. The 1/N dependence of the bond variables of the
tubule (5,5). The averaged bond variable (~y, ,~ ~) is shown in
(a). The labels of bonds are shown in (b). (c) shows the
variations of each bond length.
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longest and shortest bonds of Cso is 0.05 A. in the present
Wh N ~ 500 the value becomes about

one-tenth of it. This would be smaller than the maxi-
mum value (about 0.01 A.) of the dimerization strength

bl in experiments. In the narrowest tu u es ac-
tually present, the maximum length is about 1000 imes
h f th t bule diameter. i Such tubules can be re-

of thegarded as infinitely long. The extrapolated value o
d'ff ' 2 64 x 10 3 A.. It has been discussed

that the widths of the fluctuations of the bond lengt s
f10 2A incon-areo simif 'milar magnitudes (of the order o i

3 ii The large'u ated polymers, graphite plane, and Cso.
Quctuations would make the observation o pi n of the attern
difflcult. ven oug. E th h the pattern could not be observed

rvive ther-1 the Kekule-type fluctuations might survive t er-direct y, e e
le the correla-mal fluctuations if we look at, for examp e,

f ctions among lengths of diferent bonds.tion unc ions am
We have also calculated the tubu e ~, ~&. e

obtaine t e e u ed h K k l' structure as the most stable solution
The energy gap Zg and the magnitudes o eagain. e en

bond variables are not so much difFerent fromm those of
the tubule (5,5), quantitatively. The number of carbons

ed around the axis is ten for both tubules. Thisarrange aroun e
ro erties ared' t th t the electronic and lattice prop

mainly determined by the diameter of tubu es. ey
not sensitive y epen on1 d d on whether the tubule is chiral or

7In the previous paper, we have looked alooked at the variation
of electronic anl

'
and lattice structures from C6O an C70 to

ns havefinitel long tubule (5,5). Ten more carbons ave
been inserted successively for the systematic 'g-investi a-
tion of changes in Cso, Cro, so,C C and so on. The lin-

1/N de endence is similarly found in the data oear ~' epen
the Kekuled th b nd variables. We have conclude

e atticepattern with small dimerization strengths in the lat '

structure, too.
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epo
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'
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variable. This also saturates at N 500. The va ue
at N —+ oo is a oub t 1 1 x 10 3 A. The dimerization
strength is c ose o a1 t th t in the nearly metallic tubules.

FIG. 9. The I/1V dependence of the energy per site of the
tubule (6,4).

IV. CHAINLIKE DISTORTIONS
IN SEMICONDUCTING TUBULES 1.09O

In this section, we discuss the tubules, ~ . ~~6 4~ and ~7,33.
In these tubules, the Kekule pattern is automatically ex-

d to the boundary condition. We ave ob-
et lened onl the solutions where the trans-polyace y ene

chains are arranged along almost the tubu ar
lutions where c ains are o '

h h
' e oriented in other directions are

not o taine . eb ' d The pattern in the tubule (6,4) is shown
r = 0.2.in Fig. 8. Numerical data are reported for
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FIG. 8. The dimerization pattern of the stationary solu-
tion for the tubule (6,4).

FIG. 10. The 1/1V dependence of the energy gap Eg of
the tubule (6,4).
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This does not depend on whether there is a gap or not
when A = O. The strength would be determined mainly
by the number of carbons which lie perpendicular to the
tubule axis. It is ten for all the tubules calculated in
this paper. In Fig. 11(b), we show the bond variables
against I/N. The label of each bond is shown in Fig.
8. The strength of the dimerization is very small: the
length difference between the shortest and the longest
bonds is about 0.003 A.. This value is of the magnitude
similar to that found in Fig. 7(c). The shortest and
longest bonds alternate parallel to the tubular axis. The
bond order is the strongest in this direction along the
"trans-polyacetylene" chains. This would reflect the one
dimensionality.

For the tubule (7,3), we have obtained the same kind
of solutions as the stable solution. The bond alternation
pattern is chainlike. The energy gap and the strength of
the dimerization do not change so much from those in
Figs. 10 and 11.
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V. CONCLUDING REMARKS

We have investigated the tubules where ten carbons
are arranged in the direction perpendicular to the tubu-
lar axis. We have obtained the similar strength of dimer-
izations for the Kekule structure and the chainlike distor-
tion. The Kekule pattern is the most stable for the metal-
lic tubules, while the chainlike pattern is realized for the
semiconducting tubules. The strength of the dimeriza-
tions is about one order smaller than the experimentally
accessible magnitude. Therefore, it would be dificult to
observe directly the bond alternation patterns in the very
long tubules. However, the fluctuations of the phonons
from the classical values might show some correlations
which reflect the Kekule or chainlike patterns.

We have estimated the properties of infinitely long
tubules by the finite-size-scaling method. Certainly,
there would be numerical errors in the extrapolated val-
ues. Calculations using the wave-number space would re-
sult in more accurate magnitudes. However, the present
calculations should be valid enough to estimate the over-
all magnitudes of the energy gap and the dimerization
strength.
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