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We present an efficient technique for calculating surface properties of random alloys based on the
coherent-potential approximation within a tight-binding linear-muffin-tin-orbitals basis. The tech-
nique has been applied in the calculation of bulk thermodynamic properties as well as (001) surface
energies and work functions for three fcc-based alloys (Cu-Ni, Ag-Pd, and Au-Pt) over the complete
concentration range. The calculated mixing enthalpies for the Ag-Pd and Au-Pt systems agrees
with experimental values, and the calculated concentration dependence of the lattice parameters
agrees with experiment for all three systems. We And that the calculated surface energies and work
functions in the unsegregated case exhibit a small positive deviation from a linear concentration
dependence. Finally, we performed a segregation analysis based on the calculated surface energies
by means of a simple thermodynamic model and found in complete agreement with experiment that
the noble metals segregate strongly towards the surface of their alloys.

I. INTRODUCTION

The properties of solid surfaces are of considerable sci-
entific interest because they play an important role in
such phenomena as catalysis, chemisorbtion, and cor-
rosion. Recently there has been significant progress
in ab initio calculations of the electronic structure of
surfaces of ordered materials using a Green's-function
technique. 5 It appears that one may calculate surface-
related properties such as surface tension and work func-
tion with a high degree of accuracy. In this context,
random metallic alloys represent a large class of techno-
logically important materials, the surface properties of
which have only been investigated in a few cases.

One of the most common approximations for treat-
ing disordered alloys is the coherent-potential approxi-
mation (CPA), s 7 which is based on the assumption that
the initial alloy may be replaced by an ordered effective
medium, the parameters of which must be determined
self-consistently. This approximation is extensively used
in bulk electronic-structure calculations for random al-
loys, although such calculations are rather time consum-
ing. When a two-dimensional defect such as a surface
or an interface is introduced, the efFective medium loses
some of its translation invariance and the numerical prob-
lems increase considerably. Hence there are at present
only a limited number of surface calculations for disor-
dered materials based on the CPA.

Here we present an efIicient technique for cal-
culating surface properties of random alloys based
on the coherent-potential approximation in a tight-
binding linear-muffin-tin-orbitals (LMTO) basis within
the atomic sphere approximation (ASA). It allows us to

solve the electronic-structure problem for bulk as well
as for the surface from first principles within a single
scheme. Furthermore, the one-electron equations are
solved self-consistently, and hence it is possible to deter-
mine a number of important thermodynamic properties
for the systems under consideration.

We apply our technique to three fcc-based random al-
loys Cu-Ni, Ag-Pd, and Au-Pt, which have been consid-
ered as heterogeneous catalysist. Previously, Kudrnovsky
et al. considered the electronic structure of the (100)
surface of random Ag-Pd alloyss and presented a self-
consistent calculation of a random Ag-Pd overlayer on
a Ag (100) substrate. Here we present ab initio calcu-
lations of lattice parameters, mixing enthalpies, surface
energies, and work functions for three alloy systems over
the complete concentration range and we use the sur-
face energies calculated for the unsegregated surfaces in
conjunction with a simple thermodynamic model to per-
form segregation analyses for the (100) surface of Cu-Ni,
Ag-Pd, and Au-Pt alloys.

II. LMTO-CPA METHOD FOR BULK

A. KKR-ASA Green's function

The one-electron Green's function may be regarded as
the key quantity in the calculation of electronic and ther-
modynamic properties of solids. Within the ASA it is
most conveniently represented by the Green's-function
matrix g defined by the KKR-ASA equation

[P (z) —S™(k)]g(k, z) = l.
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Here z is a complex energy, P and S are LMTO potential
functions and structure constants matrices, respectively,
and the superscript ct denotes the LMTO representation
to be used. The structure constants matrix S is con-
nected to the conventional LMTO structure constants
matrix S by the Dyson equation

~0 co ~A~R'L', RL ~R'L', RL + g ~R'L', RIILI/+t" ~RIIL",RL &

RI/ LII

where B denotes lattice sites, L is the combined angular-
momentum quantum numbers (I,, m), and a is a diagonal
screening matrix. The potential function may be param-
eterized in the form

C~ —z

%'Rl —Z)(&Ri —&l) + &'Ri

by means of the center C, bandwidth 4, and 7 poten-
tial parameters obtained from the solution of the radial
Schrodinger equation for an element j at an arbitrary
energy E„ in the energy range of interest.

B. LMTO-CPA formalism

The basic idea behind the CPA is the replacement of
the initial random alloy by an ordered lattice of effective
scatterers. In the single-site approximation the proper-
ties of these efFective atoms have to be determined self-
consistently by the condition that the scattering of elec-
trons off' real atoms embedded in the effective medium
vanish on the average. For a disordered binary alloy
A,Bi, this condition may be written as

Green's function for a single impurity in the ideal eKec-
tive lattice, i.e. ,

"( ) = ([ ( )] '+P" ( ) —P ( )) '. (6)

As a result, one may calculate the moments of the state
density mg~L~L„ for the A and B atoms as the contour
integral

and the valence charge density n~&" (r) in the correspond-
ing atomic spheres as the one-center expansion

~R(&) = ( &) ').([6i(&)]'m'RLL

+ ~~Rl ( )~Rl (r)] RLL

+[4', ( )4', ( )

+~Rl(&)&RL( )] RLL&

Here the contour must enclose the occupied valence states
and P, P, and P denote the partial wave and its first and
second energy derivatives, respectively, evaluated at the
energy E„Rl. The Hamiltonian Green's function G which
enter the contour intgral (7) is found by the transforma-
tion

z —V~ z —V~ z —U~ '

where the representation-dependent potential parame-
ters U~ and I'~ are

~ I /I ] I I/

mRLiLii = . dZ(Z EvR—l') GRLi RLii(Z)(Z EvR—l")
27t i

(7)

gRL, RL (Z) = (V») dk([P (z) —S (k)] )RL RLr,

(4)

/ex (~- ~)' (1O)

PR(z) = cPR (z) + (1 —c)PR (z)

+[P "(z) —P (z)]~ (z)[P (z) —P (z)]
(5)

in the single-site approximation and within a tight-
binding LMTO basis. is In (4) and (5) the tilde refers
to the effective scatterer and VBz is the volume of the
Brillouin zone.

If the two coupled CPA equations (4) and (5) are solved
self-consistently, one may obtain the Green's-function
matrices g~/ for the alloy components j = A, B as the

I

Knowing the charge density of the alloy components
one may calculate new component potential functions,
repeat the CPA self-consistency loop (4) and (5), and ob-
tain new charge densities. When eventually the CPA and
the charge self-consistency loops are satisfied simultane-
ously, one may calculate the total energy of the random
alloy E~ i ~. In the framework of the single-site CPA this
may be written as7

E~~~
~ = cE + (1 —c)E +EM,

where the components energies E~= ' within the frozen-
core and local-density approximations have the form

) ) (E RlmRLL ™RLL)
R L 4vr

d r n'R(r)VR(r)

) 1

+)
v'4vr

2Z 1d'r n'„"(r) "+ ) ,
d r n~R(r)e„, [n~R(r)] —)

47r
dsr n'R (r)e„,[n'R (r)].

d r nR" (r) [ V&"R(r) + V&'R(r)]-. .
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TABLE I. Valence charge in the atomic spheres of the
components for bulk and for surface layer in Cu-Ni, Ag-Pd,
and Au-Pt alloys.

Alloy Element Valence charge (electrons)
Surface layer Bulk

CU5pN15p

Ag5pPd5p

Au5pPt5p

Cu
Ni

Ag
Pd
Au
Pt

10.71
9.71

10.72
9.78

10.70
9.71

11.00
10.00
10.97
10.03
10.99
10.01

In (12) the R summation for the bulk case runs over
the site B = 0 only, m and m are moments of the
state density, nR ——nR+ nR is the spherically symmetric
charge density inside each atomic sphere at R separated
into valence v and core c contributions, Z~ is the atomic
number, Vt-.R is the electrostatic potential, VR is the ef-
fective one-electron potential, and e„, is the exchange-
correlation energy density.

In most CPA calculations the Madelung energy contri-
bution EM to (11) is calculated from the average charge
transfer Q

when charge self-consistency has been obtained by means
of an approximate state density or Green's function is the
complete electronic structure recalculated.

In LMTO-CPA calculations the effective-medium
Green's function at the (i + 1)th iteration is related to
the one at the ith iteration by the Dyson equation

—(i+1) -i -i(p(i+1) pig - (i+1)
) (15)

which must be solved for each energy on the complex
contour and for each k point in the Brilouin zone or for
an infinite cluster in real space. However, if the difFerence
in potential function is small, i.e. ,

aP = P&'+'& —P* «1 (16)

one need only solve (15) for a single-site cluster in real
space. In this case charge self-consistency may be ob-
tained on the basis of a CPA self-consistency loop formed
by the approximate but much more efficient equations (5)
and (15), which, including st states, only involves ma-
trices of size 9 x 9.

In most cases the condition (16) is satisfied simply be-
cause the mixing parameter x used to construct the input
charge density for iteration i + 1

Q = cQ + (1 —c)Q~,

where Q~ is the net charge in the atomic sphere. Owing
to the charge neutrality condition cQ = —(1 —c)Q
(1S) results in zero average charge transfer and hence
the Madelung energy vanishes, i.e. ,

(14)

This choice of Madelung energy based on the average
charge transfer (1S) is not always a good approximation
and instead one may calculate the average Madelung
energy. is However, for the systems considered in the
present work, the component charge transfer is practi-
cally zero (Table I) and hence (14) is a good approxima-
tion.

C. EfFective procedure for the charge self-consistency

The main problem of all the CPA-based methods is
the large amount of numerical calculations that has to be
carried out to solve the coupled CPA equations (4) and
(5). In the past one has developed effective algorithms
for this purpose (see, for example, Ref. 16), but the prob-
lem reappears when charge self-consistency is included.
In this case one may have to perform approximately 100
iterations each of which requires the time-consuming cal-
culation of the integral (4).

In conventional LMTO calculations the number of
time-consuming band iterations is greatly reduced by the
LMTO scaling principle. For surface calculations one
may introduce a similar technique based on the solution
of the linearized Dyson equation, which reduces the num-
ber of times the complete Dyson equation must be solved
by one order of magnitude. 5 The principle is that only

III. THE SURFACE-LMTO-CPA METHOD

A. The surface Korringa-Kohn-Rosioker
ASA Green's function

The system of coupled CPA equations (4) and (5) writ-
ten for a disordered bulk crystal may be reformulated to
treat the case of a surface of a disordered alloy, i.e. ,

g~A(z) = (A»z) dk(( g~~ (k(( ) z) )

BZ

from the output n „t and input n;„charge densities of
the current iteration i typically is of the order of a few
percent, i.e., 2: « 1. Hence the diff'erence in input charge
density bn = n;„' —n,'-„&& 1 and as a rule the difference
in the coherent potential function bP will also be small.
The only exception may occur when one of the poten-
tial functions has a pole in the energy range of interest
because in that case even small changes in the electron
density may lead to a large change in potential function
difference. However, owing to the complex contour in-
tegration technique the effect will only be appreciable if
the pole occurs close to the Fermi level and in that case it
may be moved out of the energy range by a shift of repre-
sentation. It follows that, by a judicious ehoiee of mixing
parameter x and I MTO representation a, the condition
(16) may always be satisfied and thereby lead to an ef-
ficient two-step self-consistency procedure analogous to
those used in standard LMTO bulk calculations and in
the LMTO Green's-function technique.
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~.'( ) = "~.'"( )+(1-")P."( )

+[PA "(z) —PA (&)]L A(z)

x [&' (z) —P'(z)]

where A is a layer index, AsBz is the area of the two-
dimensional (2D) Brilouin zone, cA is the concentration of
the alloy component A in the A layer, and P denotes the
most localized, tight-binding LMTO representation, i
which is used in the calculation of the surface Green's
function.

The 2D Green's-function matrices gAA(k~~, z), which
enter the integral (18), may be obtained in a number
of ways. For instance, Kudrnovsky, Weinberger, and
Drchals applied a system of recurrent equations with ap-
propriate boundary conditions to obtain a self-consistent
surface Green's function. In the present work we pre-
fer to use the technique implemented by Skriver and
Rosengaard4 based on the Dyson equation

(I+ g~"
(klan z) [P~(z) —P~" (z)])g~(k~~ )

(k~~, z), (20)

which gives the coherent surface Green's-function matrix
in terms of the Green's function g~ and potential func-
tion P~" matrices of the unrelaxed semi-infinite crystal.

The complete procedure may be described as follows.
First, we solve the bulk CPA problem including charge
self-consistency. Then we construct the so-called ideal
Green's function for the semi-infinite disordered crys-
tal by means of the principal layer technique first im-
plemented by Wenzien et at. is and recently applied in
the calculation of stacking fault energies by Rosengaard
and Skriver. 9 Next, we join this ideal Green's function
and the analogous Green's function for a semi-infinite
vacuum to form the unrelaxed surface Green's function
g~". Finally, we iterate the system of CPA equations
(18)—(20) and the charge self-consistency loop (6)—(8) to
completion by means of the efficient two-step procedure
described in Sec. II.

S is the atomic sphere radius, and Q is the average L
decomposed charge transfer for the alloy atoms at the
layer A

QA = cAQA + (1 —cA)QA (23)

v'4m r
dr Yz(r)' (

—) nA(r) —Zzd~, , (24)

obtained from the total nonspherical charge density
n~&(r) inside the atomic sphere of A or B at the layer A.
In the present implementation we include only L = s, p
in the multipole expansion and the dipole potential bar-
rier has two contributions, one from the monopoles, i.e. ,
the net charges in the spheres, and one from the dipole
charges in the spheres. These contributions are of the
same order of magnitude but have opposite signs, and it
is only when they are combined in the self-consistency
procedure that one obtains an accurate estimate of the
dipole barrier.

The total energy of the disordered surface may be ob-
tained from (11) and (12) if R is substituted by A and
the Madelung energy

Z = ) Q;M,",,'Q,",
AI, A'I '

(25)

C. Integration technique

calculated from the average mono- and dipole moments.
For the three alloy systems considered here the moments

QA and QA are found to be approximately equal to
the average charge transfer over the the whole concen-
tration range (see Table I, where the charge transfer for
the components of alloys at the equiatomic concentra-
tion are presented as an example). Thus the Madelung
energy (25) based on the approximation (23) may safely
be used.

B. The Madelung potential and energy

The electrostatic part of the one-electron potential in
the spheres may be written in the one-center form

V(:(r) = ).Vc;R(rR)&r. (rR),
RL

(21)

i.e. , as an atom-centered cubic-harmonic expansion. In
the ASA we use only the spherically symmetric, i.e. , L =
s, part of the potential, and hence the potential in the
atomic sphere at A in the two-dimensional unit cell is
approximated by

g (z) = (VBz) dk ) U(T) [P~(z) —S~(k)]

Since the ofF-diagonal elements of the Green's-function
matrix may not in general be left invariant under the op-
erations of the crystallographic point group, an efBcient
evaluation of the Brillouin-zone integrals, (4) and (18),
requires the knowledge of the matrices U(T) representing
the transformations of the lattice harmonics Y under the
point group operations T. In the bulk case the procedure
is well knowns zo and (4) may be rewritten as

x U(T) (26)
V~,A(r ) = V~, , (rA)Y,'+ —) M', Q, .

A' L'
(22)

Here the intrasphere contribution is obtained by numer-
ical integration of the radial Poisson equation, M de-
notes the multipole (Madelung) matrices given in Ref. 4,

where the integration runs over the usual irreducible part
of the Brillouin zone (IBZ). For cubic crystals, t~~„& 2,
and in the basis of the cubic harmonic, as can easily be
shown using the orthogonality relations, (26) may even
be simplified further
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gqq, (z) = gaq, (z)6-P P

NI-

dk ) gg„,p„(k, z),
IBZ.. .(k, ) = &[P'() -S'(k)j-'&-,

(z) =(& ) (27)

Here A denotes the irreducible representation of the cubic
group (I'i, I',I, and I' ), Nr is the dimension of
the corresponding representation, p, refers to the index
within the representation, and l, m belong to the same
representation as A, p, .

The integration over the surface Brillouin zone (18) is
less simple to perform because of the loss of symmetry.
In this case we have to use the expression, analogous to
(26) directly

g&&(z) = (AsBz) dkii ) U(T) gAA(kii, z)
BZ

x U(T)-', (28)

D. Details of calculation

The bulk calculations for the pure elements were per-
formed by means of the tight-binding LMTO method
within the nearly orthogonal representation and all
surface calculations were performed by means of the
tight-binding LMTO Green's-function technique4 in the
most localized representation employing 8, p, and d
orbitals only. The complex integrals (8) were evalu-
ated on a semicircular contour by means of 20 energy

where the integration runs over the irreducible part of
the surface Brillouin zone (ISBZ) and the T summation
runs over those symmetry elements which belong both to
the surface and the bulk.

To perform the bulk Brillouin-zone integration (27) we
have used the uniform A: mesh, which makes it possi-
ble to calculate the coherent Green's function (4) and
solve the CPA equation (5) simultaneously, and which
is therefore very fast and efficient x3, x5, s6,2s The conver-
gence of the scheme depends on the absolute number of A:

points rather than on their density, and we find that 500
k points in the irreducible part of the fcc Brillouin zone
are usually sufficient to yield accurate bulk thermody-
namic properties. Compared to any other CPA scheme,
where a similar number of k points are used, the uni-
form k mesh is much more efficient because it takes
only one iteration to solve the CPA equations (4) and
(5) self-consistently.

On the other hand, if we want to use the uniform k
mesh in surface calculations, it would again be necessary
to use approximately 500 k points, and the method would
be much less efficient. Hence, in this case we have per-
formed the integration (28) by means of the special points
technique using 36 k points in the irreducible part of
the fcc 001 surface Brillouin zone. The maximal number
of iteration for the system of equations (18)—(20) turned
out to be 5, and to obtain comparable convergence of
bulk and surface calculations the number k points in the
evaluation of (27) was increased to 1500.

points distributed so as to increase the sampling near
the Fermi level. Exchange and correlation were included
within the local-density approximation using the Perdew-
Zunger parametrization of the many-body calculations
of Ceperley and Alder. z4 The surface region of the alloy
treated self-consistently consisted of four layers of atom-
filled spheres and two layers of vacuum spheres. Charge
neutrality was maintained by placing the extra charge of
the surface region in a fifth layer in the alloy region. The
extra charge converged to approximately 0.0001 electrons
and could safely be neglected in the calculation of the to-
tal energy.

IV. RESULTS AND DISCUSSION

In the following we shall present calculated equilibrium
lattice spacings, mixing enthalpies, surface energies, and
work functions for three fcc-based random alloys. In ad-
dition we present a segregation analysis for (100) surfaces
of Cu-Ni, Ag-Pd, and Au-Pt based on the calculated sur-
face energies obtained over the complete concentration
range,

A. Bulk thermodynamic properties

The lattice parameters obtained by the bulk LMTO-
CPA technique described in See. II and calculated as
functions of alloy concentration are shown in Fig. 1. To
bring out the concentration dependence and to facilitate
the comparison with experimental values we have in
each case subtracted the calculated or experimental lat-
tice spacing of the pure transition metal, i.e. , Ni, Pd, or
Pt. Therefore the deviation at 100Fo concentration is a
measure of the error in the calculated lattice spacing of
the pure metals.

From Fig. 1 it may be seen that the LMTO-CPA calcu-
lations give a correct description of the essentially linear
concentration dependence found experimentally. Such a
linear behavior is expected if the lattice mismatch be-
tween the alloy components and if the chemical shift as
expressed by the charge transfer from the noble to the
transition metal are small. Since both the lattice mis-
match (see Fig. 1) and the charge transfer (see Table I)
attain their largest values in the Ag-Pd system, it is quite
satisfactory that the calculation predict a small negative
deviation from the linear behavior in complete agreement
with the experimental variation in this system.

The maximum deviation between the calculated and
the measured lattice spacings is approximately 3%, which
is the usual error in local-density calculations. Here one
should note that the values for the pure metals are ob-
tained by the LMTO method not including the effect of
disorder. The fact that the disordered alloy calculations
extrapolate exactly to the pure lattice spacing at either
end of the concentration range means that the CPA does
not introduce additional methodical errors.

In Fig. 2 we present the calculated mixing enthalpies
for the three alloy systems under consideration and com-
pare them with experimental data. ' 7 It may be seen
that the LMTO-CPA calculations give a correct descrip-
tion of the concentration dependence found experimen-
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tally. This includes the prediction of the asymmetry in
the mixing enthalpy with respect to the equiatomic con-
centration. Thus the mixing enthalpy of the transition
metals rich alloys are larger then those of the correspond-
ing noble-metal-rich alloys.

The mixing enthalpy of disordered Ag-Pd alloys is
found to be negative over the whole concentration range.
This is a manifestation of the short-range order which
is known to exist in Ag-Pd alloys2s and which makes
the alloy components tend to surrounded themselves with
unlike atoms. The single-site CPA correspond to a com-
pletely disordered alloy and does not include the effect
of short-range order. It is therefore to be expected that
the calculated mixing enthalpy of Ag-Pd alloys is higher

TABLE II. Impurities solution energies in Cu-Ni system.

Impurity Impurity solution energy, (eV)
Calc. values

This work KKR-GF
Exp. '

Ni in Cu
Cu in Ni

-0.06
0.07

-0.08
0.20

0.04
0.12

Reference 30.
Recalculated from the mi~ing enthalpies of Ref. 26.

than experimental values determined from real alloys
with short-range order. If one includes the effect of short-
range order the agreement between theory and experi-
ment may be improved considerably.

The calculated mixing enthalpy in the Au-Pt system
is positive, in complete agreement with the existence of
a miscibility gap in the phase diagram of these alloys.
This also means that the alloy components tend to be
surrounded by atoms of their own kind. In this case the
experimental mixing enthalpiesa7 have been derived by
an analysis of the miscibility gap under the assumption
of complete disorder. It is therefore perhaps not surpris-
ing that the experimentally derived values are somewhat
higher than the values obtained by the LMTO-CPA cal-
culations.
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FIG. 1. The lattice parameters for the (a) Cu-Ni, (b) Ag-

Pd, and (c) Au-Pt alloys as functions of the noble-metal con-
centration. Calculated results are denoted by circles and ex-
perimental values by squares. The dashed lines represent the
concentration average of the lattice parameters of the alloy
components. To aid the comparison between theory and ex-
periment the lattice constants of the pure transition metals
have been subtracted from the alloy values.

Concentration of noble metal (at. ~/p)

FIG. 2. Mixing enthalpies for the Cu-Ni (squares), Ag-Pd
(circles), and Au-Pt (triangles) alloys as a function of noble-
metal concentration. Pull symbols denote the calculated re-
sults of this work; open symbols denote the experimental data
of Refs. 26 and 2?.
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The mixing enthalpy of the Cu-Ni system is the
smallest of those calculated and is found to change
sign as a function of concentration. This sign change
is in disagrement with experiment, but agrees with
the impurity solution energies calculated for this sys-
tem by the Korringa-Kohn-Rostoker (KKR) Green's-
function technique, as may be seen in Table II. The
mixing enthalpy for the Cu-Ni system obtained by the
Connoly-Williams methods~ and the embedded-atom
method is positive over the whole concentration range
in agreement with experiment. On the other hand,
both calculations ' overestimate the mixing enthalpy
in both the Ag-Pd and the Au-Pt system to the extent
that the enthalpy in Ag-Pd obtained in Ref. 32 is com-
pletely positive, in disagreement with the experimental
data and the Ag-Pd phase diagram. One may therefore
speculate that a similar overestimate in the Cu-Ni system
is the cause of the seemingly good agreement between
experiment and the Connoly-Williams and embedded-
atom-method results.

100

50

E

E

LLI
-50

0 ~

-100 I i I i I i I

20 40 60 80

Bulk Cu concentration (at. %)
100

FIG. 4. The calculated (full squares) deviations from the
linear behavior of the surface energy (b,E,„,q = E,'„",&~—
cP„"~kE,„",

&
—cb„'&kE,„',&) as a function of Cu concentration in

the Cu-Ni system, compared to the experimental one (open
squares) (Ref. 34).

B. Unsegregated surface properties

In Fig. 3 we present the surface energy of fcc 001
surfaces of random Cu-Ni, Ag-Pd, and Au-Pt alloys as
obtained by the LMTO-CPA surface technique described
in Sec. III. The calculations were performed at the theo-
retical lattice parameters presented in Sec. IV A neglect-
ing lattice relaxation and surface segregation, i.e. , the
atomic positions and the alloy concentrations were kept
unchanged at their bulk values up to and including the
surface layer.

It may be seen from Fig. 3 that the calculated surface
energies vary almost linearly with concentration between
the values obtained for the pure elements. The deviation
from the linear behavior may be used as a measure of the
effects of alloying, and judged from the figure these effects
are generally small. The largest effect is found in the
Cu-Ni system and in Fig. 4 we have therefore compared
the calculated deviation from the linear behavior for this

system with the results of measurements of the surface
tension of the liquid alloys. 3

In the comparison with experiment, Fig. 4, one
should note that the measured surface tension includes
an entropy term proportional to the melting tempera-
ture which is commonly subtracted to obtain a surface
energy. ss In order to avoid this procedure we show the
deviation from the linear behavior instead of the sur-
face energy itself, expecting the entropy contribution to
the deviation to be negligible. Furthermore, the calcu-
lated surface energy corresponds to the unsegregated al-
loy while the measured surface tension includes the effect
of segregation even at the elevated temperatures. s4 Ac-
cording to recent model tight-binding CPA calculationsss
one expects the unsegregated alloy to show a positive
deviation from the linear behavior while the segregated
alloy exhibits a negative deviation, in qualitative agree-
ment with the results in Fig. 4. Hence it appears that
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FIG. 3. Calculated surface energy concentration depen-
dences for the (001) surfaces of Cu-Ni (squares), Ag-Pd (cir-
cles), and Au-Pt (triangles) alloys.

FIG. 5. Calculated work-function concentration depen-
dences for the (001) surfaces of Cu-Ni (squares), Ag-Pd (cir-
cles), and Au-Pt (triangles) alloys.
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Fp(cp) = Eg(cA) —TS""'(cA),

where cA is the layer-dependent noble-metal concentra-
tion. Thus the inHuence of the vibrational entropy on
the segregation is negelcted.

(2) The internal energy per atom in layer A depends
on the concentration in this layer only. Hence the inter-
nal energy per atom at the surface of concentration c,
of an alloy may be taken to be the internal energy per
atom at the surface of the unsegregated alloy with bulk
concentration cb equal to c, .

(3) Both the surface and the bulk alloy are completely
disordered so that the configurational entropy term is

FIG. 6. Comparison between the calculated (full squares)
and the experimental (open squares) (Ref. 37) concentrat&on
dependences of the work function AP = P,U ~

—Po„ for Cu-Ni
system (@„"'~= 5.3 eV, @"„n = 4.6 eV). The concentration
average of the pure Cu and pure Ni work functions are denoted
by the dot-dashed line (theory) and dashed line (experiment).
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the LMTO-CPA calculations give a correct description of
the concentration dependence of the surface energies of
the unsegregated Cu-Ni, Ag-Pd, and Au-Pt alloys which
may be used as the basis for a surface segregation analysis
within an appropriate thermodynamic model.

In Fig. 5 we present the calculated work functions of fcc
001 surfaces of random Cu-Ni, Ag-Pd, and Au-Pt alloys.
Again we observe an almost linear variation with con-
centration indicating that the effect of alloying is small.
The calculated change in the work function with concen-
tration for the Cu-Ni system is shown in Fig. 6 together
with experimental results. In this case the measured
work function is plotted as a function of the surface con-
centration and may therefore be compared directly with
the unsegregated values of the corresponding bulk con-
centration. It appears that the change in the work func-
tion with concentration is correctly reproduced by the
calculations.
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C. Surface segregation analysis

The surface segregation in alloys of group VIIIB tran-
sitions metals with the noble metals has been studied
experimentally by Monte-Carlo simulations, as
well as theoretically by a semiempirical scheme, by
a tight-binding Hartree Hamiltonian, 4 or by means of a
model alloy state density. 4s In the present study we shall
use our cb initio layer decomposed surface energies in
conjunction with the thermodynamic model of Brejnak
and Modrak4 to determine the noble-metal concentra-
tion in the surface layer of a disordered alloy.

The basic assumptions of the thermodynamic model
are as follows.

(1) The free energy Fp of the Ath layer of the alloy is
the sum of the internal energy EA per atom in this layer
and the configurational entropy term 8' "
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Bulk concentration of noble metal (at. %)

FIG. 7. Calculated concentrations of the noble metals at
the (001) surfaces of Cu-Ni, Ag-Pd, and Au-Pt alloys as a
function of bulk noble-metal concentration. The results for
the different temperatures (500 K, circles; 700 K, squares;
and 900 K, triangles) are presented. Full lines indicate the
case of the unsegregated alloys.
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given by the expression

S' "'(c~) = —k~ [c~ ln(cA) + (1 —cA) ln(1 —c~)], (30)

which neglects short-range-order effects.
(4) The only layer afFected by the presence of the sur-

face is the surface layer itself, which mean that we are
not able to obtain a surface concentration profile.

With these assumptions the equation governing the
surface concentration has the form4

BEb(c)
Bc

BE,(c)
Bc C=Cg

+ kriTln = 0,
cb(1 —cb)

Cs 1 —Cs

(31)
where indices 6 and s refer to an atom in the bulk or at the
surface, respectively. To solve (31) we have approximated
the calculated concentration dependences of the internal
energies Eb and E, by second-order polynomials obtained
by least-squares Bt.

The noble-metal concentration at the surface layer in
disordered Ni-Cu, Ag-Pd, and Au-Pt alloys obtained by
(31) as a function of the noble-metal concentration in
the bulk is presented in Fig. 7. It may be seen that
the noble metals in all cases exhibit a strong tendency
to segregate and that the surface excess decreases with
increasing temperature due to the entropy term. The
segregation is governed by the differences in the surface
energies of the pure constituents because by migrating
to the surface the noble metals will lower the surface
energy of the alloy. As a result, the strongest segregation
is found in the Au-Pt system where the surface energy
difference between the constituents is the largest within
the three systems treated, and this means that gold will
cover the surface of its alloys even at low concentration
and at high temperatures. Our results for the surface
segregation agree with both experimental data and
with Monte Carlo simulations.

ground-state properties of random substitutional alloys
and their surfaces. The ground state is found within
the local-density approximation, and the coherent-
potential technique is based on the linear-muffin-tin-
orbitals method in the atomic sphere approximation and
the tight-binding representation.

The method is applied in ab initio calculations of bulk
and surface properties of three fcc-based alloys Cu-Ni,
Ag-Pd, and Au-Pt. The calculated concentration depen-
dence of the lattice parameters agree with experiment
with a maximum deviation. between theory and experi-
ment of 3'. The theoretical mixing enthalpies for the
Ag-Pd and the Au-Pt alloys are negative and positive,
respectively, and agree with experimental data over the
whole concentration range. In the Cu-Ni system the cal-
culated mixing enthalpy changes sign as a function of
concentration being slightly negative at high Cu concen-
trations. This is in contrast to the experimentally de-
rived enthalpy which is positive for all concentrations but
agrees with recent KKR Green's-function calculations.

The calculated work functions and surface energies for
the 00j. surface of the random alloys exhibit an almost-
linear variation with concentration. In the Cu-Ni system
the work function is found to have a positive deviation
from the linear behavior in agreement with experiment.
It is furthermore shown that the calculated surface en-
ergy may agree with experiment if the effect of surface
segregation is taken into account.

The concentration of the noble metals at the fcc 001
surface of Cu-Ni, Ag-Pd, and Au-Pt alloys is calculated
from the unsegregated surface energies within a simple
thermodynamic model. It is found that the noble metals
segregate towards the surfaces of their alloys for all bulk
concentration. The segregation is found to be particu-
larly strong in the Au-Pt system and this means that Au
will completely cover the surface of its alloys.
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