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An efficient self-consistent Green s-function technique using a generalization of the coherent-
potential approximation method is presented in order to describe the electronic structure of inhomo-
geneous semi-infinite alloys with varying concentration profiles at the surface within the local-density
approximation. The formalism is applied to the study of the electronic properties of the (001) surface
of Cu& Ni fcc random alloys.

I. INTRODUCTION

Surfaces of bulk alloys are of great interest from both
the theoretical and technological points of view, since
many of them segregate in the near-surface region. Seg-
regation plays an important role in catalysis, chemisorp-
tion, crystal growth, etc. An understanding of these
surface phenomena requires a precise knowledge of the
surface composition. Much experimental evidence has
been provided by Auger-electron spectroscopy and ion-
scattering spectroscopy. Theoretically, up to now, mostly
phenomenological theories have been used. i s An effi-
cient way to solve the problem of segregation is the use
of the Monte Carlo method for a surface Ising model. s

Recently, a first-principles formulation for the param-
eters in the Ising model for surface-related problems
was presented and successfully used to study the CuPd
surface-alloy formation on the (001) surface of Cu, ~ but
also for a Monte Carlo study of the surface segregation
in Cui Ni (001) alloys.

A realistic description of the underlying electronic
structure of such systems requires (i) the use of semi-
infinite geometry, (ii) a self-consistent determination of
the potentials and the charge densities of the alloy
components in the various layers within the density-
functional formalism, (iii) a proper self-consistent de-

scription of the vacuum-solid interface or the dipole bar-
rier in order to obtain reasonable estimates for the po-
sitions of surface states, work functions, etc. , and (iv)
a generalization of the coherent-potential approximation
(CPA) in order to treat strongly inhomogeneous sys-
tems. Only by means of a realistic description of the
electronic structure of alloys with varying concentration
profiles near the surface can the problem of segregation
be addressed in an adequate manner. In the present pa-
per the self-consistent Green's-function method, based
on the local-density approximation (LDA), developed for
random overlayers is extended to the case of surfaces of
random alloys with varying concentration profile near the
surface. The non-self-consistent version of this approach
was presented recently. Both papers are in close rela-
tion to the formalism of effective multisite interactions
for semi-infinite systems. In the following, detailed ref-
erence is made to Refs. 6 and 10, which in turn will be
referred to as I and II.

II. FORMALISM

The approach uses the all-electron tight-binding linear-
muffin-tin-orbital (TB-LMTO) method, ii which takes
advantage of the short-range character of intralayer and
interlayer interactions to evaluate the surface Green's
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function needed for a proper description of the electronic
structure of semi-infinite random alloys. In the following
it is assumed that from a certain layer on the electronic
properties of all subsequent layers are those of the corre-
sponding infinite system, which is either a homogeneous
bulk alloy or the vacuum. The vacuum region is described
by so-called empty spheres characterized by flat poten-
tials representing the continuation of the semi-infinite lat-
tice into the vacuum region. The whole system is there-
fore considered to be divided into three regions, namely
(i) a homogeneous bulk alloy, (ii) a (homogeneous) vac-
uum, and (iii) an intermediate region consisting of several
(M) atomic layers, where all chemical and electronic in-
homogeneities are concentrated, and a few empty layers
on top of the surface. Only potentials in the interme-
diate region are determined self-consistently while those
for the homogeneous bulk alloy or vacuum are equal to
the self-consistent potentials for the corresponding infi-

nite systems (apart from the shift of the vacuum flat
potential due to the electrostatic dipole barrier).

According to Eqs. (1) and (2) of I, the configurationally
averaged Green's function is given by

y(z) = ([P(z) —S] ) = [P(z) —9]

where S is the screened structure constant matrix
and P(z) is the layer-dependent, site-diagonal coherent-
potential function matrix, which due to the semi-infinite
geometry refers in each particular layer p randomly to
the corresponding potential function matrices of com-
ponents A and B, P~+(z) and P„(z), respectively. By
neglecting relaxations of the top layers, the ideal bulk
interlayer distances can be assumed throughout all three
above-mentioned regions, and the screened bulk struc-
ture constants can be used. In these three regions, P(z)
is of the following form:

'
P„"(z) = P"(z) for vacuum region

P(z) = & P„(z), p = 1, 2, ..., M in the intermediate region
P„(z) = P (z) for bulk alloy layers,

(2)

where p" (z) and p (z) are determined from charge self-consistent bulk TB-LMTO-CPA calculations. ii The coherent-
potential functions p&(z), p = 1, 2, . . . , M, are found from a set of coupled CPA equations [see Eqs. (3) of I] for the
layers in the intermediate region

) c„t„(z)= 0,
n=A, B

t„( ) = [P, ( ) —P ( )](I+4' ( ) [P, ( ) —P ( )]) '

where c~ are the layer-dependent concentrations of atom n which are generally diferent from the bulk concentrations
c& . For a particular site R.„in the layer p, the quantities t„(z), n = A, B, are the single-site t matrices of components A
and B, and the quantity C „(z) = g~„~„(z),the key quantity of the present theory, is the site-diagonal configurationally
averaged Green's function [see Eqs. (18)—(21) of II]. The layer- and component-resolved charge densities pg(r), n =
A, B, are then defined by

p„(r) = p„"""(~)+ ).
L,L'

EF
ypL(r, E) ——Im Fp LL (E + i0) y„L,(r, E) dE, (4)

where the y~L(r, E) = R~&(r, E) YL(r) are partial waves, EF is the bulk alloy Fermi energy, and p
"o"(r) is the

spherically symmetric core charge density. According to Eq. (30) of II, the matrix elements of the conditionally
averaged Green's function Fg (z) are given by

Fz, LL (z) = dP„L(z)
dz ((P;(z) —Pu(z) —[C'~(z)] ') ')LL

dP„L, (z)

The radial amplitudes R™&(r,E) are regular solutions of
the radial Schrodinger equation. They are normalized
to unity within a given atomic sphere (atomic-sphere ap-
proximation), and correspond to the spherically symmet-
ric potentials

2Z
Vi (r) = — +V„[pi (r)]+V„"'[pi (r)]+V„

where

VMsd ) ) Ms' L

L q

"~2l+1C

a=A, B
i' YL(r) pp(r) dr

and Z is the atomic number of a component o,
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A, B . The first three terms in Eq. (6) represent the
Coulomb potential of a point nucleus, the Hartree and
the exchange-correlation terms, respectively, correspond-
ing to the spherically symmetric part p~ r of the charge
density p„(r). The last term in Eq. (6 is the Madelung
contribution for the pth layer as defined in terms of gener-
alized intralayer and interlayer Madelung constants M„'~
(see Appendix). The quantity Q~ is the configurationally
averaged multipole moment of the nonspherical charge
density pg(r) in the pth layer. Presently not only the
monopole term from the net charges (q„= Q„'=0) but
also the contributions from the dipole moments (d„=
~3 Q„'=i =o) corresponding to a polar vector r per"pen-

dicular to the surface, are included. The Madelung po-
tential can be viewed as a spherically averaged poten-
tial field in a particular sphere generated by monopoles
and dipoles at all other sites. Similarly, the electro-
static dipole barrier has contributions both from the net
charges and from the dipole moments.

III. NUMERICAL RESULTS AND DISCUSSION

The above formalism is applied here to the case of the
(001) surface of Cui ~Ni~ fcc random alloys for uniform
and nonuniform concentration profiles near the surface.
In the present calculations the intermediate region con-
sists of three atomic layers of the random alloy plus two
layers of empty spheres. In this region the potentials
are varied until in two consecutive iterations the maxi-
mum difference of all potentials under consideration was
less than 0.005 Ry. The charge density of core electrons
p~"~"(r) is recalculated in each LDA step instead of ap-
plying the usual frozen-core approximation. This, of
course, is of little importance for the resulting valence
charge densities, but can be of quite some importance for
core-level shifts or for hyper6ne magnetic 6elds. The lo-
cal exchange functional is that of Ceperley and Alder as
parametrized by Perdew and Zunger. is For the k-space
integration 21 special k~~ points are used in the irre-
ducible (sth) part of the surface Brillouin zone (SBZ) of
the fcc(001) face.

The charge self-consistent bulk TB-LMTO-CPA cal-
culations were actually performed by coupling the ideal
"left" and "right" semi-infinite alloys. The result is, of
course, the infinite bulk alloy. In this way, a maximum
internal consistency for the bulk and the surface calcula-
tions can be obtained. It turned out that charge neutral-
ity in the intermediate region was preserved within an
accuracy of 10 electrons. Typically 0.25 electrons were
found in the Grst empty sphere neighboring the surface.
This charge gives rise to a lowering of the potential at
the vacuum side (imagelike potential).

The results for the layer- and component-resolved den-
sities of states (DOS) for the homogeneous concentration
pro61e are presented in Figs. 1—5. In all cases the cor-
responding bulk DOS's are given for comparison. The
layer DOS's of pure Cu (Fig. 1) and Ni (Fig. 5) show a
characteristic narrowing in the surface layer due to the
reduction of the number of nearest neighbors from 12 in
the bulk to 8 at the surface. The DOS's at the third
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FIG. 1. Layer-resolved densities of states for a clean
Cu(001) surface. The top three layers are denoted by sl,
s2, and s3, respectively. The bulk density of states is given
for comparison. The vertical lines denote the position of the
bulk Fermi level.

layer are already close to the corresponding bulk DOS's.
As a result of charge self-consistency, the center of grav-
ity of the surface DOS is shifted towards higher energies
thus giving rise to a characteristic triangular shape of
the DOS. Similar results were obtained for the related
case of the Ag(001) surface. The Cu and Ni DOS dif-
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FIG. 2. Layer-resolved densities of states for
a Cu75Ni25(001) surface with a homogeneous concentration
profile. The top three layers are denoted by 81, s2, and s3,
respectively. The bulk alloy densities of states are given for
comparison. The total densities of states (full lines), and the
componentlike densities of states for Cu (dashed lines) and
Ni (dotted lines) are shown. The vertical lines denote the
position of the bulk alloy Fermi level.
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the effect of disorder appears only as smearing of the pure
crystal features.

In the following the results for CuMNiso(001) with the
homogeneous concentration profile (Fig. 3) are compared
to those for the inhomogeneous profile (Fig. 6). The in-
homogeneous concentration profile used in the present
calculations (Fig. 6) is based on the Monte Carlo simu-
lations for a surface Ising models at T=800 K.s It should
be noted that such strong Cu segregation at the surface
was observed experimentally and was studied theoreti-
cally using various approaches. i 4 2 2s As one can see in
Fig. 6 the segregation of Cu atoms in the surface layer
strongly influences the electronic structure. The top layer
is essentially a monolayer of Cu atoms. The correspond-
ing total DOS is quite similar to that of pure Cu(001)
and is very different from that for the homogeneous pro-
file. In the segregated case the alloy composition in the
second layer still deviates from the bulk composition, and
non-negligible difFerences from the homogeneous case are
visible, especially for the local Cu and Ni DOS. In the
third layer the differences between the homogeneous and
the inhomogeneous case are negligible. The results in-
dicate the importance of the surface composition for a
proper interpretation of experiments mapping the DOS
in near-surface regions such as, for example, photoemis-
sion or Auger-electron spectroscopy.

The most detailed information on the electronic struc-
ture of disordered surfaces can be obtained from layer-
resolved Bloch spectral functions A„(k~~, E), which are
given by the imaginary part of the k~~- and layer-resolved
configurationally averaged Green's function [see Eq. (26)

-0.75 -0.S5 -0.35 -0. ] S 0.05

Energy (Ry)

FIG. 6. Layer-resolved densities of states for
a CusoNiqo(001) surface with an inhomogeneous concentra-
tion profile. The compositions in the top three layers 81, 82,
and s3 are Cu97Ni3, Cu63Ni37 and Cu48Ni52, respectively.
The bulk alloy densities of states are given for comparison.
The total densities of states (full lines), and the component-
like densities of states for Cu (dashed lines) and Ni (dotted
lines) are shown. The vertical lines denote the position of the
bulk alloy Fermi level.

s1
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FIG. 7. k~~
——0 layer-resolved Bloch spectral densities for

a Cu75Ni2q(001) surface with a homogeneous concentration
profile. The top three layers are denoted by sl, 82, and s3,
respectively. The corresponding spectral densities for a clean
Cu(001) surface are shown as dotted lines. The vertical lines
denote the position of the bulk alloy Fermi level (full lines)
and the Fermi level of bulk Cu (dotted lines).

TABLE I. Calculated work functions {eV) for the (001) surface
of random CuNi alloys compared with available experimental data
(Ref. 25).

CU Cu75Ni25 Cu50Ni5O Cu25 Ni75 Ni

This work
Experiment

5.22
4.59

5.41 5.53 5.65 5.72
5.22

of II]. For Cu7sNiqs(001) these functions are presented
in Fig. 7 for the case of k~~ = 0 (I' point in the SBZ)
together with the corresponding quantities for the pure
Cu(001) surface. For E & —0.25 Ry the shape of the
Bloch spectral densities is only weakly infiuenced by dis-
order (smearing of peaks and small shift in energies).
In the energy region close to the Fermi level, however,
one can see the appearance of an extra structure, which
is strongly smeared out by disorder, and which is due
to impurity Ni atoms. In this energy regime the elec-
tronic states are strongly influenced by disorder. Simpli-
fied treatments using the virtual-crystal approximation
would therefore definitely fail to describe the electronic
structure for this system properly.

In Table I the work functions C as calculated from
the exPression C = Bd;p —E~ are Presented, where
Bd;~ denotes the electrostatic dipole barrier calculated
as described in the Appendix. The results for the clean
Cu(001) and Ni(001) surfaces agree well with recent ex-
tensive theoretical calculations of work functions for all
transition metals using an approach closely related to
the present one. As discussed there, the calculated work
functions are slightly higher (about & 10'%) in compar-
ison with the experimental data as well as with those
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obtained from full-potential slab " or supercell calcu-
lations. On the other hand a recent full-potential sur-
face Green's-function calculationz7 for Ni(001) gave a
work function in accordance with the present calcula-
tions. Full-potential slab or supercell methods describe
the charge density rather accurately and thus give a more
reliable value of the dipole barrier B~;~ as compared with
the present approach. The Fermi level, which is a prop-
erty of the infinite solid, is determined within the super-
cell or slab methods less accurately than in a Green's-
function method for a semi-infinite system. Quite clearly,
the work function depends on both the Fermi level and
the dipole barrier.

The alloy work functions corresponding to the homoge-
neous concentration profile (Table I) increase monotoni-
cally with the Ni content. This is in agreement with the
higher value of the Ni work function. The concentration
dependence of the work function is slightly nonlinear. For
CusoNiso we have calculated also the work function for
the inhomogeneous concentration pro61e corresponding
to the results shown in Fig. 6. In this case the calculated
value for the work function, namely 5.24 eV, is essentially
the same as that for a clean Cu surface. This illustrates
the strong dependence of the work function of an alloy
with respect to the surface composition.

APPENDIX: MADELUNG CONSTANTS

For monopoles and dipoles perpendicular to a partic-
ular layer, the electrostatic potentials needed to evaluate
the Madelung constants can be calculated by means of
a simple two-dimensional (2D) Ewald technique. In the
following, the simplest case, namely one atom per the 2D
primitive cell, is considered. The origin of the coordinate
system refers to the position of an arbitrary lattice point
in this layer. The position vector r of a general point is
denoted by (r~~, r~), where r~~ is a vector parallel to the
layer and r& is a perpendicular component.

A Fourier transform of the difference between the po-
tential produced by unit point sources (monopoles and
dipoles) and the potential from the uniform compensat-
ing surface sources yields for rz g 0 the following expres-
sions for the monopoles:

4~ - exp( —l«llciil)
0 Gii

and the dipoles

IV. SUMMARY

We have developed an eKcient surface Green's-
function method to calculate self-consistently electronic
properties of disordered alloys with an inhomogeneous
concentration profile at the surface within the tight-
binding linear-mufBn-tin-orbital method, whereby chem-
ical disorder is described in terms of the coherent-
potential approximation. The theory was applied to eval-
uate layer- and component-resolved densities of states,
layer-resolved Bloch spectral densities, and work func-
tions for disordered Cui Ni (001) alloys for the homo-
geneous alloy compositions as well as for the case of a
strongly inhomogeneous profile corresponding to a segre-
gation of Cu atoms at the surface. The results indicate
a pronounced dependence of the electronic properties of
alloy surfaces on the composition of the top surface lay-
ers. Electronic structure calculations of this kind can
be used as a starting point for statistical mechanic stud-
ies in terms of an Ising model and therefore for a study
of surface phase diagrams or of surface segregation phe-
nomena. An example of this type, a study of the surface
segregation in CuNi alloys, is presented in Ref. 8.
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4m

~ sgn(r~) ) exp( —lrillc((l)
Cr

II +0
x cos (G~~ r[~) . (A2)

2 . 2 (IR((l l
~0 I III & )

8cr ~vr 47r 1+ ) .
I

er«(~lciil)"
Gll~o

where R~~ denote the 2D lattice vectors, and

(A3)

OO

erfc(2:) = exp( —t2) dt.
7r x

It should be noted that the singular contribution from
the point charge located at the origin has not been in-
cluded in yo, Eq. (A3), because only the intersite terms
contribute to the Madelung field. The so-called Ewald
parameter cr can be interpreted as the width of spher-
ically symmetric Gaussian charge densities centered at
the lattice points of the layer under consideration. Due
to symmetry, the electrostatic potential @ produced by
dipoles is equal to zero for r~ = 0.

The total electrostatic potential y(r~~, r~) produced by

(A4)

Here 0 is the area of the 2D surface primitive cell and
the G~~ are the reciprocal vectors of the 2D lattice. The
sums in Eqs. (Al) and (A2) are absolutely convergent
for Ir~ I

) 0. Equation (Al) is similar to a recent solution
of the Poisson equation within the layer Korringa-Kohn-
Rostoker method. 8

The Ewald technique has to be used for points in the
layer (r~ = 0). The electrostatic potential p evaluated
at the origin (r = 0) is then given by
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&p
' = 0.(&pq@ +Bpqdq) (A5)

with the monopole-monopole Madelung constants

the net charges qp = Qpt=o and dipoles d„= ~3 Qi=i ~=0
of all M layers in the intermediate region can be con-
structed from the potentials &p and @ using the super-
position principle. If the total charge of these M layers
is zero, the total electrostatic potential y(r~~, r~) goes to
finite limits y(+oo) for r~ ~ +oo. In this case, the value

y( —oo) that corresponds to a point deep inside the bulk
can be taken as a reference value for electrostatic po-
tentials. The electrostatic dipole barrier Bd;p across the
surface is then given by Bd;p ——y(+oo) —y( —oo) and the
Madelung constants can be defined according to Ref. 13.

In general, the condition of charge neutrality cannot
be fulfilled for a finite number of layers. Therefore, in-
stead of the infinitely distant reference points r~ = Boo,
one has to take a reference point (rb~~, rb~) in the bulk
with finite rb~ in order to determine the zero level of
the potential y(r~~, r~), and a reference point (r„~~, r„~)
in the vacuum region with finite r„~ to determine the
dipole barrier. In the present calculation, we have taken
the bulk (vacuum) reference point at a lattice site of the
first bulk (vacuum) layer neighboring the intermediate
region.

Let us denote the position of one lattice point in
the pth layer as (rp~~, rp~), where rb~ ( rp~ ( r„~,
p = 1, 2, ... , M. The Madelung contribution to the one-
electron potential in the pth layer is then given by

4m
~pq = (rqJ 'rbJ lrpJ- r qJ- l)0

+(1 —~pq) &p(rp [(
—

&q [~
r p~ —i q~)

+~pq 0 0 'P(rb]( r
)(

rbJ 'r J )

and the monopole-dipole Madelung constants

4m
Bpq = (1 + (1 ~pq) sgn("p& "q&)j0

+&(&.ii
—&. ii &p~ —&q~)

g(rb ([
r

[(
rbJ rqJ ) ~

(A6)

(A7)

The electrostatic dipole barrier Bd'p can be expressed
similarly as

B~p =).Xp5 + Dpdp) (A8)

4'
+p = (2&pJ &bJ pvt ) + p(r.

~~

—rp ~~, r» —rpJ )0
—&P(rb

~~

—r„~~, rb~ —rp~), A( 9)

87tD„= + g(r„(( —rp (), r„~ —rp~)0
V(rb

f/
rp

f/
'rbJ'apl--) (A10)

This approach represents a simple way of overcoming the
problem of the charge neutrality for systems with a finite
number of the self-consistently treated layers.

where the constants for the monopole and dipole contri-
butions are given by
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