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The bond charge model (BCM), originally designed by Weber for the dynamics of tetrahedrally coor-
dinated semiconductors, is shown to be applicable, with minor adjustments, to sp? configurations. Cal-
culations for the bulk and surface dynamics of graphite, based on a comparatively small number of ad-
justable parameters (five or six), are shown to be in excellent agreement with recent inelastic helium atom
scattering data and high-resolution electron-energy-loss spectroscopy. The parameter transferability to
other forms of sp2-bonded carbons is discussed with the indication that BCM is easily applicable to large
structures (e.g., giant fullerenes) presently inaccessible to ab initio methods, with a comparatively modest

computational effort.

I. INTRODUCTION

The successful application of the bond charge model
(BCM) to the dynamics of 7r-bonded chains in the Si(111)
2X 1 surface! has posed the question whether BCM ap-
plies to nontetrahedrally bonded systems, e.g., sp’-
bonded structures such as graphite? and fullerenes. Re-
cently, we have shown that this model works very well
for the fullerene Cg,.3° Here we show that BCM, with
minor modification, is suitable for describing the dynam-
ics of graphite layers.

Good and transferable models are often required to
cover an area still inaccessible to ab initio methods: e.g.,
this would be the case of the giant fullerene architectures,
composed of several hundred atoms, where BCM-like
models yield a reliable prediction of vibrational spectra,
provided the model is transferable. Moreover, a model
such as the BCM, that includes the effects of the electron-
ic degrees of freedom, can often be useful even for sys-
tems that can actually be treated by ab initio approaches
as well. A good model calculation, in fact, can often pro-
vide reliable information that is indeed complementary to
that obtainable from more sophisticated methods. Let us
start from graphite, the prototype of sp2-bonded materi-
als, and consider both its bulk phonons (to compare with
the existing force-constant models) and the (001) surface
dynamics (to compare with the experimental data where
surface-sensitive probes have been used).

Several models*~° have been proposed in recent years
for the bulk lattice dynamics of graphite, which give
good agreement with the measured dispersion relations in
the low-lying region across the Brillouin zone, and with
the optical frequencies at the zone center. The most re-
cent and popular models reproducing at least all the mea-
sured frequencies at the I' point are by Maeda-Horie
(HM) (eight parameters) (Ref. 7) and by Al-Jishi and
Dresselhaus (AJD) (20 parameters).® Both are simple
Born-von-Karman models, employing, respectively,
second-neighbor and fourth-neighbor radial and tangen-
tial noncentral force constants.

Surface phonons on the (001) graphite surface have
been investigated by De Rouffignac, Alldredge, and De
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Wette'® by means of the slab method. Their calculation
for a 13-layer slab, published in 1981, was performed on
the basis of a modified version of the bulk dynamical
model by Nicklow, Wakabayashi, and Smith (NWS).*
The original NWS model calculation was based on a
Born-von Karman model including axially symmetric
interactions up to the third in-plane neighbors and first
interplanar neighbors. Alldredge et al. added a second-
neighbor interplanar interaction, whose effects will be
discussed below. The NWS model, as well as the
modified version by Alldredge et al., unfortunately do
not correctly reproduce the optical spectrum; in particu-
lar, the frequency of the optical 4,, mode at the I" point
is predicted to be about 42 THz by both versions of the
model, whereas the experimental value!! falls at 26 THz.
Nevertheless, the modifications introduced by Alldredge
et al. and the related observations they have made!? re-
tain all of their validity, and have relevant implications in
surface dynamics, even in the framework of other more
recent models. The important fact that Alldredge et al.
pointed out is related to the interplanar coupling, and can
be stated as follows: if the dynamical model does not in-
clude any (xy)-z coupling, i.e., a coupling between atomic
motions parallel and perpendicular to the crystal layers,
Rayleigh surface waves cannot be supported. In particu-
lar, this kind of coupling is completely neglected if the
only interplanar interaction is the one between first
nearest neighbors, i.e., between atoms which are aligned
in the z direction. It is also important to note that
neglecting second-neighbor interplanar interaction yields
an inadvertent symmetry in the model, causing an addi-
tional degeneracy at the K point, as is the case for the
models of Refs. 4, 7, and 9. Degeneracy splitting at the K
point, however, could not yet be tested experimentally.
From the experimental point of view, careful inelastic
helium-atomic scattering (HAS) studies of the lowest
acoustic branch have been performed recently by Toen-
nies and Vollmer.!* The (001) surface dispersion relation
for the Rayleigh wave (S1 mode) appears to be nearly
coincident with the lowest TA bulk band, as measured
with neutron scattering.* For the highest part of the
spectrum, i.e., for the optical branches, the experimental
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situation is not so well established. In fact, the phonon
spectrum of graphite extends up to about 50 THz for the
optical branches polarized along the basal plane; at these
energies, the neutron cross section is very small, causing
a lack of experimental data on the bulk dispersion rela-
tions in this high-frequency section of the spectrum. The
only direct experimental investigation of dispersion
curves of graphite away from the I' point at energies
above 25 THz have been performed by means of
reflection electron-energy-loss spectroscopy (REELS),
which is a surface-sensitive technique. However, mea-
surements by Wilkes, Palmer, and Willis,'* and by C.
Oshima et al.’> show very good agreement with the
available bulk data in the lower region of the spectrum.

The agreement of the recent REELS data with the pre-
dictions of the existing models”? is not very good in the
region above 15 THz: experimental points generally lie
below the calculated curves for the lowest branches
which correspond to in-plane polarization, and above the
predicted values for the z-polarized branches. Moreover,
the behavior of the highest SP| and SH optical modes at
the M point is clearly not correctly reproduced by the
force-constant models, which predict a crossing, along
the ' M direction, between the SH optical branch and the
SP, acoustical one. Experimental data!® show instead
the presence of a gap, about 4 THz wide, between the op-
tical SH and the acoustical SP; modes at the M point.
The BCM calculation, which includes the effects of the
electronic response, does correctly reproduce this gap.

In the following sections, we present the modified ver-
sion of the BCM for sp?-bonded systems, with results for
bulk graphite (Sec. II). We then show a calculation for a
graphite slab with comparison to experimental data and
to calculations with force-constant models (Sec. III). Fi-
nally, we discuss the transferability to other spZ-bonded
carbon structures (Sec. IV).

II. BULK LATTICE DYNAMICS OF GRAPHITE

The adiabatic bond charge model was developed by
Weber in 1977 for the case of the tetrahedral sp® covalent
bond, '® and has provided results in very good agreement
with the experimental data for silicon, germanium, a-tin,
diamond, and III-V compounds.!”!® The BCM is based
on a representation of the valence-electron charge density
by means of massless point charges [bond charges (BC)],
which carry their own degrees of freedom and are
dynamically coupled to the atomic displacements. For
homopolar covalent crystals, the valence charge density
has strong maxima along the bonds, and the BC’s are lo-
cated midway between neighboring atoms. The main idea
in the BCM is that bond charges can mimic the adiabatic
response of the electronic charge density to the atomic
motion: in this sense, this is actually the simplest model
containing the basic physics of the electron-phonon in-
teraction. An immediate advantage of the BCM with
respect to ordinary force-field approaches is given by the
small number of parameters which are involved in the
model, each of them having a clear-cut physical meaning,
and proving to be easily transferable to different struc-
tures or geometries of the same material. The interac-
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tions included in the model are in fact all short ranged
(first neighbors), except the Coulomb one, which is at-
tenuated by the dielectric constant €, and accounts for all
the longer-range effects. Moreover, the numerical effort
required to perform a BCM calculation is relatively mod-
est, which allows for the study of very complex systems:
recently, the model has been successfully applied to open
and reconstructed semiconductor surfaces,’!° to a
hydrogen-covered silicon surface,?®?! to semiconductor
superlattices,?? and to the study of vibrational properties
of hollow carbon clusters (fullerenes), >?>2* where the sp?
coordination is also present. In the case of a tetrahedral-
ly coordinated solid, the original BCM included, besides
the Coulomb interaction, an ion-ion and an ion-BC
nearest-neighbors central interaction, plus an angular
BC-ion-BC interaction of the Keating type (which will be
described below). The first problem arising in the transla-
tion of the BCM from the diamondlike structure into the
graphite sp2-bonded structure is that the model cannot
describe automatically the interplanar bonding, which is
actually of the Van der Waals type. In fact, we have
found that the Coulomb interaction itself makes too
small a contribution to the interplanar part of the dynam-
ical matrix, because the electrostatic potential, generated
by a periodic, planar array of positive and negative
charges spaced about 0.7 A, is nearly vanishing, together
with its derivatives, at the graphite interplanar distance.
For this reason, it is necessary to introduce two addition-
al short-range force constants between the first and
second interplanar neighbors.

Thus the interactions included in the model (see Fig. 1)
are the following.

(i) The Coulomb interaction screened by the dielectric
constant €, between BC’s and C atoms, which carry a
charge —ze and +3ze, respectively, according to the
neutrality condition. This interaction acts between all
particles, and is controlled by the model parameter z2/e.

(i) A central two-body potential ¢ acting between
neighboring atoms, which gives the parameters @i, ion
and ¢;; ., its first- and second-order derivative, respec-
tively. Note that ¢, i, is not a disposable parameter,
because it is determined as a function of z?/e by the
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FIG. 1. The graphite structure, with bond charges located
midway along the covalent bonds. The interactions considered
in the present model are indicated. Highlighted are the atoms
and BC’s in the unit cell.
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zero-stress condition, i.e., the condition that the deriva-
tive of the total energy with respect to the lattice spacing
is zero. A numerical calculation, involving Ewald sums
of first derivatives of the Coulomb potential, shows that
this condition is satisfied when ¢!, ;,,= — 3.629e%22/73¢,
where 7 is the nearest-neighbor distance.

(iii) An angular potential of the Keating form, involv-
ing the BC-atom-BC angle, controlled by the 8 parame-
ter. The Keating potential has the form

Vi=—(B/8A)d,-d,;—A), (1)

where d,; =d% +x,; is the vector joining the atom o to
the BC i, x, is its displacement from the equilibrium
value dJ;, and A= —1|d3|ld3].

(iv) A central two-body potential ¢, acting between
interplanar first and second neighbors, giving the param-
eters ¢, | and ¢;; ,. Since the sum of the interplanar
Coulomb interaction gives a negligible net force in the c-
axis direction, the first derivatives of ¢;, are both set
equal to O, in order to keep the equilibrium conditions
fulfilled with the minimum number of free model parame-
ters.

This produces a model which requires only five param-
eters. The two interplanar force constants, which are
about two orders of magnitude smaller than the in-plane
ones, can be determined in the rigid-layer approximation
from just the experimental C;; and C,, elastic constants.
The system formed by atoms and BC’s has, as a whole, 30
degrees of freedom in the unit cell, and is treated in the
harmonic approximation, which yields a 30X 30 dynami-
cal matrix.

Due to the vanishing mass attributed to the bond
charges, the electronic degrees of freedom are eliminated
through the adiabatic condition. The resulting effective
dynamical matrix is then reduced to 12X 12 and takes the
form

2

Z,,2Z
D= lR+ LCp— |T+=25Cr
zl?c B + ZatZpe +
X |s+=2Cs | (TH+=2Ch 1, @

where R, T, S, Cg, C;, and Cg are matrices represent-
ing, respectively, the short-range and Coulomb parts of
atom-atom, atom-BC, and BC-BC interactions.

The interplanar coupling, represented by the two pa-
rameters determined by the experimental elastic con-
stants, is found to have a substantial effect mainly on the
two lowest phonon-dispersion curves along the I'-4
direction, and on the splitting between the lowest TA and
TO branches along I'-M and I'-K. The three parameters
z2/e, B, and ¢}, ., were fitted to the experimental pho-
non frequencies at the I point and along the I'-M and
I'-K directions in the Brillouin zone.

The resulting best-fit parameter set and the corre-
sponding calculated phonon dispersions are reported in
the first row of Table I and in the upper part of Fig. 2, re-
spectively.

The global agreement with the experimental data is

16 473

TABLE I. Model parameters for the five- and six-parameter
versions of the bond charge model for bulk graphite. All force
constants are given in units 10* dyncm™!, while Z?/¢ is adi-
mensional.

Z%/e B Donion d)i'r'\t,l i’r’n,Z Dpe.pe
1.31 32.80 136.1 —0.1273 0.091 31 0.0
1.31 32.80 136.1 —0.1273 0.09131 8.397

good, except for the z-polarized modes, where our five-
parameter model exhibits a behavior which is very simi-
lar to that predicted by the MH model,” and underesti-
mates the lowest M-point frequency by about 40%. This
fact can be explained by observing that, while passing
from the tetrahedral three-dimensional structure to a
two-dimensional one, the B (angular) parameter is no
longer effective for displacement patterns along the z axis:
when the C atoms move perpendicularly to the plane, an-
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FIG. 2. Top: Five-parameter BCM calculated bulk disper-
sion curves for graphite: the behavior for the lowest branches is
very similar to the one from the MH model (Ref. 7). Bottom:
Calculated bulk dispersion curves from the six-parameter BCM,
vs experiments: REELS data are by Wilkes, Palmer, and Willis
(Ref. 14) (open circles) and by Oshima et al. (Ref. 15) (full dots).
Also neutron data (Refs. 5 and 4) (open triangles) and atom
scattering data (Ref. 25) (small crosses) are included. Stars show
the frequencies at the I" point. The REELS data by Wilkes, Pal-
mer, and Willis are also plotted along T'-K, since they are taken
on a sample with random azimuthal orientation.
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gles are not affected to first order. Neither can the
second derivatives of the nearest-neighbor in-plane poten-
tial have an effect on this kind of atomic motion. For this
reason, considering also that the interplanar coupling has
only a small effect, the phonon-dispersion curves corre-
sponding to out-of-plane atomic displacements depend in
practice on the parameter Z2 /e only.

The agreement with the experimental data can be
greatly improved with the introduction of a minor
modification to the original model: the addition of a BC-
BC central interaction, producing a stiffening of the BC
sublattice with respect to the z-direction motion. This
stiffening could be interpreted as an effect due to the pres-
ence of the p, orbitals, which are not accounted for in the
above BCM description of the covalent sp? bond. The
central BC-BC interaction, as the ion-ion one, enters the
model by the first and second derivatives of a central po-
tential. The second derivative has no effect on motion
along the z direction, so we set it to O and retain only the
épc.sc parameter. This raises to six the total number of
parameters included in the model (see the second row of
Table I). Also, this BC-BC interaction, having a nonzero
first derivative, must be included in the vanishing-stress
condition. It was found that the best results are obtained
when ¢pc pc is balanced independently from the previ-
ously considered interactions, i.e., without influencing the
z2/€ and the ¢, ., parameters. We simply balanced
épc.po> Which is positive, with a negative ¢(,,pc.pc acting
between next-nearest-neighbor BC’s along the bond
directions: ¢(,)pc.pc must be taken equal to —Ltégc e in
order to satisfy the vanishing stress condition. The value
of ¢pc.pc/dpc.pc has been determined by fitting the fre-
quency of the lowest mode at the M point. Its value is
comparable with the effective BC-BC tangential force
constant which arises from a linear term in the Keating
potential, introduced by Weber for the diamond case, 16
but which is not required in our model.

In the lower part of Fig. 2, we show the comparison of
the six-parameter calculation with experiments. The ad-
ditional interaction has an important effect mainly on the
TA and TO modes at the M point (see Table II).

TABLE II. Calculated vs experimental graphite phonon fre-
quencies (cm ™.

Present
calculation* Observed® Ref. 7 Ref. 8
w(Ezgz) 1582(1582) 1582 1575 1582
w(E,,) 1583(1583) 1587 1574 1587
w(A4,,) 867(867) 868 850 867
a)(Ezg1 ) 43(43) 42 44 42
a)(Blgl ) 126(126) 127 127 127
wra (M point)  466(286) ~465 ~290 465
oo (M point)  467(287) ~480 ~300 478

2In parentheses, the values obtained without the central BC-BC
interaction (first row of Table I).
"From Ref. 8.
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Since the measurements of Wilkes, Palmer, and
Willis'* are taken on highly oriented pyrolytic graphite
(HOPG) samples, which present random azimuthal orien-
tation, their experimental points actually collect contri-
butions from all the directions lying on the z =0 plane of
the Brillouin zone (BZ). However, this is not a serious
problem because of the fairly good acoustic isotropy of
the system in the layer plane. To compare with the cal-
culated curves, experimental data by Wilkes, Palmer, and
Willis are then plotted also along the T'-K direction.

It is important to note that, due to the long-range
Coulomb interactions and to the two short-range inter-
planar interactions which are considered, the BCM is not
affected by the shortcomings and the inadvertent sym-
metries of the simple models, which were mentioned in
Sec. I, and Rayleigh waves will be found in the slab calcu-
lation (Sec. III).

III. DYNAMICS OF GRAPHITE (001) SURFACE

Due to the very weak dispersion along the z direction,
the (001) surface-projected bulk bands of graphite are
very narrow and closely reflect the behavior of the bulk
dispersion curves, except for the lowest acoustical region,
where the two bulk branches corresponding to in-phase
and antiphase motions of adjacent graphite planes be-
come the upper and lower edges of the projected band.

When a (001) surface is created, only the weak interpla-
nar bonding is broken, whereas the strong covalent sp?
bonds between in-plane neighbors are preserved. For this
reason, it is also expected that true surface branches will
be very close to the edges of the projected bulk bands.
This behavior was already reported in the slab calcula-
tion by De Rouffignac, Alldredge, and de Wette, ' and
has been recently confirmed by experiment?’ as well as in
our work. As a matter of fact, in the slab calculation of
Ref. 10, surface branches appear to be peeled off from the
respective bulk bands by a frequency shift which is of the
order of 0.02%. The nonzero but still small coupling be-
tween z and xy motions causes the ellipse of the sagittal
plane polarized waves to be very elongated, allowing an
easy distinction between quasilongitudinal and quasi-
transversal SP branches.

Since no surface calculation was available for the most
recent bulk dynamical models, such as the MH or the
AJD ones, we performed a slab calculation for these two
models, employing a 21-layer slab. The results are shown
in Fig. 3.

If BCM is employed instead of the MH or AJD model,
the surface dynamics are again very similar to the pro-
jected bulk one. Again, the dispersion in the z direction
is very small, and surface modes are nearly indistinguish-
able from the lower edges of the bulk bands. To deter-
mine whether or not a slab mode is a surface mode, one
has to look at the behavior of the vibrational amplitudes
|£(m)|? of the atoms as a function of the layer index m,
from the surface layer toward the center of the slab. Of
course, for the reasons explained above, the MH model
gives no Rayleigh wave, whereas the AJD and the BCM
do.
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FIG. 3. The slab calculation (21 planes) for the MH (top) and

AJD (bottom) models, along the T-M-K-T" directions.

IV. TRANSFERABILITY
OF THE BCM PARAMETRIZATION
TO DIFFERENT sp2-BONDED
CARBON STRUCTURES

The present parametrization of the dynamics of graph-
ite includes, for what concerns the dynamics of a single
layer, only three parameters (z2/€, 8, and ¢/;, o, in Table
I) in its simplest version, and four (same table, with
épc.pc) in the version also including first- and second-
neighbor BC-BC central interactions.

In particular, we can compare the case of our three-
parameter calculation with the model described in Ref. 7.
Both the calculations underestimate the frequency of the
lowest acoustical phonon at the M point, but the highest
part of the spectrum is more closely reproduced by the
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BCM. The case of our calculation including central BC-
BC interactions can instead be compared with the calcu-
lation described in Ref. 8, as well as with recent single-
layer calculations by Aizawa et al.?® Again, the lowest
part of the spectrum is reproduced in a similar way, but
the BCM results for the highest optical branches are
better.

The simplicity of the three-parameter BCM for the dy-
namics of a carbon layer makes its adaptation to different
structures of two-dimensional carbon very easy. In fact,
the transferability of parameters has been verified for the
simpler version of the model, by the positive results ob-
tained for the Cg, (Ref. 3) and C; (Ref. 24) fullerenes.

The application to C,,, in which there are eight non-
equivalent classes of C-C bonds, has also raised the possi-
bility of deducing an analytic form for the central repul-
sive ion-ion potential. In particular, it has been shown
that, in a first approximation, one can assume that the
bond charge is the same on all the bonds, and the effects
of the charge transfer are recast into the ion-ion short-
range potential. This approach can be refined if the bond
charge is supposed to depend on the bond length. In
both cases, the better parametrization for the repulsive
ion-ion potential is found to be an exponential law.?*

V. SUMMARY AND CONCLUSIONS

We have shown that the bond charge model is suitable
to parametrize the dynamics of graphite. Six parameters
at most are required to reproduce the experimental pho-
non frequencies and elastic constants of bulk graphite
with a precision comparable to that of more involved
force-constant models. The transferability properties of
the minimal set of parameters (three) that are required to
reproduce the dynamics of a single carbon layer were dis-
cussed, in connection with recent calculations on ful-
lerenes. The satisfactory results obtained for C¢y and Cs,
together with the simplicity of this approach, suggest
that this BCM should be suitable for predicting the vibra-
tional spectra of complex sp? carbon architectures such
as, e.g., giant fullerenes or other complex structures. ?’
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