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Green functions in crystals and thin layers with long-range interactions
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The interactions between the lattice planes in planar lamellar crystalline systems in which the intera-
tomic potentials are of electrostatic origin or in which they result from a coupling with elastic deforma-
tions show a distance dependence given by a series of exponentially decreasing functions. In the vicinity
of the two-dimensional (2D) Brillouin zone and near the points of elastic instabilities the exponential de-
crease of some of the terms of the series is fairly slow. Two methods are presented which allow us to ob-
tain closed expressions for the Green functions in such systems with and without surfaces regardless of
the rate of the exponential decay. The first method, useful for exclusively exponential interactions,
reduces the problem to the multiplication of matrices known from the theory for short-range interac-
tions. The second method is adapted to systems having short- and long-range interactions at the same
time and consists in introducing some additional degrees of freedom by which the range of the interac-
tions becomes finite. Profiles of the order parameter at domain walls and surface relaxation in a crystal
with short- and long-range interactions are calculated as first applications of the methods. A crossover
between ferrodistortive and antiferrodistortive responses and anomalous localization of the response is
found in systems with competing ferrodistortive and antiferrodistortive tendencies between the elasticity
and the rotation-translation coupling. The transformation enabling the introduction of the additional
degrees of freedom in the case of dipolar interactions is given.

I. INTRODUCTION

Lamellar crystalline systems such as thin layers, super-
lattices, composites, etc. with planar and mutually paral-
lel surfaces and interfaces consist of a number of atomic
or ionic lattice planes which in most cases show a two-
dimensional periodicity. The latter property allows any
physical quantity to be expressed as a function of a two-
dimensional wave vector k~~ parallel to the planes and of a
discrete index I labeling the lattice planes. In particular,
the interactions of the constituent atoms or ions can be
represented by a k~I-dependent energy matrix H(kII, l, l').
The intraplanar matrix elements H(kII', 1, l') for I =1' are
the two-dimensional Fourier transforms of the interac-
tions of the atoms or ions belonging to the same lattice
plane l. It has been shown that, in contrast to the three-
dimensional case, the lattice sums involved in the intra-
planar part of the energy matrix are unambiguous at
every wave vector k~~ even for the long-range Coulomb in-
teractions. '

The specific form of the Coulomb potential also implies
the dependence of the interplanar matrix elements
H(kII,'l, l') on the separation of the planes of l —l'~ in
those systems, in which the constituent atoms or ions can
be represented by distributions of electrostatic charges.
The dependence is then expressed by a series of decreas-
ing exponential functions. The simplest lattice sums
showing this behavior correspond to the interaction of a
lattice plane composed of pointlike charges with another
single charge located out of the plane. Denoting by R~~

and R~ the coordinates of the single charge parallel and

perpendicular to the plane, respectively, one can write
the lattice sum as follows:
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where R(n) are the nodes of the two-dimensional direct
lattice and K~~ are the vectors of the corresponding re-
ciprocal lattice. V, is the area of the unit cell of the
direct lattice. If the single charge belongs to another lat-
tice plane, the quantity R~ is just the separation of the
planes. The apparent divergence of the term K~~=0 at
kII 0 in Eq. (1) is removed whenever the lattice planes
are electrically neutral. One can see that the term show-
ing the slowest exponential decrease with distance corre-
sponds to K~~ =0. In the limit k~~~0 this term describes a
macroscopic electric field.

A similar exponentially decreasing dependence of the
interplanar interactions on the separation of the planes
has been shown to occur in lattices of fluctuating di-
poles. This case is of special importance, since it encom-
passes the dynamics of the ionic crystals. In Ref. 2 the
detailed formulas have been given for the dipolar energy
matrix, and it has been demonstrated that the neglect of
the slowly decreasing term can lead to incorrect results
such as, e.g., a nonexistent phase transition to an incom-
mensurate phase. The formulas for the dipolar interac-
tions of Ref. 2 are in fact related to Eq. (1) through ap-
propriate derivatives. Analogously, an exponential char-
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aeter of the interplanar interactions can be derived for
the systems of higher multipoles. It should, however, be
kept in mind that this conclusion does not concern the in-
teractions of induced multipoles such as the London
dispersion forces.

Another important class of systems showing the inter-
planar energy described by a series of exponential func-
tions are those where the orientational variables such as
psuedospin Ising variables ' or continuous variables
represented by symmetry-adapted functions ' are cou-
pled to the elastic deformation of the lattice. The reason
for the effective, lattice-mediated interactions then being
of the exponential character lies in an analogous analyti-
cal form of the purely elastic Green functions. The de-
tailed derivation of the formulas for the interplanar
lattice-mediated interactions are given in Sec. IV. When
the system approaches an elastic instability the exponen-
tial decrease of the interplanar energies becomes fairly
slow, which makes the range of the interactions
efFectively infinite.

The above review shows that in the most often encoun-
tered lamellar systems with long-range forces of electro-
static or elastic nature the interplanar interactions are
given by a series of exponential functions of the separa-
tion of the lattice planes. Moreover, at some wave vec-
tors k~~ in the electrostatic systems and near elastic insta-
bilities the exponential decrease of these functions be-
comes so slow that approximations taking in the interac-
tions of a limited number of neighboring lattice planes
only are no longer valid. No attempts have been made
till now, to the authors knowledge, to derive closed for-
mulas for the Green functions in such systems. On the
contrary, the existing Green-function techniques are
based on a short range of the interplanar interactions.
In particular, the response theory due to Dobrzynski
offers a possibility of obtaining closed formulas for Green
functions even in fairly complicated lamellar systems in
which, however, the interplanar interactions do not go
beyond the first neighboring planes. '

In the present work advantage is taken of the particu-
lar exponential form of the long-range interplanar in-
teractions to derive relatively simple expressions for the
corresponding bulk Green functions as well as for Green
functions in similar systems with surfaces. The expres-
sions are valid regardless of how slow the exponential de-
crease of the interactions might be. The definitions of the
G-reen functions in terms of the energy matrix are given
in Sec. II. Section III presents a method for evaluation of
the Green functions in an infinite crystal and in a thin
layer in which all the interplanar interactions have an ex-
ponential form. The principle of the method relies upon
the observation that every exponential term in the energy
matrix is an inverse of a tridiagonal matrix. This allows
one to express the desired Green function in terms of the
matrices known from the response theory for short-range
interactions. A method adapted to the systems possess-
ing at the same time short- and long-range terms in the
energy matrix is presented in Sec. IV. The method trans-
forms the energy matrix to a short-range form at the ex-
pense of the introduction of additional degrees of free-
dom. Both methods are exemplified on simple systems.

In Sec. V profiles of an orientational order parameter are
calculated at the domain wall in a generalization of the
model of Axel and Aubry" and Peyrard and Biittner. '

Surface relaxation in a crystal with one short-range and
one long-range term in the energy matrix is determined in
Sec. VI using the additional degrees of freedom. In the
Appendix we show the way in which the additional de-
grees of freedom needed in the method presented in Sec.
IV can be constructed in the case of the dipolar energy
matrix discussed in Ref. 2.

II. THE ENERGY MATRIX
AND THE GREEN FUNCTION

where u&(k~~) is a variable characterizing the state of the
lattice plane I at a given wave vector k~1. The variable can
represent a translational displacement of atoms, Auctua-
tion of the spin or of the electron density, or, finally, an
orientational probability of an orientationally disordered
molecule. ' For the sake of simplicity we shall first con-
sider one-dimensional variables u~(k~~). The range of the
sum in Eq. (2) can be infinite for the bulk crystal or finite
when we deal with a thin layer. The explicit k~~ depen-
dence of the quantities used in Eq. (2) will be dropped in
what follows whenever it does not cause confusion.

Under some forces f&, such as external fields or local
forces due to the existence of the surfaces, the
configuration uI of the variable of interest is given by the
condition of minimum

BE
BQI

or

u& =QG(I, I' )f&, , (4)

where G (I, I') is the Green function

g G (I,I")H ( I",I') =5„.
The Green function is, therefore, a matrix inverse to the
energy matrix. In the case of dynamical problems the
static energy matrix H(l, l') should be replaced by an
analogous frequency-dependent dynamical matrix. ' The
Green function will then also depend on the frequency.

Explicit formulas for the Green functions in systems
with surfaces and interfaces have been obtained assuming
the range of interactions in the energy matrix H(l, /')
limited to the nearest-neighbor lattice planes, i.e.,
H (I, I') =0 except for I' = I and I'= I+1 (Ref. 10) and to a

Regarding a crystal or a crystalline slab as a series of
mutually parallel lattice planes labeled by an index I, one
can express the lattice energy E in terms of an energy ma-
trix H(k~~, l, l'). The wave vector k~~ is parallel to the lat-
tice planes and is a well-defined quantity or quantum
number due to the two-dimensional periodicity of the sys-
tem. The indices I and l' play the role of the matrix in-
dices. The lattice energy then reads

(2)



47 GREEN FUNCTIONS IN CRYSTALS AND THIN LAYERS WITH. . . 16 449

given finite number M of neighbors, i.e., H(/, I')=0 if
II' —/I )M. ' In the following section we show a method
for obtaining the Green functions in systems where the
interactions are given by a series of exponentially de-
creasing functions.

where

m =1

N NR=g +G (12)
III. GREEN FUNCTIONS IN SYSTEMS

WITH LONG-RANGE
EXPONENTIAL INTERACTIONS

A. Bulk green function

We assume the following form of the energy matrix:

H(l, l')= y sl
—'IP exp( —1" II —I' )

n=1

H„,
n=1

(6)

where c.„=+1. In order to find the Green function for
the system with the interactions given by Eq. (6), it is use-
ful to first solve the problem with only one term in the
sum of Eq. (6), i.e., for N =1. When the number of the
lattice planes is infinite one deals with the bulk crystal,
which is also periodic in the direction perpendicular to
the lattice planes. Then the Fourier transform of the in-
teraction matrix H, (I, I') with respect to ki can be found:

n =1m =1
mWn

The matrix R of Eq. (12) is symmetrical and has nonzero
elements close to its diagonal only:

R(l, l')=0 if II —I'I)N . (13)

R i(l, I') =
R O, N

ml
—l'i+N

n

(14)

where z„, n = 1, . . . , N are the roots of the polynomial

The inverse R ' of such a matrix has been already ob-
tained as the bulk Green function for the systems with X
interacting neighboring lattice planes

m=1
N

R (I, l)z + g R (I, I +n)(z +"+z "),
n=1

(15)

sinhI,
=/3i

coshr, —~, cosk,
(7)

Taking the inverse Fourier transform of the quantity
Hi '(ki) (Ref. 15) one obtains the bulk Green function
G, (l, l') for the system defined by Eq. (6) with N =1:

with Iz„&1 (see Refs. 15 and 14 for a detailed discus-
sion). Equations (11) and (14) allow one to obtain the in-
teresting bulk Green function as a simple matrix product.
This is a consequence of the fact that the energy matrix
[Eq. (6)] contains exclusively exponential terms.

1
G, (l, l')= . [2coshl, 6ii. E,(5(i+, +—5ii, )] .2, sinhl,

(8)

The tridiagonal form of the bulk Green function in this
specific case is easily understandable in view of the fact
that the Green function for the systems with the nearest-
neighbor interactions, i.e., defined by a tridiagonal energy
matrix, just has an exponentially decaying form. '

Analogously to Eq. (8), one can evaluate the bulk
Green function G„(l,I') for every term n =1,. . .N enter-
ing the sum in Eq. (6). The commutator of every pair of
these Green functions vanishes:

B. Ideal surfaces in systems with long-range
exponential interactions

The bulk Green function [Eq. (11)] can in principle be
used as the starting point in the surface response method
of Dobrzynski. Then, however, the infinite range of in-
teractions would make the corresponding cleavage opera-
tor an infinite and thereby intractable matrix. A different
scheme is, therefore, better in this case. In the first step
we show that the Green function g, (l, l') for a slab of L
lattice planes and with the interactions given by the ener-

gy matrix h, (l, l') with only one exponential term [see
Eq. (6)]

h, (l, I') =H, (l, l') (16)

G„(l,l")G (I",I') = g G (l, l")G„(l",I') .
I"= —oo l"= —oo

G H=I, (10)

This allows one to write down the bulk Green function
6 (I, I') for the energy matrix Eq. (6) in a form resembling
the inverse of a sum of C numbers. Using matrix nota-
tion one has

g g, (/, /")h, (/", /')=6g, (17)

is satisfied by the bulk Green function Eq. (8) for
l =2, . . . , I —1. The two remaining equations for l =1
and l =L give

for I, l') 1 and l, l' L and h, (l, l')=0 otherwise is also
given by a tridiagonal matrix. Indeed, the system of
equations for the Green function g, (I, I'),
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r,
g, (l, I)=g, (L,L)= 2, sinhI,

gi(1, 2) =g) (2, 1)=g I (L,L —1)=g I (L —1,L)

=G, (1,2)=G, (2, 1),

(18)

and

g, ( 1, 1')=G, (I, I')

otherwise.
When there is more than one exponential term in the

energy matrix Eq. (6), the evaluation of the slab Green
function is similar. We shall illustrate this for N =3, i.e.,
for

grees of freedom to the system with initially long-range
interactions may yield an equivalent system described by
short-range interactions only.

Below we shall show how the elimination of the elastic
degrees of freedom engenders a long-range effective in-
teraction and how to use this piece of information to
reduce the range of interactions in an initially long-range
energy matrix. Analogously to the purely elastic case, it
is convenient to pass from the displacements u1 to a
strain variable x1=u1+, —u1. Then the energy of the
chain is

E =
—,
' g [o,D (I., I')cr, .+x,S (I, I')x, .+2x, V(1,1')o, ]

1, 1' = —oo

h =h, +h2, -h3, (19)
wiH(l, I')wI. ,

1, 1' = —oo

(23)

where the terms in Eq. (19) are defined analogously to
that of Eq. (16) with the use of the bulk interactions [Eq.
(6)]. Now one can state that

g, g2(h, +h2+h3)g3=o, 2h, g3+g2g3+glg3+glg2

(20)

where the matrix D (I, I') describes short-range direct in-
teractions of orientational variables o.

1 and cr1, the ma-
trix S(l, l') the elastic interactions, and V(l, l') their cou-
pling. The variable o.

1 can be a spin variable or an orien-
tational variable defined by symmetry-adapted func-
tions. ' All the above interactions can be arranged in a
2X2 matrix H(l, I'):

where o. ,2 is the commutator

~12 g lg2 g2g1

The desired Green function is then

(21)
HI I (1,1')=D (I,I'),
H22(l, l') =S(l, I'),
H, 2(l, I') =H2, (1,I') = V(l, I'),

(24)

g3(O12—lg3+g2g3+g lg3+glg2) glg2

(22)

One can easily check that the products g;g form a ma-
trix, which resembles the energy matrix in the slab with
the interaction limited to next-nearest-neighbor lattice
planes. The nonvanishing elements of the matrix o. &zh &g3
lie in the stripe l =1, l =2, I =L —1, I =L, and
l'=1, . . . , L. This form allows the Dobrzynski method
to be applied here, the response operator being a 4X4
matrix. An explicit expression for the matrix
(o,2h, g3+g2g3+g, g3+g, g2) ' has been already dis-
cussed in Ref. 15. The last step is to insert this matrix
into Eq. (22).

BE
(25)

which yields

x, = — g 6'(I, l" ) V(l",I')o, ,
1'1"= —oo

(26)

where G'(l, l') is the purely elastic Green function, i.e.,
QI- „6'(l,l")S(l",I') =5'. With the expression Eq.
(26) inserted into Eq. (23) one gets the effective orienta-
tional energy

and the variables o.
1 and x1 in a two-component vector

wl=(ol, x&). The elimination of the elastic degrees of
freedom follows from the condition for minimum

IV. SYSTEMS WITH SHORT- .

AND LONG-RANGE INTERACTIONS E' =
—,
' g cr, [D(l, l') —K(I,I')]or,

1, 1' = —oo

(27)

The method presented in the previous section allows
one to derive a closed formula for the bulk Green func-
tion in a quasi-one-dimensional system with the interac-
tions given by a finite series of terms showing an ex-
ponentially decreasing dependence on the distance. Here
we shall demonstrate that the Green function can be also
obtained in a closed form in systems where the long-
range interactions coexist with some short-range forces.
The present method stems from the observation that an
exponential distance dependence is shown by the effective
lattice-mediated interactions resulting from the elimina-
tion of the elastic degrees of freedom even if the purely
elastic interactions have a short range. One can, there-
fore, expect that the introduction of some additional de-

where

K(l, l')= g V(n, l)G'(n, m) V(m, l') .
m, n = —oo

(28)

i1 —1i+I
G'(l, l') =

z, —1

where z, is that root of the quadratic equation

P, +2/32
z, +z, +1=0,

2

(29)

(30)

In the simplest case showing a spatial dispersion the
elastic Green function reads
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whose modulus is less than one. P, and Pz are the force
constants between first and second nearest neighbors, re-
spectively, in the elastic part of the energy Eq. (23). It
follows from the general conditions for stability that

1S (/, /') = — . [2 coshI 5g —E(5(( +,+5„,) ]2 sinhl

(37)

z, =ce (31)

where I &0 and c.=+1, the sign of c being always oppo-
site to the sign of the force constant pz.

For the sake of simplicity we shall only consider cou-
plings V of the orientational variable o.

&
with nearest-

neighbor local strains, i.e., x& and x& &. Then two cases
are possible depending on the symmetry of the local vari-
able o.)..

(i) V(/, / —1)= V(/, /) = Vo,

(ii) V(/, / —1)= —V(/, /) = —Vo .
(32)

V2'
[tanh( I.y2) ]+EE I&

—&'le —rl~ —~'
(33)

where the upper sign corresponds to case (i) and the
lower sign to case (ii) [Eq. (32)].

The last energy matrix [Eq. (33)] contains at the same
time short- and long-range interactions. The Green func-
tion G' (/, /') for the energy matrix H' (/, /') [Eq. (33)]
can be obtained in two ways. The first is to replace the
short-range part by an approximate fast decreasing ex-
ponential term and proceed along the lines of Sec. III.
The second way is to find the full Green function
G;1(/, /'), i,j =1,2 for the coupled system with short-
range interactions given by the energy matrix H;J(/, /')

[Eq. (24)]. The latter Green function can be obtained ex-
actly. ' The element G»(/, /') then is equal to the desired
Green function G' (/, /'):

G' (/, /')=G„(/, /') . (34)

The above reasoning indicates how to proceed in the case
of the energy matrix given originally by, e.g.,

H(/, /') =D (/, /')+pE ' (35)

where the coefficients p and I are defined by the model.
The exact Green function for this energy matrix can be
obtained by introducing a new variable x& and the corre-
sponding matrices S and V in such a way that

Case (i) corresponds to ferrodistortive and case (ii) to an-
tiferrodistortive coupling. The explicit form of the
effective energy matrix then is

H' (/, /')=D(/, /') —K(/, /')

V2
=D (/, /')+ 5i(

V(/, /') =5@ (38)

Now one has to find the Green function for the energy
matrix Eq. (24) with the matrices S(/, /') and V(/, /')
defined in Eqs. (37) and (38). As before, the desired Green
function will be given by the element G»(/, /'). In the
above method the variable x (/) has no physical meaning
but it allows one to solve the problem of the Green func-
tion. Analogously, one can find the Green function in
similar systems with surfaces. In the Appendix we trans-
form the energy matrix for the dipolar interactions to a
sum of terms which are either of short range or have a
short-range inverse which allows the present method to
be applied.

V. DOMAIN WALLS IN SIMPLE SYSTEMS
WITH ROTATION TRANSLATION COUPLING

As an example of application of the formulas derived
in previous sections we shall determine the profile of the
orientational variable o.

&
at domain walls in systems de-

scribed by the energy matrix given in Eq. (33). For sim-
plicity we shall reduce the short-range part of the interac-
tions to the local term D (/, /') = W 5&&, , which in this kind
of model can be understood as the inverse to a one-
particle, generally temperature-dependent susceptibility.
Taking the Fourier transform of the energy matrix Eq.
(33) and using the result of Eq. (8) one easily finds that
the resulting dispersion curve has its minimum at k =0
in case (i), Eq. (32), and at k =sr, i.e. , at the Brillouin-
zone boundary in the (ii) independently of the sign of E.
The dispersion curves correspond to the disordered phase
in which (o.

& ) =0 for every /. Whenever the only tem-
perature dependence is involved in the local term 8',
cases (i) and (ii) imply an instability of ferrodistortive and
antiferrodistortive character, respectively. In the ordered
phase the average value (o&) =cr& is nonzero. This can
be modeled in the simplest way by replacing the term
W o&5t&. in the energy matrix by W (cr~ o&) 5&&, . The-
lattice energy then is

The desired configuration then is given by the Green
function G' (/, /'), which is the inverse of the energy ma-
trix H' (/, /'):

E' = ,' g cr,H' (/, /')o(. ——W g (o,o, ,'o( .
) —. —

1,1' = —oo

(39)

p lz
—

z
l rli z l——

m, n = —oo

V(m, /)S '(m, n)V(n, /') .
o =W g G' (/, /')o, .

/' = —oo

(36)

In the present case this can be easily done knowing that
the inverse of the exponentially decreasing energy matrix
is given by Eq. (8). Consequently,

To evaluate the Green function G' (/, /') we shall apply
the method described in Sec. III A. Thus the energy ma-
trix H' (/, /') with D(/, /')= W 5&&, will be treated as a
sum of a one-particle term ~

6&& and a term with an ex-
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ponential dependence on the distance ll —I'l. The in-
verse matrices to both terms are a diagonal matrix
G, (l, l') and a three-diagonal matrix G2(l, l'), respective-
ly, which allow the formula Eq. (11) to be easily applied.
The resulting Green function is

Geff(i Ii) 1

p2
W'+ (z' —1)

2

X [1+z —2Ez coshI + (z —1)5„,]z i'

(41)

1.5

~~ 1.0

p.5

0 0

~ -0.5

BI
O-1 0

-1.5
-15 -10

I

0 5
LATTICE PLANE 1

10 15

z= —3+ sgn(A)(A —1)'

where

—
ill l

W coshI + V
A=a

Iv'l~, l+«l

(42)

(43)

with the quantity z following from the inversion of the
tridiagonal matrix R (l, l') =(G, +G2)(I, l') FIG. 1. Profiles of the orientational variable O. i at the ferro-

distortive domain wall with ferroelastic coupling (i) [Eq. (32)]
and ferrodistortive elasticity c, = 1. Model parameters are
P2= 1.0 Vp =0.2 I =0.2, and W, =3.987. Three curves (~),
(~), and (A) correspond to a lowering of temperature such that
8' =8' =5.0, 15.0, and 30.0, respectively. The respective values of
the parameter z [Eq. (42)] are 0.915, 0.843, and 0.830.

To ensure the stability of the system, a condition should
hold that

l
A

l
) 1 or

8")8"= 2V0

132 coshI + s
(44)

8' =
S (45)

exists at which the energy matrix Eq. (33) reduces to the
purely exponential form. Then the response is localized
at the nearest neighbors. Below the crossover value i.e.
rxr2 2 2Vr, & S' & 8', , the response is exponentially deceasing in
case (i) and E(0 and damped oscillating in case (ii) and
c, )0. This complies with the character of the phase tran-
sitions indicated by the minimum of the respective
dispersion curves. Above the crossover value, i.e., farther
away from the phase transition, the types of the response
in both cases are interchanged.

The variation of the response manifests itself in the
profiles of the order parameter oI near to the domain
walls. In Fig. 1 we show a ferrodistortive domain wall:
o.

i
= —o. for l = —~, . . . , 0 and o.

i
=o. for0 0

l =1, . . . , pp (rr )0) in the system where both the cou-
pling and the elasticity favor the ferrodistortive response,
i.e., (i) and E= 1. One should remember that the increase

The value 8, then corresponds to the critical tempera-2

ture.
In the case of the ferrodistortive coupling (i) and of the

ferrodistortive tendency of the elasticity, i.e., c, )0, the
quantity z is positive in the whole range of stability. The
response of the system to a pointlike perturbation then
decreases exponentially with the distance from the per-
turbation. Similarly, at the antiferrodistortive coupling,
i.e., in case (ii) and the antiferrodistortive tendency of the
elastic terms, i.e., c &0, the quantity z is negative in the
whole range of stability and the response is described by a
damped oscillating curve. In the remaining cases a cross-
over value

p 2

21n 8 now corresponds to the lowering of temperature.
The temperature dependence of the parameters of the
model o. and 8' have been chosen so as to obtain the0 2

typical temperature dependence of the order parameter
o i

~ ( T, —T)' at l ~ pp. The domain wall then behaves
in a usual way and becomes narrower when we depart
from the instability point. This is then the expected nar-
rowing of the domain walls with decreasing temperature.
In case (i) and E = —1 the domain wall is particularly nar-
row at 8' . Below this value it has a typical ferrodistor-
tive shape, whereas above this value it shows a damped
oscillating profile as depicted in Fig. 2. In Fig. 3 we have
shown a system (ii), e = 1, which in principle should un-
dergo an antiferrodistortive phase transition. If, howev-
er, the transition is strongly of first order, a ferrodistor-
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FIG. 2. Profiles of the orientational variable 0& at the ferro-
distortive domain wall with ferroelastic coupling (i) [Eq. (32)]
and antiferrodistortive elasticity E= —1. Model parameters are
P2:1.0 Vp:2.0 I:0.3, 8; =3.911, and W, =4.0. Three
curves (0), (0), and (A) correspond to a lowering of tempera-
ture such that 8' =3.93, 4.0, and 5.0, respectively. The respec-
tive values of the parameter z [Eq. (42)] are 0.367, 0.0, and
—0.516.
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FIG. 3. Profiles of the orientational variable o.
&

at the ferro-
distortive domain wall with antiferroelastic coupling (ii) [Eq.
(32)] and ferrodistortive elasticity e= l. Model parameters are
P2= —1.0, Vo=2. 0, I =0.3, W, =3.911, and 8, =4.0. Three
curves (0), (~), and (A) correspond to a lowering of tempera-
ture such that W =3.915, 4.0, and 6.0, respectively. The
respective values of the parameter z [Eq. (42)] are —0.659, 0.0,
and 0.597.

FIG. 4. Surface relaxation of the system described in Sec. VI
under external field. The parameters of the model are the fol-
lowing: (0), p= —1.0, I =0.2, a = 1.2, a, = 1.5, b = —0.5; (X),
P=1.0, I =0.2, a =1.0, a, =1.5, b =0.54; and (~), P=1.0,
I =0.2, a = 1.0, a

&
=2. 1, b = —1.12. In the last case the com-

petition between ferrodistortive short-range and antiferrodistor-
tive long-range parts produces an incommensurate local distor-
tion.

VI. SURFACE RELAXATION IN A SYSTEM
WITH SHORT- AND LONG-RANGE INTERACTIONS

The method consisting in the introduction of addition-
al degrees of freedom as explained in Sec. IV will now be
illustrated on a system described by the energy matrix
given in Eq. (35) with E = 1 and

a ~l, I'+ b ('fill'+ i + fill' —i ) + ( a i a ) |il i foal'1 (46)

where l, l'=1, . . . , oo. The last term of Eq. (46) describes
a perturbation introduced by the surface to the energy
matrix. We shall determine the profile of the variable o.

&

under a uniform field f applied to the system for various
parameters /3, I, a, ai, and b. The profile is given by the
Careen function g (l, I'):

tive phase can also appear. The evolution of the respec-
tive domain wall with temperature or 8' is shown in Fig.
3. Again a crossover between an antiferrodistortive and a
ferrodistortive response is marked by a particularly nar-
row domain wall. The present model is a generalization
of the model of Axel and Aubry" and Peyrard and
Biittner. '

ferrodistortive, antiferrodistortive, and incommensurate
local order near the surface.

VII. CONCLUSION

Quasi-one-dimensional crystalline systems consisting of
parallel lattice planes have been shown to exhibit an ex-
ponential distance dependence of the interplanar interac-
tion parameters even in cases of slowly decreasing intera-
tomic potentials. This particular form has allowed us to
derive closed expressions for the Green functions in
infinite crystals and in crystals with surfaces. Both
presented methods, one for the interactions given by a
series of exponential terms and the other adapted to the
systems showing at the same time short- and long-range
interactions, take advantage of the surface response
theory due to Dobrzynski, which has been till now ap-
plied only to short-range interactions models. The
present methods seem to have a wide range of application
whenever a short-range interplanar potential is a too-
poor approximation, in particular in ionic crystals and in
the materials undergoing structural phase transitions.
The examples discussed in Secs. V and VI are only first il-
lustration of the methods.

o, =fgg(l, l') .
1'=1

(47)
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where H, (l, l') involves short-range interaction only,
whereas (see Ref. 2)

Ht (I, 1') =Hi, (l, 1')+Hi~(l, 1'),

with

Ht&(1, 1')=D
&
(1,1')e

Hl2(l, I') =D2(l, 1') sgn(l 1')e rl 1—11--
D„y

D)= D„D
0 0

0

0

D„

0 0 D„,
0 D,

D, D, 0

D~=i 0

Since the inverse to the energy matrix Ht(l, 1') is not of a
short range we introduce

APPENDIX

The energy matrix for dipolar systems will now be
transformed to the form that allows the method of Sec.
IV to be applied. As follows from Ref. 2, the matrix con-
tains a term corresponding to K~~=O which decreases
slowly with distance. This term will be denoted by
Ht(l, l'). The other terms of the energy matrix can be ap-
proximated by short-range interactions. Hence the ma-
trix is

H(l, 1')=H, (l, I')+Hi(l, 1'),

H, 3(l, 1')=H,4(l, 1')+H,5(1,1'),
C 0 0

H,4(l, 1')= 0 C 0
0 0 0

0 0 0
+ 0 0 0 2cosh(21 ) e

0 0 B

0 0 0
H&~(l, 1')= —2[sinh(2I )5&& +5&& +, sinh( I ) ] 0 0 0

0 0 B
where the coefficients C and B are to be specified. One
can prove that the inverse to the energy matrix

(Hi~+Ht3)

vanishes for l, l' )3 provided that

CB = (D, +—D, )II4sinh I I .

Now the initial energy matrix is

H(1, 1')=H,'(l, l')+H,'(l, l')+H„'(l, l'),
where

H,'(l, l') =H, (1,1') His(l, 1')—,
H,'(l, l') =H„(l,I') —Hi4(l, 1'),
H„'(l, l') =Hi~(l, l')+Ht3(1, 1') .

The terms H,'(l, l') and H„'(l, l') have inverse matrices of
a short range, whereas the term H,'(l, l') is itself of a short
range. Introduction of additional degrees of freedom cor-
responding to H,'(l, l') and H„'(l, l') then allows for the
application of the method of Sec. IV.
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