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Emission of nonequilibrium acoustic phonons due to electron tunneling in double-quantum-well
structures is considered. The energy and angular dependences of the nonequilibrium phonon distri-
bution are studied for interwell transitions and the differences with those for intrawell transitions are
pointed out. Due to the interwell interference the energy and angular distributions of the emitted
phonons are strongly nonmonotonic. The intensity of the high-energy phonon flow due to interwell
transitions is evaluated; for degenerate electrons its value is substantially larger than the intensity of
phonon flow caused by the usual process while for nondegenerate hot electrons these two intensities

can have comparable values.

I. INTRODUCTION

Acoustic-phonon emission by hot two-dimensional
(2D) electrons in metal-insulator-semiconductor struc-
tures, selectively doped heterojunctions, and quantum
wells has been investigated in detail.!™® The energy and
angular distributions of the emitted phonons were stud-
ied also in the presence of magnetic field applied per-
pendicular to the 2D plane (cf. Ref. 3 and references
cited therein). In this paper we obtain the nonequilib-
rium distribution of acoustic phonons that are emitted
by electrons in the process of tunneling-assisted relax-
ation in double-quantum-well (DQW) structures. The
electron distribution is supposed to be a nonequilibrium
one; in this case it is impossible to determine the char-
acteristics of phonon emission with the usual thermody-
namic methods that use blackbody-type formulas. Elec-
tron tunnel relaxation in such structures determines real-
space transfer processes, related with electron tunneling
between quantum wells (QW’s), which could be impor-
tant for applications.? Straightforward investigations of
the tunneling process in DQW structures were carried
out with the help of high time-resolution photolumines-
cence techniques.’ Observation of the acoustic-phonon
emission generated by interwell tunnel transitions also
is of obvious interest for studies of such tunneling pro-
cesses. Moreover, the flow of phonons, emitted during
these transitions, can be sufficiently intense and their
energy distribution can be appreciably modified under
the shift of tunnel-connected levels which results when a
transverse electric field is applied to the DQW structure.

We consider a simple DQW structure as shown in Fig.
1. Here we are treating the case when only the two low-
est tunnel-connected levels are occupied. We consider
only the transitions between these states due to emis-
sion of acoustic phonons (absorption can be neglected
for the conditions stated below). If the levels are out
of resonance the wave function of one of them is mainly
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concentrated in the left (I) QW and that of the other in
the right (r) QW. We assume that the nonequilibrium
electron concentrations n, and n; for the r and I QW,
respectively, are known and use quasiequilibrium distri-
butions in both QW’s. Such a situation arises (i) due to
stationary (or impulse) photoexcitation of electron-hole
pairs; (ii) when the electrons are heated by an applied
longitudinal electric field that modifies their temperature
as well as their concentrations n; and n,; (iii) due to an
abrupt imposition of a transverse voltage or a periodic
square-pulse signal. The treatment given below for con-
stant n; and n, can be used to describe time-dependent
processes if the typical frequency of the emitted phonons
exceeds the rate of electron tunnel relaxation in a DQW
structure and the typical frequency of the driving signal,
e.g., impulse or meander.

The energy and angular distributions of the acous-
tic phonons, emitted during transitions in which the
quantum number that characterizes the tunnel-connected
state does not change (intrawell transitions), are appre-
ciably different from those resulting from transitions in
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FIG. 1. Energy-band diagram and scheme of transi-
tions for acoustic-phonon emission processes in the tunnel-
connected quantum wells. Transition 1 corresponds to 8 = 0;
transitions 2 and 3 correspond to 8 ~ 7 /2.
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which this quantum number changes (interwell transi-
tions). For intrawell transitions, discussed in Refs. 1-3
and 6, the phonon distribution depends on the average
value of the longitudinal momentum of the 2D electrons
which is determined by their temperature or their con-
centration and by the matrix element of the electron-
phonon interaction in the ! or r QW. For interwell tran-
sitions studied here the position of the phonon distribu-
tion maximum is determined by the energy splitting be-
tween the tunnel-connected levels A and the angle (with
respect to the normal to the 2D plane) by which they
are emitted. Strong angular dependence of the phonon
distribution maximum position follows from energy and
longitudinal momentum conservation conditions that ac-
company the emission process. In the case of emission
of acoustic-phonon modes propagating almost perpen-
dicular to the plane of the DQW structure the electron
momentum is almost unchanged under interwell transi-
tions, so that the energy of the emitted phonons will be
close to A (transition 1 in Fig. 1). For acoustic-phonon
modes propagating almost along the 2D plane under in-
terwell transitions, the longitudinal momentum changes
approximately by v2m*A, where m* is the electron ef-
fective mass, assumed to be the same in both QW’s and
in the barrier region, so that the energy of the emit-
ted phonons is of the order of the characteristic energy
E,, = V2m*s?A (transitions 2 and 3 in Fig. 1), where
s is the sound velocity. This is much smaller than A, if
the DQW structure levels are out of resonance.

The above peculiarities of the contribution by interwell
transitions to the phonon distribution are the subject of
this paper. In Secs. II and III we present the formal-
ism. In Sec. IV we treat the energy dependences of the
differential acoustic energy flow for a set of angles. In
Sec. V we calculate the angular dependences of the in-
tegral acoustic energy flow and the dependences of the
total acoustic energy flow on A. In Sec. VI we present a
discussion and concluding remarks.

II. BASIC RELATIONS

We begin by considering the basic relations that de-
scribe acoustic-phonon emission by nonequilibrium 2D
electrons. We follow the approach developed in Ref. 6
in which the distribution function N(q,r) for acoustic
phonons of wave vector q = (qy, ;) is obtained from the
kinetic equation without electron contribution,

(% + qur) N(q,r) = Jg, (1)

where Jgr is the collision integral and vq = Vqwq the
phonon group velocity. Equation (1) is supplemented by
the boundary condition

vz[N(q,d:/2) — N(q,—d:/2)] = I(q), d: = 0; (2)

I(q) determines the speed of acoustic-phonon emission
under relaxation of 2D electrons in a DQW of total thick-
ness d; and situated near the plane z = 0. The collision
integral Jr describes relaxation processes of the emitted
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phonons as they are scattered outside the 2D electron
layer and v, is the z component of their velocity. In
what follows we assume the linear relation w, = sq for the
phonon frequency w,. The boundary condition (2) does
not take into account absorption of acoustic phonons by
2D electrons of the DQW structure. This is valid for
hog > kpTr , where Ty, is the lattice temperature and
@q is a typical phonon frequency.

The right part of Eq. (2) is the speed of acoustic-
phonon emission; it is given by

I(q) = —h—]quz Z fjlp(l - szp—ﬁq”)l(.h]e q,z|]2)12
J1j2p
x6(hwq — Ejp + Ejzp—hq” )- (3)

Here the transitions between the tunnel-connected elec-
tron states |jp) of the DQW are described using the
“golden rule,” V is the volume, and C, measures the
strength of the interaction of electrons with longitudinal
acoustic-phonon modes. Further, f;p is the occupation
number of electron states with longitudinal momentum p
and energy E;p. The eigenvalues E;jp, and eigenfunctions
|7p) can be obtained from the one-electron eigenvalue
problem H|jp) = E;p|jp) studied in Refs. 7 and 8 and
discussed in the next section.

The density of energy flow G due to acoustic-phonon
emission is determined by the usual relation®

G = (1/87%) /daqvq hwq N(q,r). (4)

We suppose that the transverse dimension of the sam-
ple L, is smaller than the phonon relaxation length in
the bulk (determined by Jgr) but greater than the lateral
dimensions of the DQW. Then in Eq. (4) we have to sub-
stitute the steady-state solution of Eq. (1) with zero on
the right-hand side for which the boundary condition (2)
is established on the surface of the DQW structure with
area equal to S. Further, we will suppose that N(q,r)
is zero on the other side of the z = 0 plane (see Fig.
2). Such a boundary condition, which does not take into
account edge effects and diffraction under phonons emis-
sion, gives a simple stationary distribution

N(qyr) =Fq(x_sz/‘Iz, y—Qyz/q;:), (5)
where
Fo(z,y) = —=I(q), z,y €85. (6)
84z

For all other values of z and y we have Fq(z,y) = 0.
For definiteness we will consider the right semisphere in
Fig. 2(a). Substituting Eq. (5) in (4) we can evaluate an
energy flow density in the far zone R > VS, where R is
the distance between the observation point and the DQW
structure. Then the tangential components of G vanish
and the radial component G, describing the energy flow,
per unit solid angle 2, in the direction given by the angles
0 and ¢, is independent of the lateral form of the DQW.
It turns out that G, is independent of ¢; it is given by
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FIG. 2. Introduction of far zone, for the calculations of
energy flow of acoustic phonons, from the DQW structure
area on the z = 0 surface.

— 5 * 3
Gr = s /0 hw® I (w, 6)dw. (1)

Rewriting the integrand on the right-hand side as dif-
ferential acoustic flow d®G/dw d2 = 6G, i.e., energy flow
per unit solid angle, area, and frequency interval, we have
the result

fwd

that is directly determined through the speed of phonon
emission, cf. Eq. (3). The corresponding emission in-
tensity is given by

i [
E=/0 5G dw. )

In the opposite limit R < v/S [see Fig. 2(b)], i.e., when
the observation point is close to the DQW plane but far
away from the edges of this plane, we obtain

N(q) = I(q)/ve, (10)

which, being independent of r, describes the energetic
and angular characteristics of the emitted phonons; here
v, > 0 and from Eq. (2) we have N(q) = N(q,d:/2) and
N(q,—d¢/2) = 0. The only nonvanishing component of
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the total density of energy flow is G;, i.e., along the z
direction; it is given by

G, = (1/87%) / &q hw,I(q). (11)

Note that Eq. (11) could also be obtained from Eq. (8)
(so G, gives the density of total energy flow per unit
area). Equation (11) can be given in the form

oo /2 2
G, =/ dw/ do sin0/ do 6G. (12)
0 0

0

From Egs. (8) and (11) we see that G, is also equal
to the total energy flow per unit area of the DQW. This
limit corresponds to acoustic-phonon emission out of the
DQW in samples with thickness much smaller than /S.
We denote G, as the total acoustic energy flow.

III. ELECTRON STATES
AND ELECTRON-PHONON INTERACTION
IN A DQW STRUCTURE

Here we obtain the electron eigenfunctions and eigen-
values and also the matrix elements for transitions that
appear in Eq. (3). For a pair of tunnel-connected closely
located levels, formed from the ground states of the [
and 7 isolated QW'’s, we can take the solution as a linear
combination of these states, i.e., as |+) = \II?;II)-i—\Ilfplr).
The orbitals |} and |r) are exponentially decaying out-
side the corresponding quantum wells on the scale of
k! = R/v2m*U where U is the band offset at the
heterojunction. Denoting the width of each well by
di,i = l,r and the width of the barrier by d, cf. Fig.
1, these orbitals are given approximately by

(ki/n)en(z—z.;+d.-/2), z < zi— di/2
|g) = Ni{ coslk;(z — z)], |z — 2| < di/2 (13)
(ki/n)e—n(z-—-z‘—di/%, z >z + d,;/2,

where N; is a normalization factor. For small barrier
penetration that we assume, i.e., for exp(—2xd) < 1 and
kd; > m we have N; =~ /2/d; and k; =~ w/d;. The col-
umn of coefficients ¥;, and ¥, satisfies the Schrédinger
equation for a two-level system. Solving it we obtain the
eigenfunctions |+) and |—) in the form

|£) = N{|l) £ [2T/(Ar + A)]Ir)}, (14a)

|=) = N{|r) = [2T/(Ar + A)]In)}, (14b)
where

T ~ (2n2h2 /m* kd>/ 2d3/?) e~ (15)

is the tunnel matrix element. Here Ar = VA2 + 4772
is the level splitting with account taken of the splitting
due to tunneling. For simplicity in the other sections we
usually give the analytical expressions for A? > 472 and
hence Ar = A. The normalization factor N is given by

N =+ Ar)/2A7 (16)

and the energy E.p of the |+) states by



16 436

Eyip =p?/2m* £ Ar/2; (17)

the energy F., is counted from the midpoint between the
left and right levels. For the potential profile given in Fig.
1 the splitting between deep levels is given approximately
by A ~ (n2h?/2m*)[d; %2 — d;?] if A < U. It is readily
seen that if A > T the |+) state is mainly concentrated
in the left well and the |—) state in the right well.
Considering acoustic-phonon interaction with electron
states, described by the wave functions (13) and (14), we
obtain the factor that gives the mixing of |+, p) states

(G,j =)

UPIEI'D) = bpp 1 4nqy D T (lle=*l))  (18)

i=l,r

which can be calculated without taking barrier penetra-
tion of the |l) and |r) orbitals into account, i.e., usin
Eq. (13) for K — oco. The column of coefficients ¥;j
and ¥F in Eq. (18) can be taken from Eq. (14). The
contributions containing the transverse wave-vector com-
ponent ¢, in Eq. (18) can be evaluated in the manner of
Ref. 10 where electron scattering by phonons in a single
quantum well was considered. The result is

(jle*®=|5)e' =% (g2 d;), (19)
where
x(a) = (2/a)sin(a/2)/[1 — (a/2m)?]. (20)

It should be noted that a finite value of Eq. (18) for
j # j' is obtained because the factors (19) in the ! and r
wells are different [zero value is obtained for ¢, — 0 due
to the orthogonality of the |+) and |—) vectors]. From
Eq. (18) we have

|(=lei==|+)]* = { x(gd1) + Xx*(gz7r)
—2cos(q.A2)x(q-d1)x(q-d-)}
4T?(Ar + A)?

AT+ (Ar + AR (21)

where Az = 2, — z; = (d; + dr)/2 + d is the interwell
distance.

IV. ENERGY DEPENDENCES
OF DIFFERENTIAL ACOUSTIC FLOW
FROM A DQW

Using Eqgs. (17) and (21) we can calculate the con-
tribution of interwell transitions to the energy and an-
gular dependences of the speed of phonon emission [cf.
Eq. (3)] and to the differential acoustic flow §G or emis-
sion intensity dG/dS?, cf. Eqgs. (8) and (9). This con-
tribution is related with the terms j; # jo; in our nu-
merical calculations we will use ordinary parameters of
GaAs/Al,Ga;_,As structures. In this section we will
study the differential acoustic flow given by Eq. (8). The
integration in Eq. (3) is carried out using the condition
of energy conservation and the isotropy of the problem in
the plane of the 2D layer; any possible anisotropy of the
electron distribution because of their drift, under heat-
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ing induced by a longitudinal applied electric field, is
neglected. If the average energies E, and E_ of the car-
riers in the [4+) and |—) states, respectively, satisfy the
inequality £F_ <« A + E,, in the nondegenerate case, or
A+ E, — E_ > kpT., in the degenerate case, where
T, is the electron temperature assumed the same for |+)
and |—) states, then phonon emission is possible only for
transitions from the |+) state to the |—) state and the
contribution to (§G)i™er is given only by one interwell
term. Notice that for large emission angles 6 the typi-
cal phonon energy diminishes with increasing 6 and the
phonon distribution is narrow if £, < A. These proper-
ties are related with the momentum and energy conserva-
tion conditions. From the latter we see that, for small g,
the minimum and maximum wave vectors of the emitted
phonons are given approximately by (see Fig. 1 where
gmin corresponds to transition 2 and ¢una.x corresponds to
transition 3)

Qmin = V 2m*A + ]')'2/h’ @max = Gmin T+ ﬁ/h

Here we have assumed p ~ v/2m*E, < v2m*A; this
is the condition that gives a narrow energy distribution.
Besides, for ¢, — 0 the matrix element for interwell tran-
sitions (21) goes to zero, i.e., the differential acoustic flow
from the DQW goes to zero as § — /2. For § — 0 the
typical energy of the emitted acoustic phonons tends to
A, if the restrictions for transitions to filled states of the r
QW are not essential (as, e.g., in the nondegenerate case
or in a degenerate case with quasi-Fermi-energies obey-
ing Ep; > EF,), and the width of the energy distribution
tends to zero linearly with 6.

The exact energy and angular dependences for
(8G)inter are obtained by substituting Eqs. (3) and (21)
in Eq. (8). The resulting expressions are rather cum-
bersome for intermediate angles and strongly degenerate
or nondegenerate electrons in a DQW structure. We do
not discuss the intermediate case of weakly degenerate
electrons since we are interested in typical characteris-
tics of the emitted phonons that involve large angles. As
discussed partly above this could be realized in a rather
wide region. In this case we obtain

sin @ > \/2m*s2/A ;

for many angles we cannot neglect either the oscillations
of the overlap factor (21) or its monotonic strong de-
crease for g,d; , > 2m. The oscillations of this factor are

substantial if the condition

(22)

(23)

QZdl,'r <1 (24)

is not fulfilled in which case they give an additional struc-
ture to the spectral and angular phonon distributions. In
detail the result depends considerably on the parameters
of the structure. If the condition (24) is fulfilled then
using q,Az < 1, which is satisfied for reasonable values
of d, we obtain from Eq. (21) the result

[(—le¥=*|4)|* = (T/A)?(g.A2)>. (25)
For (6G)i"ter under conditions (23) and (24), we obtain
the simple expressions!!
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G BEXp | — k T (___2L)
Blel w,
inter __ COS2 4 ° o
(6G)BF = G (26)

ol (-

Here wg = v2m*s2A/h sin is the characteristic fre-
quency of the maximum. For the nondegenerate (B) and
degenerate (F') case we obtain

Gp = (ni/p2pkBTe) G(kpTa), Gr = (2/v7) G(Er),

(27)
where
En ( En \ (Enpz)" (T)® &
CB =1/ (zé&) ( s ) (Z) Fraa(®)’
(28)
Here psp = m*/wh? is the 2D density of states,

popTe; > my, and 74,(E) is the relaxation time of 3D
electrons scattered by equilibrium acoustic phonons in
bulk semiconductor.!? The appearance here of such bulk
value is only a suitable characteristic of the electron-
phonon interaction and is not connected with the physical
processes discussed. We point out that (26) is obtained
for (A/4kpTe;) > 1 in the nondegenerate case and for
A > Ep; in the degenerate case. As is seen from (26)
in both cases the maximum corresponds to wy and the
half-width is equal to wg+/Te;/A in the former case and

6.0

5.0 —

4.0 —

(G
(10718 J/sr mm?)

6.0

hw (meV)

FIG. 3. Energy dependences of (6G)8*" for the DQW
structure with d; = 8.4 nm, d- = 10 nm, d = 3 nm, and
U = 300 meV; 6 = 4.5° (dotted curve), 8 = 9° (solid curves),
6 = 18° (dashed curves). The upper dotted, solid, and dashed
curves correspond to A = 10 meV and the corresponding
lower curves to A = 20 meV. In the units shown the lower
dotted curve coincides with the horizontal axis.

e [
we Eri
[

to wey/EFi/A in the latter. Using Eq. (26) and the
results of Ref. 6 for (6G)!"*"® we find, in the degenerate
case, that the intrawell contribution can be neglected if
the following condition is satisfied:

k§Tisin® 0 T2
E’Tf’n < —&5{1 —cos[wg Az cos(0)/s]}. (29)
Thus the intrawell contribution can be neglected for
strongly degenerate electrons and not too small tunneling
matrix element 7. The energy and angular dependences
of (6G)™™*er, calculated numerically using Egs. (3), (8),
and (21), differ considerably from the simple asymptotic
result (26) because near the maximum of the w dependent
(6G)™ter for optimal @ the factor (21) already oscillates
and begins to decrease very strongly with increasing w.
As seen from Figs. 3 and 4, given for the degenerate case
with n; = 1.24 x 10" ¢cm~2 and Ep; = 4 meV, (6G)inter
is considerably different for different parameters of the
DQW structure. This is related to the factor (21) which
not only determines the position of the minima of the
differential acoustic flow, determined generally by Az,
but also shifts the emission maximum approximately by
a factor of 2 when d; is halved. The maximum of the
differential acoustic flow for diminishing QW widths, as
seen from Figs. 3 and 4, becomes considerably larger
due to increasing the factor w? in (8) when the frequency
at the maximum is doubled. Moreover, for smaller QW
width the angular diagram of emission becomes narrower
and the angle for which the differential acoustic flow has
the largest value tends to be smaller.

12.0

10.0 —

8.0 —

(8Gyper

(10715 J/sr mm?) &0 7

4.0 —

hw (meV)

FIG. 4. Energy dependences of (6G)&8%" for the DQW
structure with d; = 4.2 nm, dr = 44 nm, d = 3 nm, and
U = 870 meV; other notations coincide with those in Fig. 3.
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20.0

15.0 —

(6G)B

(10717 J/sr mm?) 10.0

5.0

5.0

hw (meV)

FIG. 5. Energy dependences of differential acoustic flows
6@ for nondegenerate electrons in a DQW structure with d; =
9 nm, dr = 10 nm, d = 3 nm, and U = 300 meV; A = 10
meV; § = 4.5° (dotted curves), § = 9° (solid curves), § = 18°
(dashed curves). In each set of curves the rightmost curve is
for interwell transitions and the leftmost curve for intrawell
transitions.

In Fig. 5 we plot the energy dependences of interwell
and intrawell differential acoustic flow for nondegener-
ate electrons at temperature kgT, = 1 meV and with
density n; = 2.5 x 10'© cm™2. The dotted, solid, and
dashed curves correspond to 6 = 4.5°,9°, and 18°, re-
spectively, and the other parameters are specified in the
caption. The intrawell contribution from the r QW is
neglected since we assume n; > n,. As can be seen, the
energy and angular dependences for the interwell contri-
bution are similar to those discussed above for the de-
generate case, compared with curves for A = 10 meV
in Fig. 3. The smaller typical values of the intensity
here are mainly due to the smaller electron concentra-
tions. As for the intrawell contribution from the | QW,
the corresponding maximum value, for given 6, is often
comparable with that of the interwell contribution for the
same 6. However, the phonon energies corresponding to
two such maxima are appreciably shifted with respect to
each other.

The numerical results represented in Fig. 5 correspond
to n; > n, and Ty > Te,. This could be realized in the
regime of photoexcitation or of modulation of the trans-
verse voltage, i.e., in cases (i) and (iii) as mentioned in
Sec. I. The simplest and easiest to realize experimentally
nonequilibrium situation is heating by a longitudinal elec-
tric field, case (ii) in Sec. I. In this case the concentra-
tions n; and n, are related by the barometric factor, i.e.,
ny/n,. x exp(—Ar/kpgT,), if the heating is controlled by
electron-electron scattering. The interwell contribution
could be observed in such a case for not too large values
of Ar/kgT., when it is necessary to consider both the
transitions from the ! to the »r QW and the reverse ones.
Numerical results for this case, which take into account
both transitions for interwell contributions and intrawell
contributions, are shown in Fig. 6 for a DQW structure

F. T. VASKO, O. G. BALEV, AND P. VASILOPOULOS 47

20.0

15.0 —

G

(10715 J/sr mm?) 10.0 —

0.0 2.0 4.0 6.0 8.0 10.0
hw (meV)

FIG. 6. Energy dependences of differential acoustic flows
6G for heated nondegenerate electrons in a DQW structure
with d; = dr = 4.2 nm, d = 3.8 nm, U = 870 meV for
6 = 4.5° (dotted curves), and 8 = 9° (solid curves). In each
set of curves, at fiw = 4 meV, the lowest one is for interwell
and the next one for intrawell transitions; the highest curve
is the total contribution.

with Az =2 5.0 meV and T' & 1.5 meV. In addition, we
show the results corresponding to a transverse voltage
for A = 4 meV and kT, = 5 meV. The total concen-
tration is n; + n, = 1.7 x 10! cm™2 and the marking of
the curves is the same as that in Fig. 5. The character
of the interwell contribution is analogous to that shown
in Fig. 4 for the degenerate case with similar parameters
for the DQW structure; this contribution substantially
modifies the form of the total energy dependence of 6§G.

V. ANGULAR DEPENDENCES
OF EMISSION INTENSITY
AND TOTAL ACOUSTIC ENERGY FLOW

We now consider the emission intensity from a DQW,
i.e., the differential acoustic flow integrated over fre-
quency, determined by Eq. (9), that depends only on
the polar angle §. Integrating 6G, given by Eq. (26),
over frequency for the case of large angles [determined
by inequalities (23) and (24)], we obtain a simple angu-
lar dependence of the emission intensity

Y2 Gp\/Eri/A
Gp/Ta/A

Here, in comparison with Eq. (26), an additional factor
1/sin 6 appears because the width of the peak is propor-
tional to ws. With increasing 8 Eq. (30) shows that the
emission intensity decreases monotonically with 8. For
the reverse inequality sign in Eq. (23), i.e., for asymp-
totically small angles, dG/d§} tends to zero for § — 0,
because in such a case only “vertical” transitions, such
as transition 1 in Fig. 1, are allowed. Hence, the maxi-

[dc]i‘“e’ _ /@B cos?6 (30)

a0 F.B b sin’ 6
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mum of the emission intensity dG/dS? is at optimal polar
angle g, the order of which could be estimated for differ-
ent cases (see Ref. 13). However, due to the complicated
angular dependence of the factor (21) the exact value of
6o can be obtained only numerically from the calculation
of the angular distribution of the emission intensity. The
dependence of §g on A and on the widths of the QW'’s
(cf. Ref. 13) and also the dependence of dG/dQ on 6 for
small angles, of the order of 6, are illustrated in Fig. 7.
The curves are obtained with the parameters of Fig. 3
(wide QW’s) and of Fig. 4 (narrow QW’s) for Ep; = 4
meV.

The peak form of dG/d} for nondegenerate electrons
represented in Fig. 5 is analogous to that given in Fig.
7 for degenerate electrons. The dG/dQ} dependences for
heating by the longitudinal electric field are given in Fig.
8 (the differential acoustic flow in this case is represented
in Fig. 6). Here it is necessary to take into account all
intrawell and interwell contributions. The interwell con-
tribution could be distinguished using the dependence of
the curves for dG/dQ2 on the energy splitting A, which
can be controlled by a transverse voltage. From the nor-
malized curves in Fig. 8 it is seen that with increasing
A (and hence Ar) we have not only a decrease in the
maximum values of the emission intensity (these values
are given in the caption) but also a substantially larger
decrease of the intensity for small angles because of de-
population of the I QW. This is related mainly to the
interwell contribution to the emission. Then taking into
account the dependence of the dG/dS curves on A, we
can single out the interwell contribution because the form
of curves for the intrawell contribution is independent of
A.

The dependence of the total acoustic energy flow G,,
determined by formula (12), on A changes with the geom-
etry of the DQW structure for degenerate electrons; when

40.0

30.0 —

dG/dQ

(mW/sr mm?) 20.0 4

10.0 —

0 (rad)

FIG. 7. Angular dependences of the emission intensity
dG/dQ for the DQW structure. At 6 = 0.15 rad, the first
and third curves are obtained with the parameters of Fig. 3
(here 10dG/dw is plotted), the second and fourth ones with
those of Fig. 4. Solid curves: A = 10 meV; dashed curves:
A =20 meV.
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1.0

0.8 —

0.6 —
dG/dQ
(rel. units)

0.4 —

0.2 —

0.0

0.0 0.04 0.08 0.12 0.16 0.2
0 (rad)

FIG. 8. Angular dependences of the normalized emis-
sion intensity dr/dQ for the DQW structure with the
same parameters as in Fig. 6. Solid curve: A = 2 meV,
max[dG/dQ] = 218 mW /srmm?; dashed curve: A = 4 meV,
max[dG/dQ) = 174 mW /sr mm?; dotted curve: A = 10 meV,
max[dG/dQ] = 126 mW/srmm?. The curve for A = 20 meV
is indistinguishable from the dotted one. All interwell and
intrawell contributions have been taken into account.

the typical width of the structure is reduced (for fixed
barrier width) the total acoustic energy flow increases
appreciably in analogy with the differential acoustic flow
discussed in Sec. IV. The same holds for nondegenerate
electrons when T, changes. From Fig. 9 it is seen that
with increasing A the value of G, is diminished. This is
related to the reduction of the factor determined by Eqgs.
(21) and (25) for the two curves in Fig. 9 corresponding
to the degenerate case; both curves tend to zero. Here
the tunnel matrix element T' = 3.4 meV for a structure

12.0
8.0 —
G,
(mW/mm?)
Level splitting A (meV)
FIG. 9. Total acoustic energy flow G, as a function of A

corresponding to Fig. 3 (solid curve; here 10G, is plotted),
Fig. 4 (dashed curve), and Fig. 6 (dotted curve).
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with wide QW’s and kT = 3.9 meV for a structure with
narrow QW’s. In the nondegenerate case with increas-
ing A the result tends to the intrawell contribution only
from the r QW as is seen from the third curve in Fig. 9.
After subtracting the intrawell contribution we can esti-
mate that the interwell one amounts to more than 10%
of G, for A < 4 meV and more than 20% for A < 2 meV.

VI. DISCUSSION AND CONCLUDING
REMARKS

Here we discuss the assumptions and carry out some
estimations of the phonon energy flow caused by interwell
tunnel transitions. The considerations given above show
that there is a considerable difference between the char-
acteristics of the acoustic phonons emitted during inter-
well and intrawell transitions. This is due to an interwell
interference which changes qualitatively the energy and
angular dependences of §G. It thus gives the possibility
of distinguishing the interwell channel of acoustic-phonon
emission. The numerical results of the paper show the
possibility of using such a process for the generation of
high-energy phonons. This can be realized if several con-
ditions hold; a more detailed description of this case de-
mands more precision in the model under consideration.

An extension of the model introduced in Secs. II and
II1 is connected with (a) the necessity of a self-consistent
determination of the electron energy spectrum since for
high electron concentrations substantial transverse elec-
tric fields are possible; (b) modification of bulk phonon
modes if the DQW layer is near the surface of the sample;
(c) taking into account the piezoelectric electron-phonon
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interaction which, because it decreases with increasing
transmitted momentum, could give a contribution to the
low-energy wing of the considered distributions. Fur-
ther, it has been assumed that other processes of the
nonequilibrium electron relaxation in the DQW struc-
ture are ineffective in comparison with the acoustic chan-
nel. This corresponds to small electron concentration in
the structure so that their Coulomb relaxation (similar
to an Auger process) is ineffective and to the case of
A < hwy when optical-phonon emission is negligible (for
A > hwp generated optical phonons are decomposed in
pairs of acoustic phonons that change the distribution of
the latter). It should be pointed out that the approxi-
mations of our treatment are further connected with the
neglect of phonon absorption in the boundary condition
(2). However, the above-mentioned possible extensions
do not substantially change the results of this paper, e.g.,
the typical value of the interwell differential acoustic flow
as well as its energy and angular dependences. Our re-
sults show an appreciable contribution of the interwell
channel of acoustic-phonon emission in comparison with
values typical for the intrawell channel.}* Thus, the ob-
servation of this contribution is possible in a variety of
cases, mentioned in Sec. I, characterized by a nonequi-
librium electron occupation in DQW structures.
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