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Shot noise and thermal-equilibrium noise are often, and incorrectly, viewed as additive and in-
dependent noise sources. The two forms of noise can even be identical, as recognized by several
pioneering investigators long ago. Shot noise measures the graininess of the conduction process, and
in samples with a fixed number of carriers, where the mean free path is short compared to the sample
length, it is determined by the passage of a carrier through its mean free path. For a classical nonde-
generate conductor we show that shot noise calculated that way is the thermal-equilibrium current.
For mesoscopic conductors that transmit elastically with a probability small compared to unity,
thermal-equilibrium noise is also shown to be approximately the sum of two shot-noise terms, one
for the arriving stream at each reservoir. For a semiclassical metallic conductor, at zero-temperature,
the noise proportional to current flow is shot noise related to the charge transferred between sample
electrodes, when a carrier goes through a mean free path. At higher temperatures, a suggestive
physical argument is used to show that noise increases above thermal-equilibrium noise according to
the square of the ratio of the energy gained in one mean free path, to the thermal energy.

I. INTRODUCTION

(i )~ = 2e (dn/dt)Av. (1.2)

Here, dn/dt represents the rate of electron passage. The
current flow consists of a series of randomly spaced (Pois-
son distribution) b functions, which contribute incoher-
ently to the current component at a particular frequency.

The existence of shot noise, in thermionic diodes, was
described by Schottky in 1918. In diodes with a suf-
ficiently large voltage applied to the anode, so that all
the independently emitted electrons cross and are not
turned back to the cathode by the Coulomb eeet of other
electrons, the mean-squared noise current in a frequency
range of width Av is

(i )~ = 2eIAv.

e is the electronic charge and I the current. This is the
noise that arises from the graininess of the current. In
a given time interval there may be more electrons emit-
ted, or fewer, than the number determined by the aver-
age current I. Equation (1.1) is valid at frequencies low
compared to the electron transit time. In the case of the
vacuum diode, with a sufficientl large applied voltage,
the external circuit is not relevant because any voltage
fluctuations which result from the shot noise do not, in
turn, influence the current. In general, however, expres-
sions of the form of Eq. (1.1), as found in the noise litera-
ture and in this paper, specify the noise current that will
ffow if the circuit element under consideration is short-
circuited in the frequency range under consideration. Or,
alternatively, such expressions give the size of the current
flowing out of a noise current source, in parallel with the
element.

Equation (1.1) can be written in a more revealing, but
uncommon, form,

(dn/dt) speciffes the rate of these contributions, and
e = J i dt measures the size of each electron's contri-
bution to a Fourier integral, at frequencies low compared
to the transit time. Thus, in general, we can see that
shot noise measures the size of the stochastically inde-
pendent charge-transfer event. In the vacuum diode, or
in tunneling, that happens to be the transfer of a com-
plete electron through the sample. We are now ready to
anticipate one of our principal conclusions. In a macro-
scopic resistor the stochastically independent event is the
motion of a carrier through a mean free path E. If 8 is
small compared to the sample length L, then the charge
transfer between terminating electrodes, due to the mo-
tion through a mean free path, becomes of order (el/I. ).
This will be much smaller than the electronic charge e,
and we cannot expect shot noise comparable to Eq. (1.1)
in magnitude. This point has also been emphasized,
and treated analytically, in Ref. 7. Much of our ensu-
ing discussion can be considered to be an elaboration of
Ref. 7. Another related discussion can be found in Ref. 8,
but is much further from the viewpoint expounded subse-
quently. We have, of course, focused here on samples with
a fixed number of carriers, characteristic of metals as a
result of charge neutrality. In the case of semiconductors,
however, with partially ionized donors, the carrier pop-
ulation will fluctuate. This fluctuation in the resistance
will give a noise signal proportional to the current flow,
and is independent of the thermal-equilibrium noise. The
true additivity of the two noise sources, in this case, may
be part of the background for a more widespread infor-
mal assumption that shot noise and thermal noise are
independent and additive.

Thermal-equilibrium noise is present in the absence
of a current. The thermal-equilibrium spectral noise cur-
rent density of a conductor is

(i )~ = 4Gk~OAv.

0163-1829/93/47(24)/16427(6)/$06. 00 16 427 1993 The American Physical Society



16 428 ROLF LANDAUER 47

eV/k~ 0 —1
exp (eV/k~ 0) —1

(1.4)

This can be used to illustrate the point made above, con-
cerning a single result with separate shot-noise limits and
thermal-equilibrium-noise limits. At high temperature,
the first right-hand-side term dominates, leading to the
thermal-noise expression. At low temperature, the sec-
ond term corresponds to a modified shot-noise formula.
It is modified through appearance of the factor (1 —T),
discussed subsequently. The last term in the above equa-
tion gives the first-order corrections to the shot-noise and
thermal-noise limits:

kgyO )) eV; (i )~„=4kriOAvG
e2 (eV)2+ AvT(1 —T)

3vrh B
k~O (& eV; (i )~ = 2eI ~„AvT(1 —T)

4e2
+ kriOAvT .

(1.5a)

(1.5b)

The reader needs to be cautioned: Eq. (1.5a) was given
incorrectly in the original version of Ref. 17, and cor-
rected in Ref. 18. I ~„ in Eq. (1.5b) is the maximum cur-

G is the conductance, 0 the temperature, and k@ is
Boltzmann's constant. Equation (1.3) specifies the noise
in a short-circuited resistor, or more generally the equiva-
lent noise current generator, in parallel with the conduc-
tor. As stated above, there has been a tendency to think
of shot noise and thermal-equilibrium noise as separate
and additive. For example, one recent and otherwise per-
ceptive paper tells us: "First there is Johnson noise . . .
present even at equilibrium. . . . The second source, our
main concern, is shot noise ... ". One of our purposes is
to rebut this notion. Shot noise and thermal-equilibrium
noise are special limits of a more general noise formula.
Early insights into this came in Refs. 2 and 11, which
pointed out that a linear resistor could be built out of
two opposing thermionic emitters, with the potential of
each cathode controlling the emission of the other. They
showed that the noise predicted by Eq. (1.3) was just the
sum of the two independent shot-noise contributions of
the two opposing streams. There are more modern and
similar discussions oriented to solid-state devices, e.g. ,
Ref. 12.

In recent years noise in mesoscopic systems has drawn
considerable attention. Three early papers were fol-
lowed by a stream which cannot possibly be listed here,
and I cite only a few papers in addition to those in-
voked elsewhere in this discussion. There are also papers
related to resonant tunneling and double barrier tunnel-
ing, with and without attention to electron-electron in-
teraction. We cite a sampling of this stream, but it
is essentially unrelated to our material. Reference 17
discusses the noise in a single channel conductor with
transmission probability T. The result is

4e~ 2e
(i )~~ = kriOTAv+ T(1 —T)DveV

4e+ T(1 —T)Avkr38
vrh

(i )~ = 4kirOGAv 1+—
~

1 ( .V i'
12 (kgO) (1.6)

Equation (1.6) shows that in the presence of transport,
noise increases quadratically, at first. The relevant pa-
rameter is the electron energy gain, eV, compared to
kirO. At large applied voltages, Eq. (1.5b) applies and
noise increases linearly with voltage.

We do not, in this paper, address resonant-tunneling
structures explicitly and separately. Furthermore we ad-
dress only the most fundamental and inevitable noise
sources, and ignore those due to time-dependent changes
in the sample. Thus, 1/f noise and random telegraphic
signal noise are outside of our view.

Equation (1.5a) can be given another interesting
form to illustrate the transition away from thermal-
equilibrium noise. That is,

(i )~ = 4k~OGAv+ — (i2)~„, (1.7)6 kg-
where (i2) ~„designates the first right-hand-side (0 = 0)
term in Eq. (1.5b). All of this discussion emphasizes that
the relationship of eV to k~O determines whether we
are in the thermal-noise limit or the modified shot-noise
limit.

II. MESOSCOPIC CONDUCTORS

In this section we will supply an adapted version of
the arguments of Refs. 2 and ll to single channel meso-
scopic samples whose conductance is determined by elas-
tic transmission, with probability T. The conductance, if
the potential difference is measured between wide reser-
voirs, will be Te2/vrh. In contrast to Refs. 2 and ll,
our analysis is only approximate. In equilibrium the
two reservoirs will be at the same electrochemical po-
tential. The fully occupied energy ranges well below the
Fermi level, as well as the empty range way above, do
not contribute to the noise. That comes from an en-
ergy range with width of order k~O, at the Fermi level.
Within an energy range k&O we have a current of or-
der ek~O/xh emerging from each reservoir. A fraction
T of that will be transmitted. Let us now specialize to
the case T &( 1. The shot noise associated with that,
according to Eq. (1.1), will be

rent carried in the channel within an energy range of eV,
at the Fermi surface, counting all the electrons moving in
one direction. This is the current emitted by the higher-
energy reservoir, and is the actual current, if T = 1. For
T &( 1, I,„T is the current and 2eI ~„TDv is
the shot noise given by Eq. (1.1). For larger values of T
we deviate from Eq. (1.1). The Pauli exclusion princi-
ple spaces the electrons more uniformly than presumed
in Eq. (1.1). For T = 1, a fully occupied stream, we
again reach a noiseless condition, just as for T = 0. For
T very close to 1 it is the current of uncorrelated holes,
I ~„(1—T), which can be considered to be the source of
shot noise.

An alternative form of Eq. (1.5a) will be given here,
for future reference, in the limit T && 1,
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t'eke 0(i')~„=2e
I mh ) (2.1)

III. CLASSICAL MAXWELL-BOLTZMANN
CONDUCTORS

In this section we will show, as in the mesoscopic sam-
ple of Sec. II, that thermal-equilibrium noise is the sum
of shot-noise contributions. In this case, however, we will
consider a Maxwell-Boltzmann carrier distribution. We
assume that the carrier scattering probability, per unit of
time, is 1/7. As a result of the scattering event, the car-
rier's velocity is randomized. The nonguctuating carrier
density is n. The sample has length L in the direction of
current flow, taken to be the z direction, and has a cross-
sectional area A. m is the carrier mass. The conductance
is G = (A/L)(ne2r/m). A carrier moving with velocity
v, in the z direction, for a time t, will contribute ev, t/L
to the charge transfer between terminating electrodes. In
case this is not a well known result to the reader, it can be
rationalized on the basis that only if v, t = I will a com-
plete change be transferred. Or, more authoritatively, it
can be shown to be the change of the charge induced on
the electrodes at the ends of the sample. References 5
and 20 provide a more detailed analysis. We will now
invoke Eq. (1.2), repeated for the reader's convenience:

(i )~ = 2q2 (dn/dt) Av.

Here, we have replaced the original e of Eq. (1.2) with
q, to emphasize that the charge transferred between elec-
trodes in an elementary stochastic event is not, in gen-
eral, the carrier's charge. If we take dn/dt to be the total
number of terminated carrier flights per second, we do
not need to add a contribution from right-moving carri-
ers to one from left-moving carriers. This yields

(dn/dt) = A Ln/r. (3.2)

For two opposing streams, with independent fluctuations,
we have

(i )~„=(4e kgyOT/mh, )Av. (2 2)

Te2/7rh is the conductance G. Therefore Eq. (2.2) can
be written as

(i2) ~ = 4 k~OG 6v (2.3)

in accordance with Eq. (1.3). Thus, thermal-equilibrium
noise is simply the sum of the two separate shot-noise
terms for the countervailing streams. The multichannel
case will not be discussed in detail. But it becomes a
trivial generalization of the above, using the technique
described in Ref. 19, invoking a basis reducing the mul-
tichannel case to a set of parallel one-dimensional chan-
nels. If T, (( 1, for all of these channels, then both the
conductance and noise are simply a sum of separate con-
tributions of the form discussed above, one per channel.

(i )~, = (2(q )~„ALn/r)Av. (3.4)

Equation (3.4) allows for the fact that q is a function of
the flight time t, which is distributed statistically.

We now come to the evaluation of

(q')~ = (e'v.'t'/L')~' (3.5)

Consider, first, a particular value of v2. The probability
of a flight time between t and t + dt is given by

p(t)dt = r e '~ dh

and this leads to

(3.6)

(t )A t'p(t) dh = 2r'. (3.7)

z e2 kgO
(q2) 2rz (3.9)

Inserting this value for (q2)~„ into Eq. (3.4) gives

Aenr
(i )~„=4kgyO—

m

which in turn is simply

(i )~„=4k~OGEv.

(3.10)

(3.11)

Thus the combined effect, arising from separate mean-
free-path contributions, yields the expected thermal-
equilibrium noise.

IV. METALLIC SHOT NOISE

This section will be devoted to an analysis of a large
(not mesoscopic) metallic conductor. Microscopic mod-
els for thermal-equilibrium noise in metallic conduction
were studied more than half a century ago. 2~ Our pri-
mary analysis will, instead, be for 0 = 0, where thermal-
equilibrium noise is absent, with only some intuitive sug-
gestions regarding the high-temperature case. A semi-
classical approach, as in Sec. III, with a relaxation time
r defining the scattering probability, will be invoked.

At 0 = 0, in equilibrium, we have an occupied Fermi
sphere with a sharp cutoff at a wave vector of magnitude
k~. There is no noise associated with this distribution.
In the presence of an applied Beld E, the carriers will
be accelerated. For simplicity in signs we will consider
positive carriers with charge e. The final results will,
in any case, depend on the square of the carrier charge.
Thus the acceleration gives

v~ in Eq. (3.5) is distributed according to the
Maxwell-Boltzmann distribution with the weighting
exp( —mv, /2kgO). This yields

(v, )~, = (k~O/m). (3.8)

Thus, inserting the results of Eqs. (3.8) and (3.7) into
Eq. (3.5) yields

Thus
dk/dt = eE/h. (4.1)

(i2)~ = (2qzALn/r)Av,

or more precisely

(3.3)
Carriers will be carried past the Fermi-sphere surface in
the positive k direction. They will be scattered out of
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their states according to

(~f/~t) = (—f —f.)/~ (4.2)

where fo is the equilibrium distribution. For a sharp
Fermi sphere, at 0 = 0, fc = 0 for carriers carried past
the Fermi sphere's surface and we have

8f/Bt = f/7-. . (4.3)

We will now concentrate on the excess carriers taken to
the right, past the original equilibrium Fermi surface. Af-
ter evaluating their contribution to the noise, we double
it to account for the similar events taking place on the left
half of the sphere. There, of course, we have unoccupied
states being brought into the originally occupied sphere.
Carriers in the occupied states which have gone past the
Fermi surface will be scattered out of these states with
a probability 1/r, per unit time. It is the variability in
the length of the occupation time, allowed by a scatter-
ing rate w, which produces noise. The average time for
a state to remain occupied after passing the Fermi sur-
face is w. During this time 7. the state produces a charge
transfer between electrodes given by

q = ev, ~/L, (4.4)

where v, is the z component of velocity at the Fermi sur-
face. We will ignore the small fractional change in v,
as the carrier continues to be accelerated before scatter-
ing. Carriers which are scattered in a time less than ~
will give a charge transport less than that of Eq. (4.4),
and conversely for carriers which remain unscattered for
a longer time. The mean-squared variation in the trans-
ferred charge determines the noise. We once again resort
to Eq. (1.2),

(i2)~ = 2((q —q)z)~„(dn/dt)Av (4.5)

Note that in Eqs. (1.1) and (1.2) it was the lack of corre-
lation in pulse timing which eliminated the cross effect, in
Fourier component evaluation, between diff'erent pulses.
Here, instead, it is the lack of correlation in deviation
from the average.

What is the value of (dn/dt) needed in Eq. (4.5)'?
The density of states in the conductor, in k space, is
2AL(2') s, where AL is the volume. The electric field
produces a rate of motion, in k space, given by eE/h
The Fermi sphere has a projected area, perpendicular to
the direction of field and current which is 7rkF, where k~
is the wave-vector magnitude of the Fermi sphere. Thus
the rate at which carriers cross the right half of the Fermi
surface is

2AL(2a) (eE/h )ark' ——(2x) ALkz (eE/5) . (4.6)

g2 v2
((q —q)')~. = L; (t — )'. (4.7)

If we want to invoke the total rate of Fermi-surface cross-
ing events, including both hemispheres, we must take
twice that given in Eq. (4.6), and we will use that here-
after.

Now we come to the evaluation of

p(t)dt = (~-')e-'? dt

and t = (t)~„=w, whereas (t )~„=2r2 . Thus

((t —~)2)~„=~~

and

(4.8)

(4.9)

((q —q)~)g„= e vz~~/L~. (4.10)

The effective value of v2 in Eq. (4.10) is reached by av-
eraging v2 over the Fermi surface, projected onto the
same equatorial plane at v, = 0, invoked in the cal-
culation leading to Eq. (4.6). This yields an averaged
value for v, of 2v+, where v~ is the magnitude of the
Fermi-surface velocity. Substituting this value of v2, as
well as Eq. (4.10), and twice the value for dn/dt given in
Eq. (4.6), into Eq. (4.5), yields

(P)~.=, —e' v~2 kF' ~'av. (4.11)

The density of the states per unit volume is

n = k~s/3~ . (4.12)

Utilizing this in Eq. (4.11) and also setting vz = 5k~/m
gives

3 A e3En
(i )~gg = —— 'r VFAV.

m

Using o. = ne2&/m turns this into

(i )g = s4GeE~vphv

(4.13)

E = V/L, where V is the applied voltage. Also l =
vF w, where t' is the mean free path. Therefore Eq. (4.14)
becomes

(i )~ = s4GV —eAv.I (4.15)

The current I = GV and this turns Eq. (4.15) into

(i )~ = I (2eIAv) —.I (4.16)

Thus, shot noise is reduced below 2eIAv by ssl/L. The
exact numerical coefBcient s in Eq. (4.16) is not very
significant. It is, on the one hand, sensitive to the details
of our assumptions. Furthermore, Eq. (4.16) can be given
a different appearance if we replace 8 by the z-directed
component of the mean free path, averaged in several
possible ways. The reduction factor //L in Eq. (4.16) is
in accordance with the suggestion made in Sec. I and the
earlier results of Ref. 7. Our result in Eq. (4.16) is not

t is the elapsed time between Fermi-surface crossing and
the scattering event. v, is the z component of the sur-
face Fermi velocity appropriate to a particular portion of
the Fermi surface, and we will take its variation into ac-
count later. For the moment we will focus on the stochas-
tic variation related to the final right-hand-side factor in
Eq. (4.7).

The probability that the scattering event takes place
between t and t+ dt is
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analytic in I, with a discontinuous derivative at I = 0. As
we shall see below, this behavior is characteristic of the
strict e = 0 limit, and disappears once we take e ) 0.

We now turn to the case where there is a nonvanishing
temperature and inquire about the onset of the depar-
ture from equilibrium noise, as current flow is set up.
Noise, as is evident from much of the literature cited in
this paper, occurs when the carrier occupation probabil-
ity is intermediate between 0 and 1, typically reaching
a maximumio when f = z. Thus the number of states
in this partially occupied range can be taken as a crude
measure of relative noise.

In the presence of an applied field E, Eq. (4.2) is re-
placed, in the steady state, by

Of Of eE f —fp = 0.
Ok, h r

Of Ofo „1(eEr'i' O'S'o „»
Ok, OU

'
2 h ) OUs (4.24)

Now at the Fermi level (FL), where fp —
2, we have

Ofp 1 O fp 1
OU 4k~8 '

OU 8(k~O)

Thus, Eq. (4.24) becomes

Of 1 1 1 s (eErli
Ok@ Fi 4k(30 16 (k&O)

(4.25)

(4.26)

FL designates a derivative at the Fermi level. The mag-
nitude of the inverse of this derivative is enlarged, due to
its final right-hand-side term, by a factor ri, with

We can expand the solution f in power of E, regarded as
a perturbation,

(4.18)

r/= (Of/Ok, )pr. @ o /(Of/Ok )Fr,

+ —
I i v,'.1 (eEr'i'

4 (kgO) (4.27)

with fp taken to be the thermal-equilibrium distribution.
Inserting Eq. (4.18) into Eq. (4.17) yields

«rv, is the energy gain of an electron, accelerated for a
time r, and we will designate this as 6'U. Thus Eq. (4.28)
reaches the form

f,+i —— r(Ofi/Ok, —) (

(eE)i
5)

Thus, to second order in E, we have

2

(4.19)

(4.20)

v=1+-
I

1 (bU i

In terms of noise

1(6'Ub
(i )~ = 4GkOB v 1+ —

~4 (kgO)

(4.28)

(4.29)

The fo term represents a simple displacement of the dis-
tribution and does not change the width of the transition
region where f changes from 1 to 0. It is the final right-
hand-side term in Eq. (4.20) which can change the width.
If the final right-hand-side term of Eq. (4.20) had a co-
efficient 2, then Eq. (4.20) would represent the initial
terms in a Taylor expansion, for a shifted distribution.
It is only the additional term z (eEr/h)~ fo, which needs
to be examined as a source of broadening. Thus, we are
inquiring about the changed width of

(4.21)

2

Of/Oki = Ofo/Oks+ —
I I fo'+2( r ) (4.22)

due to its Anal right-hand-side term. The size of the
region near f =

z is inversely proportional to the magni-
tude of the derivative, Of/Ok„at the region in k space
where f = 2. Equation (4.21) yields

Thus, we go above thermal-equilibrium noise quadrat-
ically with (bU/k~O). The exact coefficient 4 in
Eq. (4.29) is once again a consequence of our simplistic
approach, and should not be taken very seriously. Note
the similarity of Eq. (4.29) to Eq. (1.6). There the final
right-hand-side factor invoked eV, the energy gained in
crossing the sample. Here it is bU, the energy gained in
a mean free path. But both of these can be given one
common definition: The energy gained between phase
destructive events.

A more general note of caution can also be supplied.
Clearly noise depends on the range of states in which f
changes from 1 to 0. This is essentially a hot-electron,
problem. How much energy do electrons pick up'? A
highly idealized model, such as Eq. (4.17), or the one
used in Ref. 7, where inelastic effects are provided by at-
tachment of additional reservoirs to the conductor, can-
not do real justice to the kinetics of electron energy loss
via lattice vibrations. Thus, these methods lead, at best,
to suggestive answers.

V. OVERVIEW AND SUMMARY

O/Ok, = (OU/Ok, )(O/OU) = hv, (O/OU), (4.23)

with U the energy. We also take into account, in the
higher derivatives, that the derivatives of v~ are small
compared to those of f We then find.

Our discussion was based entirely on an indepen-
dent electron picture. Coulomb interactions were ig-
nored. Coulomb interactions keep nearby electrons apart
and regularly spaced and are, presumably, an additional
source of noise reduction, above and beyond that pro-
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vided by the Pauli principle. This was discussed in Ref.
17. The effect can be expected to be strongest in the
case where nearby electrons stay together. That occurs
in single-channel mesoscopic conductors and in vacuum
tubes. Space-charge smoothing in vacuum tubes was an-
alyzed many decades ago. " In Sec. III, devoted to the
classical Maxwell-Boltzmann conductor, we obtained ex-
act agreement with the usual thermal-equilibrium noise
formula. We did this, from a shot-noise viewpoint, with-
out any concern for Coulomb interaction. Why, then,
was exact agreement obtained? There is an obvious
guess: Consistent approximations were used; the ex-
pression for conductance invoked in the calculation of
thermal-equilibrium noise is also the result of an inde-
pendent electron picture.

The methodology of Sec. IV, treating the ordinary
metallic conductor, poses another question. We assign
the carrier to a particular free-electron state and, at a
certain time, view it as exiting from that state. If we
were measuring the momentum of each electron sepa-
rately, that would be the obviously correct approach. But
that is not what we are doing —we are measuring the to-
tal noise current. Our approach is, of course, closely akin
to the second quantization methods and the Keldysh ap-
proach used in a number of the more formal mesoscopic
noise papers, where little attempt is made to relate the
choice of theory to the experimentally measured quan-
tity. (For an exception, see Ref. 22.) Our approach is
also akin to that used in the wave-packet approach of
Refs. 13, 17, and 19 for mesoscopic conductors.

A wave packet incident on the sample is occupied or
empty, and is then taken to be transmitted or reflected.
But there, the occupation number for the wave packet,
arriving at its destination, taken to be 0 or 1, corresponds
more clearly to the electron-counting process which is
what a noise measurement essentially does. In the case of
the macroscopic conductor, noise measurements do not,
equally obviously, seem to check on the arrival of the
carrier at a certain position in the sample. But that may

be an excessively cautious reservation. After all, a noise
measurement responds to att changes in current. And
a transition of a carrier, from one plane-wave state to
another, is exactly that. Thus, I believe that the method
of Sec. III is sound, but also admit that a more formal
supporting argument would be welcome.

In the case of a classical Maxwell-Boltzmann conduc-
tor we showed that thermal-equilibrium noise is simply
the shot noise due to electrons going through a mean free
path. In the case of the mesoscopic sample, attached to
reservoirs of Fermi carriers, unmodified shot noise due
to uncorrelated carrier transmission occurs only at small
transmission probabilities. In that case we showed, ap-
proximately, that thermal-equilibrium noise was just the
sum of two shot-noise contributions, arriving at each
reservoir. A more accurate theory than given in Sec. II
would, essentially, have brought us back to the full treat-
ment given in Ref. 13. Finally, we discussed the macro-
scopic metallic semiclassical conductor at zero tempera-
ture. There it was shown that the noise consisted of shot
noise, proportional to current flow, but with the elemen-
tary stochastic charge-transfer event resulting from the
motion of an electron through a mean free path, rather
than through the whole sample. A suggestive physi-
cal argument was used to discuss this case at higher
temperatures. That led to the conclusion that the pa-
rameter which determines the deviations from thermal-
equilibrium noise was bU/k@O, the ratio of the energy
gain in a mean free path to the thermal energy.

Note added in proof The prece. ding discussion stressed
the role of eU/kpO as a boundary marker between ther-
mal equilibrium noise and excess noise proportional to
current. This was already recognized in Ref. 23.
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