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We study the two-dimensional electron gas in a high magnetic field at filling factor v = 1 for an
arbitrary ratio of the Zeeman energy gugs B to the typical interaction energy. We find that the system
always has a gap, even when the one-particle gap vanishes, i.e., when g = 0. When g is sufficiently
large, the quasiparticles are perturbatively related to those in the noninteracting limit; we compute
their energies to second order in the Coulomb interaction. For g smaller than a critical value g.
the quasiparticles change character; in the limit of g — 0, they are skyrmions—spatially unbounded
objects with infinite spin. In GaAs heterojunctions, the gap is, unambiguously, predominantly due
to correlation effects; indeed, we tentatively conclude that g is always smaller than gc, so the relevant

quasiparticles are the skyrmions. The generalization to other odd-integer filling factors, andtov = 3

and %, is discussed.

I. INTRODUCTION

In the theory of the quantum Hall effect! (QHE) it is
customary to distinguish the integer and fractional ef-
fects: filling factors v where the quasiparticle gap arises
from a gap in the single-particle spectrum are said to
exhibit the integer effect whereas those v where the gap
arises from the electron interactions exhibit the fractional
effect. With some exceptions this theoretical classifica-
tion is supported by comparisons of the experimentally
measured gaps, extracted from the temperature depen-
dence of pg, in the regime in which it is activated, and
the single-particle gaps. Exceptions are the odd integers
where the measured gaps exceed the single-particle Zee-
man gaps, derived from bulk g factors, by as much as a
factor of 20.2 Clearly, it is not possible to interpret these
data without including significant effects of the interac-
tions.

In order to understand the role of the interactions at
odd-integer fillings we study the QHE at v = 1 in two
ways. First, we calculate the energies of the quasipar-
ticles in the noninteracting limit to second order in the
interactions and confirm that the contribution of the in-
teractions dominates the Zeeman gap in the magnetic
fields of interest. We compare our calculation with the
data of Usher et al. on the v = 1 activation energies
in GaAs heterostructures and find reasonable agreement
(Fig. 1, see the discussion following). This work has the
merit that we have computed all the terms of a system-
atic expansion in powers of 1/v/B that survive in the
B — oo limit; the physics of the exchange enhancement
of the g factor is well known.>™® (We have done the same
calculation for v = 2 as well.)

Next we consider a modified problem in which we vary
the ratio of the Zeeman energy (gupB; up is the Bohr
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magneton) to the typical Coulomb interaction energy
(e2/1; 1 is the magnetic length); this is conveniently ac-
complished, theoretically, by varying the effective gyro-
magnetic ratio g. We find that the ground state is in-
dependent of g for g > 0 (at g = 0 the ground state
is degenerate), and that there is always a gap to cre-
ating charged excitations even for ¢ = 0. Though the
gap survives at g = 0, the quasiparticles change dramat-
ically as g is lowered. At large g the quasiparticles have
the quantum numbers of the single-particle picture, i.e.,
they have charge +e and spin S, = 1/2 (relative to the
ground state). As g is reduced there is, beginning at a
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FIG. 1. The quasiparticle gap A.n as a function of mag-

netic field. Solid and dashed lines are, respectively, the the-
oretical results for an undisordered system with and without
the phenomenological 40% finite thickness correction. The
points are data taken from Ref. 2. The theoretical gaps van-
ish at a magnetic field where their computation via low-order
perturbation theory is no longer reliable.
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critical value g., an infinite number of level crossings in
which the lowest-lying quasiparticles increase their spin
and size while retaining their charge. Near g = 0, which
is a limit point for these level crossings, the quasiparti-
cles have a divergent size, their spin is macroscopic, and
they possess nontrivial spin order—they are skyrmions.

Accordingly, we conclude the following. (a) the QHE
at ¥ = 1 cannot be classified as either fractional or inte-
ger; the ground state does not change and the gap per-
sists from the large g limit, where single-particle effects
dominate, to the small g limit where correlation effects
are paramount. (b) There is a level crossing at g = g,
such that the quasiparticles are perturbatively related
to the single-particle excitations for g > g. whereas for
g < gc they are not. (c) In GaAs at v = 1, g appears to
be less than g, and the relevant quasiparticles are thus
skyrmions. The gap is certainly predominantly due to
electron-electron interactions. Later we discuss how the
existence of the skyrmion might be detected experimen-
tally as well as the relevance of our work to the QHE in
Si devices where the valley SU(2) symmetry, in principle,
provides a realization of the small g limit.

A similar scenario holds for the other odd-integer fill-
ing factors as well as for » = 1/3 and 1/5. In the latter
cases there is never a correspondence to a noninteracting
spectrum but there is a similar sequence of quasiparticle
crossings culminating in large skyrmions at small g. Our
work builds on earlier work by one of us (E.H.R.).%7 More
generally it is part of the study of spin-reversed excita-
tions and ground states that was initiated by Halperin’s
observations on the smallness of the g factor in GaAs.®

II. PERTURBATION THEORY FOR THE GAPS

The activation energy A for the temperature depen-
dence of p,, is related to the excitation energy A, of an
infinitely separated quasiparticle and quasihole by the
law of mass action, i.e., A = Ag,/2. A systematic ex-
pansion for Ay can be generated by perturbing in the
interaction around the noninteracting problem. As the
latter corresponds to the limit of an infinite magnetic field
this is a useful approach for understanding the high-field
problem. The noninteracting problem exhibits a degen-
erate ground-state manifold for filling factors other than
the integers. Hence in the remaining cases it is necessary
to choose the unperturbed states by degenerate pertur-
bation theory in the interaction. At filling factors that
exhibit the fractional QHE this produces a nondegenerate
ground state separated by a gap from the quasiparticle
states. For Coulomb (1/r) interactions the expansion for
A.n and other energies of interest is particularly simple
in structure:

Aeh = hus? gmm (ai)k (1)

(Here k is the order of perturbation theory, w* = eB/m*c
is the cyclotron frequency of particles with an effec-
tive mass m*, | = y/hc/eB is the Landau length, and
a* = eh?/m*e? is the effective Bohr radius.) Hence per-
turbation theory in the interactions is also an expansion
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TABLE I. Coefficients in the gap expansion.
14 Fo(l/) F] (l/)a Fz(l/)
1 95 VE —0.58
2 1-g2 Vi —0.47
1/3 0 0.10360 ?
1/5 0 0.02440 ?

2The coefficients for v = 1/3 and 1/5 are from Ref. 31.

in powers of 1/ vB.? This simplicity is a consequence
of the scale invariance of the Coulomb interaction; for
a Yukawa interaction the coefficients in the expansion
would themselves depend upon I. In Table I and in Ap-

‘pendix A we list some of the known terms in this expan-

sion; here we comment on the first few coefficients. The
zeroth-order coefficients are the gaps in the single-particle
spectrum in units of Aw} and therefore are nonvanishing
only for integer v:

Fy(v) =1—g(m*/2m), v =2k,
= g(m*/2m), v =2(k—1),
=0 otherwise. (2)

(Here m is the free-electron mass.) The Fj(v) multi-
ply €?/el and are nonzero both for integer and for frac-
tional filling factors. They represent the leading contri-
bution of the Coulomb interactions to the gap; for the
fractions they signal the existence of the fractional ef-
fect. The next set, Fy(v), multiply twice the effective
Rydberg (Ry=e?/ea*) and describe the leading effects of
Landau-level mixing. Note that the second-order term is
independent of the magnetic field; it is therefore impor-
tant for a quantitative estimate of the gap (even) at high
magnetic fields. ‘

We have obtained F2(1) and F»(2) by calculating, to
second order, the energies of the quasihole and quasi-
electron and subtracting the ground-state energy calcu-
lated to the same order. The unperturbed quasiparti-
cle states consist of states with different particle number
at the same magnetic field and area: the quasihole has
an emptied orbital in the otherwise filled Landau level,
while the quasielectron has an extra electron added to
the spin-reversed Landau level (v = 1) or across the
cyclotron gap (v = 2).1° The resulting expressions in-
volve multiple sums of matrix elements of the Coulomb
interaction; we were able to evaluate the matrix ele-
ments in terms of standard functions but were forced to
carry out the sums numerically.! We find that, in units
of 2 Ry, the second-order contributions to the gap are
AR = AD 4 AP = _0.524(5) — 0.054(2) = —0.58(1)
atv=1and A = AP +A® = _0.352(5)-0.113(2) =
—0.47(1) at v = 2. The corresponding second-order en-
ergies for GaAs, with values of m* = 0.07m and € = 13,
are =76 K (v =1) and —61 K (v = 2).

III. INTERACTIONS AND THE v =1 GAP

We now make contact with some recent data of Usher
et al.? on activation energies at v = 1. In calculating
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Fy(1), Fy(1), and F3(1) we have kept all the contribu-
tions to the gap that will survive in the high-field limit
for an ideal two-dimensional system. Comparison with
experiment is, however, complicated by our neglect of
disorder, the finite extent of the wave functions orthogo-
nal to the interface, and the mixing of higher interfacial
subbands. In Fig. 1 we show the experimental values of
the gap (points) and our theoretical result (solid line).
We expect a reduction of the gap due to the finite extent
of the wave function perpendicular to the interface. If
we phenomenologically model this by a 40% reduction of
the interaction contribution to the gap the result is the
dashed line.!? Note that Aiw.Fy(1) < 3 K over the range of
magnetic fields in Fig. 1 and hence the interactions pro-
vide the dominant contribution to the gaps. The agree-
ment with the data in the high-field region is good enough
that it is plausible that the true quasiparticles are per-
turbatively related to the noninteracting excitations.!3
However, we will argue below that this is in fact not the
case.

1
2m*

L(r) = ¢'(r) [ihd; — eao] P(r) —

i

—%/ &r' V(r = 1)l¢()? - Allg()* —7) -

Here ¢ = (¢1,¢2) is a two-component complex scalar
field and 6§ = (2k + 1) as we are describing bosonized
fermions. V (= e?/er) is the interparticle potential and
we pick A so that B = V x A = —Bz. As in the
case of spinless electrons!4 we find that the filling fac-
tors v = 1/(2k + 1) (the Laughlin fractions) are special
in that at these we can find spatially uniform solutions
to the equations of motion. These solutions, which are
of the form ¢ = /p(1,0), = v/(27l?), minimize the
action at any value of g. Moreover, to all orders, the
fluctuations about these mean-field solutions are inde-
pendent of g. From this we conclude that the ground
state is spin polarized and described by the same orbital
wave function at all g. Consequently the ground state
at all g is obtained by solving the usual problem of fully
spin polarized electrons.!® At g = 0 our model is spin
rotationally invariant. Correspondingly any solution of
the form ¢ = /5 (1,0) U, U € SU(2) also minimizes the
action. A particular choice of U then corresponds to
spontaneous symmetry breaking (ferromagnetism).

We now turn to the excitations; we specialize to v = 1
for now. In the large g limit!? the low-lying charged exci-
tations have a size of the order of the magnetic length;*8
these are simply the single-particle excitations whose en-
ergies we computed above. There are also spin waves that
disperse quadratically from gugB. One can obtain wave
functions and energies for these excitations if the Hilbert
space is restricted to the lowest Landau level of both spin
species. There is a branch of low-lying excitations that
describes neutral spin waves at small k and a separated

(39 - S1a) + aw)] 600

4hch
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IV. v =1 AT VARYING ZEEMAN ENERGIES

We have established that in GaAs heterojunctions and
odd integer v the observed gap is largely due to the in-
teractions, not to the single-particle (Zeeman) gap. We
now explore the possibility that the gap exists even in the
absence of a single-particle gap and that the quasiparti-
cle properties are qualitatively (in addition to quantita-
tively) different than those in the noninteracting limit.
To this end we investigate the following problem: We
imagine that g is a tunable parameter and ask how the
physics changes as g varies from zero to some large value
at which the Zeeman energy dominates the interactions.

The problem is conveniently studied in the (Chern-
Simons) Landau-Ginzburg theory of the Hall effect in-
troduced by Zhang, Hansson, and Kivelson.14 We use
the generalization to electrons with spin that was worked
out by Lee and Kane.!5 In this formulation the system is
governed by the Lagrangian density

2

2
C _#7a,,(r)0,a,(r) — LgupBs' (r)o*(r) . 3)

[

quasihole-quasielectron pair as k — co. The energy of
this branch was computed by Kallin and Halperin!® and
takes the form (I is the modified Bessel function)

e? [w

= 5[1—e-’°”2/410(k2l2/4)}. (4)

E(k) = gupB +

The long-wavelength spin waves become gapless as
g — 0. While the ¥k — oo limit of E(k) still corre-
sponds to the creation of a quasielectron-quasihole pair,
the lowest-lying charged excitations are different; they
are “skyrmions.”!® These are excitations that are char-
acterized by unusual spin order. At the boundary of the
system the local spin takes its value in the ground state
(“up”) while it is reversed at the center of the skyrmion
(“down”). Along any radius it interpolates smoothly be-
tween two limits. If we identify the points at the bound-
ary, such spin configurations are described by the sim-
plest homotopically nontrivial maps of the surface of the
sphere onto itself. (See Appendix B for explicit exam-
ples.) As we shall see the skyrmions carry charge +e
depending on the sense of their spin twist.

To reveal the properties of these quasiparticles in the
small g limit (where they are large), we study the long-
wavelength, low-energy dynamics of (3). This is a the-
ory of the long-wavelength spin dynamics. Technically,
we can decompose the ¢ field as ¢o = ,/pzo Where
Yo 2lza = 1. L then describes a CP! field 2z, coupled
to a Chern-Simons gauge field and the p field. Using the
mapping n® = z2fo%2 we can replace the CP! field by an
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O(3) sigma-model field. At this point we could obtain the
effective sigma-model dynamics by integrating out all the
other fields. Though we are unable to do this explicitly
we can nevertheless calculate the necessary terms in the
effective Lagrangian. We do this by observing that the
dynamics is that of a ferromagnet with a long-range in-
teraction arising from the Coulomb interaction between
the underlying electrons. This leads to a Lagrangian of
the form?°

Leg = c:A(n(r)) - 8n(r) + o/ (Vn(r))® + gpupn(r) - B
1 / &' V(r — v')q(r)q(r') , (5)

where A is the vector potential of a unit monopole, i.e.,
€ik9; A¥ = ni, and q(r) = €¥e®n®9;nb9;n° /8 is the
skyrmion density whose spatial integral is the topological
charge (+1). The first three terms would be present for
any ferromagnet; however, the last term is specific to our
problem and is responsible for the macroscopic character
of the skyrmions.

The form of the last term follows from the equality, in
the long-wavelength limit, of the skyrmion density and
the deviation of the physical density from its uniform
value; more generally at v = 1/k they are related by
ép(z) = q(x)/(2k 4+ 1). To derive the latter note that in
terms of the fields in (3) the current is j =(ep/m*c)(ask —
a — A) where ay = (hc/e)(2Vz). For finite energy con-
figurations the current must vanish at infinity and hence,
at large distances, agx = a + A. For sufficiently smoothly
varying configurations this equality will hold everywhere,
asymptotically, as the scale of the variations diverges.
From the Chern-Simons relation between the density and
the statistical magnetic field, 6p = (e/2hc8)V x (a + A)
we find that 6p(z) = (1/20)V x (2'V2) = q(z)/(2k + 1).
(Also, see Ref 15.)

Due to the singular behavior of the Coulomb inter-
action at small momenta the interaction term in (5) is
cubic and not quartic in powers of momentum in the
long-wavelength limit. Therefore, by power counting the
last term in (5) is the leading irrelevant term; we keep
it since it determines the size of the skyrmions in the
small g limit. The other terms that will arise are either
of higher dimension or will vanish when g = 0.2! The
coefficients in L.g can be fixed by requiring that (a) it
reproduces (4) in the small k limit (i.e., it yields the cor-
rect spin-wave dispersion) and (b) it describes correctly
the uniform precession of the ferromagnet in a tilted mag-
netic field. These conditions yield

1 1 €2 6
322x L (6)
Armed with Leg we can now study the skyrmions. In
the absence of the Zeeman and interaction terms L.g
is scale invariant for static configurations and contains
solitons (skyrmions) on all length scales.?? By virtue of
the equality of the skyrmion density and the physical
density it follows that the skyrmions carry charge te ac-
cording to the sense of the spin twist. This connection
between the (Coulomb) charge and topological charge of
the skyrmions can be understood in a more intuitive fash-

1
a= 4—hp and o =
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ion. In a self-consistent description of the skyrmion state
the electrons move in a skyrmionic spin background. As
the electron spins attempt to align with the background
texture this gives rise to extra phase factors for closed
trajectories. The effect of the nontrivial spin background
is similar to that of an extra magnetic flux—indeed, it
is not hard to see, by recalling the behavior of spin-1/2
particles under rotations, that the presence of a unit of
topological charge produces a Berry’s phase equal to the
change in the Aharonov-Bohm phase produced by the in-
sertion of one quantum of flux. Consequently the charge
of the skyrmions is +e/(2k + 1) at v = 1/(2k + 1), for
much the same reasons as for the usual quasiparticles
created by the insertion of one quantum of flux.

For the pure sigma model (g = 0, V' = 0), analytic ex-
pressions are available for the skyrmions (Appendix B)
and their energy is 8ma’, independent of their size.2?2 This
scale invariance is broken by the remaining terms. The
interaction favors large skyrmions while the Zeeman term
prefers microscopic skyrmions. For g = 0, the skyrmions
are infinite; consequently the only contribution to their
energy comes from the stiffness of the spin waves and
equals the sigma model result 8ma’. Away from g = 0
the skyrmions acquire a size determined by balancing the
Zeeman and Coulomb terms. For g <« 1 the form of the
solution in the core region is determined by the scale in-
variant term alone. We have used the known analytic
expressions for these (Appendix B) matched to the solu-
tion outside the core (where the equations of motion can
be linearized) to determine the global behavior of the so-
lution for g <« 1.28 These yield expressions for the size
and energy of the skyrmions,

() = (%) (&) mon. i
s =355+ % (2)" () omars]

where a = h%/me? is the Bohr radius. These expres-
sions represent the leading asymptotic behavior of A and
E(g) — E(0) at small values of g. At nonzero g there
are corrections to these expressions that arise from our
not having found the true minima of (5) as well as from
our neglect of the remaining terms in the effective La-
grangian. We expect that these corrections become sig-
nificant when the size of the skyrmions approaches [.
Note that the gap to creating a skyrmion-antiskyrmion
pair at g = 0, 2E(0), is half the gap to creating a pair of
single-particle excitations; hence the skyrmions are the
relevant quasiparticles in this limit.?4

To summarize: There is no change in the ground state
of the system as g is varied through nonzero values. This
is the familiar behavior of a ferromagnet. However, the
excitation spectrum does interesting things: At large
g the quasiparticles are single-particle-like—they carry
charge +e and spin S, = %, and have size . At small
g they still carry charge +e but diverge in size and have
nontrivial spin order with a divergent z component of spin
S, (the number of reversed spins) as well as a divergent
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total spin S.2% In between there are an infinite number
of level crossings that allow the requisite crossover in the
properties of the quasiparticles. There is always a gap in
the quasiparticle spectrum; however, the first of the level
crossings erases the correspondence to the noninteracting
problem.

V. EXACT DIAGONALIZATION STUDIES

Some of this physics is implicit in the previous work
by one of us.%7 This work consists of a study of up to
10 particles on a finite sphere in the g = 0 limit. It was
found that for v = 1 and v = 1/3, the ground state is fer-
romagnetic, i.e., has maximal total spin. However, upon
changing the flux through the system by one flux quan-
tum, a process that creates a single quasiparticle, the
ground state becomes a spin singlet. This state is also
an orbital singlet (with respect to rotations of the sphere)
and hence describes a quasiparticle with a uniform den-
sity distribution. The remaining states are ordered so
that their energies and orbital angular momenta increase
with their spin. On including the Zeeman term, the S,
eigenstates continue to be eigenstates while their energies
are shifted by the Zeeman cost of flipping spins. It follows
then that we recover the scenario of level crossings among
quasiparticle states that we described above. Variational
wave functions for quasielectrons of arbitrary spin were
also constructed and it was shown in Ref. 7 (by finite-size
scaling from calculations on up to 160 particles), that for
g = 0 the maximal spin one-polarized-quasielectron state
is unstable to decreasing its spin by one unit. By using
this variational result we can obtain a lower bound for
gey ge = 0.054€2/(elppB). This implies that the value
of g for GaAs systems (~ 0.5) is less than g. for fields
below 25 T and therefore the quasiparticles are not fully
polarized.

We have extended the finite-size study of the g = 0
problem by finite-size scaling. In Fig. 2 we plot the quasi-
particle creation energies at fixed number and magnetic
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FIG. 2. Singlet quasiparticle energies A (in units of e2/el)

from finite-size calculations. The fits are quadratic poly-
nomials in 1/N. The quasielectron data (filled circles) ex-
trapolate to 0.3128e?/el and the quasihole data (open cir-
cles) to 0.3159e%/el. The Landau-Ginzburg analysis gives
0.3133€?/el.
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FIG. 3. Correlation functions in the one-quasielectron

state. We plot (p(0)p(8))—p3 (dashed curve) and {c.(0)o.(9))
(solid curve) in units in which the filled Landau level has den-
sity po = 1; @ is the polar angle divided by =. In this case,
the quasielectron is the ground state of a system with nine
flux quanta and ten electrons (g = 0).

field?6 as a function of system size. We find that the en-
ergy to create a quasielectron and quasihole extrapolates
to within -é—% of the calculated energy of the skyrmion-
antiskyrmion pair in the Landau-Ginzburg theory, i.e.,
within the uncertainty of the extrapolation. In fact, as
a consequence of particle-hole symmetry the quasihole
and quasielectron energies extrapolate to the same limit,
which is therefore just the Landau-Ginzburg result for a
single skyrmion. We note that this remarkable feature,
the calculation of the ezact quasiparticle energies from
the Landau-Ginzburg theory, is a consequence of the di-
vergent size of the quasiparticles. In Fig. 3 we show the
correlation functions (p(0)p(8)) and (o,(0)o,(8)) where
6 is the polar angle on the sphere and o, is twice the spin
density in units in which pg, the density of the filled Lan-
dau level, is 1. The small € behavior of both correlation
functions is dominated by the exchange hole. At larger
6 we see behavior characteristic of the skyrmion: the
density is uniform and the spin-spin correlation function
becomes negative. One may wonder about the spin of the
ground state when the system is more than one flux quan-
tum away from commensuration—whether there are any
“shell effects” reminiscent of the Nagaoka problem. We
found, by exact diagonalization, that the ground state at
two flux quanta fewer than v = 1 is also a singlet. As the
removal of enough flux quanta must ultimately produce a
singlet v = 2 state we conjecture that the singlet charac-
ter of the ground state persists until we have added half
a skyrmion per particle.

VI. EXTENSION TO OTHER FRACTIONS

The physics at the higher odd integer v is very similar;
however, we have not attempted to quantitatively esti-
mate their properties. As we indicated earlier, finite-size
studies show that the ground states at v = 1/3 and 1/5
are ferromagnetic at g = 0 and that the one-quasiparticle
states have infinite spin relative to the ground state, (i.e.,
they are singlets). The Landau-Ginzburg analysis in
these cases is identical to that for » = 1 except that
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the physical density is now the corresponding fraction
of the skyrmion density. Thus, the quasiparticles carry
charge e* = +re and again have a spin and size that
diverge as g vanishes. In contrast to v = 1, we do not
have access to the exact spin-wave dispersion even in the
lowest Landau-level approximation; however, we can use
the single-mode approximation?” to extract an approxi-
mate spin-wave stiffness from the structure factor of the
Laughlin states at v = 1/3 and 1/5.?8 We estimate the
skyrmion pair gap for g = 0 (in units of e2/el) as 0.024
at v = 1/3 and 0.006 at v = 1/5. Generalizing (7) to
these fractions is straightforward.

VII. DISSIPATION AND EXPERIMENTS

It is essential for the quantum Hall effect that the
quasiparticles are localized by disorder. For g = 0, the
bare quasiparticles are infinite in extent, so the question
arises whether they still are localized. We believe that
the interaction with an impurity gives the skyrmion a
finite size through the balance of the attraction to the
impurity and the Coulomb repulsion, and that therefore
the skyrmions are localized by disorder. However, the
binding is likely to be weaker than for smaller quasipar-
ticles; this may have observable consequences.

Even given the fact that the quasiparticles are pinned
by disorder when g = 0, the question arises whether the
existence of gapless neutral excitations (the spin waves)
leads to dissipation and hence destroys the quantum
Hall effect. A related problem was studied by Rasolt,
Halperin, and Vanderbilt?® in the context of valley waves
in Si devices. They applied a Landau argument and con-
cluded that the quantum Hall effect is not destroyed so
long as the condensate velocity is less than the velocity
of the neutral mode. In the present case, for g = 0, the
quadratic dispersion of the spin waves does not permit
us to use this argument to deduce dissipationless flow.
We think it is likely that dissipationless flow survives the
presence of spin waves, since the low-energy spin waves
are neutral and hence are irrelevant to charge transport.
At the very least, it is clear that for any nonzero g and
T = 0, there is a quantum Hall effect, so if the g — 0 limit
is approached at T' = 0, the quantum Hall effect survives
by continuity. This issue warrants further study.

In GaAs systems, the most interesting confirmation of
our analysis would of course be a direct probe of the
spin structure of the quasiparticles. In terms of the more
usual probes one should look for evidence of level cross-
ings among the quasiparticle states as a function of g.
Experimentally, the effective g can be varied by tilting
the magnetic field, since only the perpendicular com-
ponent, B, couples to the orbital motion while the full
field couples to the spin. As a result, the effective g is
g/cos(d) where @ is the tilting angle. We have estimated
the properties of the quasiparticles using the results ob-
tained in (7) above. We find that at 1 T the quasiparticle
should extend about 2000 A and have about 12 reversed
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spins which would imply that there should be as many
level crossings in going down to that field from the high
(~ 20 T) field limit. However, our estimate is crude and
ignores effects such as Landau-level mixing (important
at low fields) and the effects of disorder that may favor
smaller quasiparticles. For v = 1/3 the same procedure
leads to the conclusion that for a field of 1 T, the quasi-
particle size is about 1400 A and it involves a couple of
reversed spins. This suggests that the smaller Laughlin
fractions are worse places to look for evidence of these
excitations. Finally, as has been extensively discussed by
Rasolt,?° the valley degeneracy in Si devices behaves like
an isospin. Thus, the present considerations apply with
small modification with the advantage that the system is
automatically in the g = 0 limit.

VIII. RELATIONSHIP TO OTHER WORK

In Ref. 1 Haldane suggested that there is charge frac-
tionalization at ¥ = 1 in the isotropic limit. We do not
see any evidence for it and the relationship of our work
to his ideas is unclear. Finally, after we had finished
this work, we realized that the final footnote in Ref. 29
already refers to the existence of the skyrmions in the
context of large-amplitude valley wave configurations.
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APPENDIX A

We list here the Fj(v) for arbitrary integer v. With
the definition

V(l,m) =

\/§1m! TZ:‘) (f') —

D(r+1/2)I'(m —r+ 1)
% 7'!1"(% -7) ’

(A1)

they are
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Fi(2k +1) =V (k, k) ,
(A2)

Fi(2k)= Y [V(k—1,p) = V(D).

0<p<k

APPENDIX B

As we noted in the text the pure sigma model [i.e.,
Eq. (5) with ¢ = 0 and V = 0] admits skyrmion solu-
tions on all length scales and explicit analytic expressions
are available for them.?? We record here, for ease of ac-
cess, the explicit form of the skyrmion with topological
charge @ = [ d?rg(r) = +1 and scale A and its topologi-
cal (skyrmion) density:

16 425
4z
z —_— —_—_———
n) = E e
4y
Y = ——
") = e
(B1)
r2 — 422
z _—
n (r)—T2+4A2,
1 422
1O =T
The corresponding antiskyrmion has @ = —1 and is of

the same form but with n¥(r) — —n¥(r) and ¢(r) —
—q(r). Since Q is a topological invariant, any continuous
deformation of the spin texture in (B1) will also have

Q=1.
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