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Low-voltage breakdown is considered in a quasi-two-dimensional electron gas confined laterally in
a narrow channel of width W and subject to a strong perpendicular magnetic field. It is shown that
electron-phonon interaction leads to a substantial dissipation due to electron transitions at the edges
of the channel and constitutes the main dissipation in the channel if W is not too large. Negative
di8'erential conduction is possible when a threshold drift velocity vD is reached. This leads to an
instability of the almost dissipationless regime, i.e. , to the breakdown of the quantum Hall eKect.
Under certain conditions the instability is possible for v& & s or vz& « s (low-voltage breakdown),
where a is the speed of sound. The finite thickness of the channel leads, in general, to breakdown
velocities smaller than those pertaining to zero thickness. Good agreement is obtained between the
theory and the experimental results of Makerov et aL (Pis'ma Zh. Eksp. Teor. Phys. 47, 59 (1988)
[JETP Lett. 47, 71 (1988)]).

I. INTRODUCTION

To date, a generally accepted theory of the breakdown
of the quantum Hall effect (QHE) is absent. i 4 After
its experimental discoverys in wide channels (W = 1000
pm) the breakdown has been studied on samples of suf-
ficiently smaller width (W = 1 —100 asm). s s Various
breakdown characteristics were associated in Ref. 6 with
the possibility of persistent current flow along the edges
of the channel. This is in line with the theoretical results
of Refs. 7 and 8, for wide channels, according to which
the current flows along the channel boundaries and the
inner regions of the two-dimensional electron gas (2DEG)
do not contribute to the current.

Most of the theoretical studies consider the current
along the channel as a surface flow and point to the
electron-phonon interaction as the origin of the break-
down. In Ref. 9 it was found that when the Fermi level is
in the middle between adjacent Landau levels breakdown
was possible when the drift velocity v~ = vD = E„/B )
10s, where s is the speed of sound, B the magnetic field,
and E„=EH the Hall field. This is approximately 10—
20 times larger than the observeds io ii value for v~. In
Ref. 2 it was shown that the breakdown of the QHE is
possible for vs ) s due to the nonheating negative dif-
ferential conductivity that leads to an instability of the
almost dissipationless regime, i.e. , j„(xE„ if E„&sB,
for a 2DEG interacting with piezoelectric phonons under
the assumption ha, )) k~T )) m*s, where m* is the
effective mass, a, = ~e~B/m* the cyclotron frequency,
and e (& 0) the electron charge. In this case the location
of the Fermi level influences the value of the dissipative
conductivity o.z„but not its dependence on E„. Notice
that in Refs. 2 and 9 the channels treated were wide in
the sense, adopted hereafter, that the dissipation, due

to electron-phonon interaction, occurred mainly in the
channel and the confining potential was neglected; con-
sequently, the role of the channel edges in the dissipation
was neglected. Dissipation due to phonon emission is
possible for vo & s when a suEciently large-scale static
potential is taken into account. In the last two works
the total dissipation, for T = 0, is connected with elec-
tron transitions at the edges of the channel, i.e., the chan-
nel, in our terminology, was norrom In the homogeneous
case the results of Ref. 13 were similar to those of Ref. 9.

In what follows we will study the breakdown of the
QHE in a narroiv channel of finite thickness and infinite
length in the presence of a strong perpendicular mag-
netic field B such that hu, && kI3T. For simplicity we
neglect a random static potential as well as the interac-
tion between electrons. The only scattering we consider
is electron-phonon interaction in relatively weak applied
electric fields (along the channel) when the condition
~E~/EH~ && 1 is satisfied due to the strong magnetic
field. The heating of the 2DEG is neglected. For def-
initeness we designate a low-voltage regime as that for
which E~ & Bs, i.e. , one for which vD & 8. The main
result is that electron-phonon interaction leads to dissi-
pation mainly due to electron transitions between edge
states and to a possibility of breakdown velocities v~
smaller or much smaller than s. For other conditions the
breakdown may occur for vD & 8 or v~ )& 8; see Sec. II.
We further assume that EH is not large enough to cause
interlevel transitions; see Sec. II.

The possibility of low-voltage breakdown is related to
finite but not-too-high temperatures. Physically, in a
narroui channel electron states (and transitions between
them) are more pertinent at the edges of the channel than
at its interior. Indeed, at the edges of the channel the
Landau levels are tilted upwards by the confining poten-
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FIG. 1. Schematic energy diagram of the first two Landau
levels (solid curves) and the Fermi level (dotted curve) as
function of the oscillator center Yp = yp/l for vz& = 0.

tial and the Fermi level crosses them. This is illustrated
schematically in Figs. 1 and 2, which show the varia-
tion across the channel of the Fermi level and the lowest
two Landau levels for v~ = 0 and vD & 0, respectively.
We used a parabolic confining potential of frequency 0
and the eigenvalues given by Eq. (2), see below, with
cu, /0 = 30 and ~e]EHL/~ = 0.01. The dimensionless
factor Yp ——yp/l gives the position of the oscillator cen-
ter yo in terms of the renormalized, due to the confining
potential, magnetic length Lt. As can be seen from Figs. 1
and 2 (and will be detailed later) states within l from
the edges are close to the Fermi level and at low tem-
peratures they contribute to dissipation via the electron-
phonon interaction much more than the "bulk" states at
the interior of the sample since the latter are lying far be-
low the Fermi level. In fact, it has been observed that
the contribution of these inner states, lying 4;„below the
Fermi level, decreases exponentially with temperature if
the condition exp( —4;„/k~T) && 1 is satisfied.

The paper is organized as follows. A criterion for the
breakdown is established in Sec. II and the main results
are given in Secs. II C, III, and IV. An explanation of the
experimental results of Ref. 4 is presented in Secs. IIC
and IV. The current-voltage characteristics (CVC) for
not-too-low and low temperatures are given, respectively,
in Secs. III and IV. A low-voltage breakdown related to
fluctuations of the confining potential along the z axis is
discussed in Sec. V. Conclusions follow in Sec. VI.

We consider a 2DEG confined in a narrow channel in
the (x, y) plane of width L„= W, length 1~ = I, and
finite thickness I, = d. For simplicity we take the con-
fining potential along y as parabolic: V„= m'A2y2/2,
where 0 is the confining frequency. However, most of
the results hold for the more realistic potential V„' = 0
for yi & y & y„V„' = m'0 (y —y, )2/2 for y & y„& 0,
and V„' = m'A2(y —y~)~/2 for y & yi & 0; this will
be indicated below. For the confinement in the z direc-
tion we consider a parabolic well of frequency u, or the
standard triangular well. When an electric field E~ is
applied along the channel and a strong magnetic field B
along the z axis in the Landau gauge for the vector po-
tential A = ( By, 0, 0—), the one-electron Hamiltonian hP

is given by

lP = [(p~+ eBy) +p„]/2m" + V„—eEHy —eE~x+ 6„

where p is the momentum operator and h, = p2/2m*+ V,
the z part of h with V, the confining potential. The third
term on the right-hand side represents the Hamiltonian
due to the Hall field EH = E„as explained in Ref, 15. We
assume, in line with most experimental situations, that
the 2DEG occupies only the lowest subband and denotes
the corresponding eigenvalue and eigenfunction of h, by
E,p and Ap(z), respectively. For strong magnetic fields
such that ~IE./EH~ «1 we consider the term eE x-
as perturbation and notice that V x E = 0 entails that,
since E does not depend on 2:, E~ is independent of y and
z. Without this term the eigenvalues and eigenfunctions
corresponding to Eq. (1) are given by

h k2E—:E„i,.= M(n+ 2)+ 2m

. I
hk ~, + iI+E,p (2)

eEH f eEH &

~~m' ( 2 )
and

~n)—:e'" *4„(y—yp)Ap(z)/~I, (3)
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respectively. Here w = (w, +0 ) ~, m = m'u /0, yp =
(eEH+ hen, k )/m'2, and @„(y)is a harmonic oscillator
function. As can be seen from Eq. (2) for EH = 0 the
main difference from the corresponding result for V„=0
is that the A:~ degeneracy of the energy levels is lifted by
the confining potential (0 & 0) and the electrons appear
heavier since m ) m*. For the calculations that will
follow we need the following matrix elements:

0.0
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FIG. 2. Solid curves, the same as in Fig. 1, but for v~ g
0; the dotted curve represents the electrochemical potential
p = EJ; + E —E (E& = 0). E is given by Eq. (2).
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where u = [(w /w )q + q~]l~/2, l = (h/m*~) i/2

the renormalized magnetic length, and L"„(u) is a I,a-
guerre polynomial. For d = 0 we have F(q, ) = I.
For d finite and V, = m'w, z /2 we have, with l,
h/m"w, (( lz, F(q, ) = exp( —q~zl~z/2) if cu, )) ~. For
typical values q, « l, the result for F(q, ) is almost
equal to that obtained from the variational wave func-
tion Xp(z) = z(bps/2)i~ exp( —bpz/2) if l, z = bp/6, i.e. ,

F(q, ) = [1+q, /bp]; in this case the average thickness
is 3/bp.

B. Current c3ensity and criterion for the breakdown

j„=cd,i, (EH)EH+ o„'.E = o (6)

o (EH)E +oP EH o' (7)

since o (EH) &( o „and E /EH (( 1 for strong mag-

netic fields. Here cTP = —crP„oc e /2vrh was obtained
in the absence of electron-phonon interaction, indicated
by the superscript 0. The first term on the right-hand
side of Eq. (6), labeled jg to remind that it expresses the
dissipation, is given by

We assume that the main scattering mechanism is the
electron-phonon interaction. Using Eq. (1) the relevant
Hamiltonian is given by

H= ) E ata +) hu)qb~b~
CL q

eE ) (o.—~x~n')a~ a ~

Ck(1'

+ ) 8(t —bt)[M~~ (q)C~b~
q, o, ,a /

+M (—q)C*b~ ]ai a

Here a~, a and b~, bq are the creation and annihilation
operators for electrons and phonons (of wave vector q),
respectively, Cz measures the strength of the electron-
phonon interaction, and m~ is the phonon frequency. As
indicated by the 8 function the electron-phonon interac-
tion (fourth term on the right) is absent for t & ht (if
it is switched on adiabatically s at t = —oo we obtain
equivalent results for stationary responses).

Extending the procedure of Ref. 2 for wide chan-
nels we evaluate the average current density by
substituting the solutions of the equations of mo-
tion for the operators a(t), ai(t), which involves the
Hamiltonian H, in the standard expression j„(t)
(e/LW) P, ((ai' (t)a (t)))(n~v„~a. '), p = x, y, and con-
sidering the term proportional to —eE as perturbation.
Because the magnetic field is strong, only the main terms
in the expansion of the electron-phonon interaction con-
stant are taken into account. We then obtain for large t
the following expressions for the components of the cur-
rent density averaged over a statistical ensemble and the
dimensions of the channel:

q)A, 0!

(8)

here f p = I/(I + exp[(E~p —E~)/k~T]) is the Fermi-
Dirac function, E p = E (EH = 0), E~ is the Fermi
level, and n~ is the equilibrium distribution function for
phonons. We emphasize that Eqs. (6)—(8) were obtained
using perturbation theory and that the energy spectrum,
Eq. (2), is not degenerate with respect to k~. It can
be shown that prior to switching on the electron-phonon
interaction, at t = 0, we have, from Eqs. (6) and (7),
o.» ——0, E~ = 0; then Eq. (7) is exact. For further details
concerning a stationary response after the interaction is
turned on see Ref. 2. From Eqs. (6) and (8) we can
express EH as function of E, EH = EH(E ). Then
from Eq. (7) the CVC, j~ =j (E~), and the condition
for negativedifferentialconductio (NDC), Bj /BE & 0,
are written as

and

j =o „EH(E )

0jd &0,
BEH g (g )

(9)

(10)

respectively. Criterion (10), which follows from
Bj /BE~ & 0 and Eqs. (6)—(8), is a condition for the
breakdown of the @HE. The more general condition
Bjg/BE~ g 0, which describes breakdown as well, will
be discussed in Sec. III. To proceed further we must
specify the kind of phonons. For the very low temper-
atures pertinent to the @HE we consider only the stan-
dard acoustical (DA) and piezoelectrical (PA) phonons
for which w~ = sq, and Cz = (c'/L L„L,)q+ where
c' is a constant. Moreover, we will assume 0 (&
i.e. , that the confining potential affects the eigenfunc-
tions ~o, ) very little, but it substantially changes the
eigenvalues E~. This condition is usually fulfilled if the
magnetic field is not too weak. 6 We further assume
that E~ is not strong enough to cause interlevel tran-
sitions. As shown in Ref. 9 for interlevel transitions
o» oc exp[—hw, /2m*(vD —s) ]. Then assuming vLi )) s
we obtain exp( —hw, /2m'vD) & by/W (& 1 as the condi-
tion for neglecting the interlevel contribution to jd from
all occupied states in comparison with the intralevel con-
tribution of the edge regions. For vD & s the condi-
tion for neglecting the interlevel contribution to jp is
exp( —ha, /k~T) && 6y/W (& 1. The characteristic ex-
tent by of the edge states is estimated below. From this
last condition it follows that ~eEH~L & h~, /~2, i.e. , ~EH

~

is not too large. Notice that even for a purely parabolic
potential V& we usually have b' y/W &( 1 due to fl « ~,
which is, e.g. , the case when the Fermi level is in the
middle between the lowest two K andau levels.
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C. Dissipation: Main results

From Eq. (8) it can be shown that the intra-Landau
level transitions give the main contribution to the current
jp. For definiteness and in order to make contact with the
experimental results of B.ef. 4 we assume that only the
lowest Landau level (n = 0) is occupied. Then I o(u) = 1

and, as outlined in the Appendix, Eq. (8) can be written
as

~ I + II + III

where, for EH & O, B & 0,

11 11 k *W- dq q
2

(q v )
1A+1 e (q ~ I / 2) [I+A + ( U 1) / 2l I [q

2
l 2 $ (v 2 1) / 4]8 (v 1 )

X [(1 eh@ sUO/k~T) —1 (1 ehq sU/RENT) —
1] (12)

I II( k k )
III II(k k )

Here m = —1 (1) for PA (DA) phonons, Io(2:) is the rnod-
ified Bessel function, k, = (u/tIA) [2m" (E~o —hw/2)] /,
Ezo = Es Eso, k—z = ~e~~,EH/hA, Ay = 1+i,/l, 8(z)
is the theta function, and v = v(k„k@) = h(k, +kE)/ms,
with vo = v(k„0), is a dimensionless number which,
for 0 ~ 0, reduces to the ratio of the drift velocity
to that of sound, v —+ EH/sB From. Eqs. (12) and
(13) it follows that jIj = 0 because the 8 functions
cannot be finite simultaneously (j oc 8[v(—k„k@) —1]
and j oc 8[v(k„—kE) —1]). Notice that, as the 8
function shows, j is connected with electron-phonon
interaction at the right edge of the channel yRE since
'gRE = (eEH + h~ k, )/m*~ = hw, k, /m*w ) 0 (this
corresponds to k = k„see Appendix), whereas jI and

j ' ' express dissipation at the left edge of the channel yI, F,
yLE = («~ —&~.k.)/m'~' = h~.k./m*~—' = —yRE
(this corresponds to k = —k, ). We use ~e~EH && hw, k„
i.e. , (m'v2/her)I/2 « u/0 follows from the above-stated
conditions. For our case in Eqs. (6) and (7) we have
o.„=e /2vrh and W = yRF —yLE = 2h~, k, /m'~

Because the main contributions to jg involve transi-
tions between electron states near the edges of the chan-
nel a more general and realistic confining potential can
be considered. For instance, V„= m'0+(y —y~) /2
for y ) y~ ) 0, V„= m'0 {y —y )/2 for y

+y & 0, and V„= 0 for y & y & y+, where y+
and y are almost equal to the coordinates of the right
and left channel edges, yRF and yI,p, respectively, if
max(yRE y+ g— yLE} « g+ y — 'gRE yLE = W
and A+ g A . The connection with the previous poten-
tial V& is that y+ —y = y„—yt = H = yRE —yI„E. Then
in Eq. (12) and in the expressions for 2, l, k@, and k„one
must substitute 0+ for 0 and in Eq. (13) 0 for A. The
characteristic extent of the edge states by, contributing
to jg in the low-voltage regime, is given by virtue of the
conditions k, » l, Lu » k~T, stated above, as by =
(hw, /m*w ) x max(min{i/l, kIIT/hs}, kIsTm/5 k, }«
yRE —y+(y —yLE). For clarity we repeat that by narroIIj
channel we understand a channel in which the current j~
Bows mainly due to electron-phonon processes along its
edges and by guide channel one in which the current jp
Bows mainly due to electron-phonon interaction in the in-

I

ner regions. Vfe notice in this respect, in line with Ref. 6,
that the same channel can be characterized as aide for
some magnetic field values and as narro1v for others.

For the more general potential V„we have, using Eq.
(ll) for constant B, js/E~ = cr»(EH) g o»( EH). —
Then the form of the CVC j = j (E ) changes when
EH changes sign since from Eqs. (6) and (7) it fol-
lows that j (EH) = j( E—H) w—hereas [E (EH)[
~E (—EH) ~. If EH remains constant and B changes sign
it can be shown, using Eq. (11), that o»(EH, B)
o»(EH, B. ) W—e the. n have j (EH, B) = j(EH, —B)—
and E (EH, B) = E(EH, —B), i.e. , —the form of the
CVC, for EH constant, does not change if the signs of B
and j change simultaneously. These characteristics were
observed in Ref. 4 and allow us to assume that the corre-
sponding channel was narrow in the sense defined above
and that the confining potential had difFerent form at
the two edges. Indeed, the reported results are essen-
tially connected with 0 P A+. Support for this conclu-
sion comes from the fact that although the channel was
geometrically rather wide, W = 200 p,m, B was in the
middle of the Hall plateau for p & or in the middle of the

p minimum and the corresponding values of B were not
much different. In this case the contribution to jg of the
inner regions of the channel is exponentially small. Evi-
dently, the purely parabolic model V& is not realistic for
such widths. We point out that from Eqs. (6) and (7) it
follows that jdEH ——j E, i.e. , after determining jp it is
not difficult to obtain dissipation in the channel. Because
of the relationship E =jg(EH)/cr~„= o'»(EII)EH/o
the construction of the CVC E~ = E (j ) is equivalent,
in relative units, to the construction of the dependence
id =id(EH).

III. CVC AND BREAKDOWN
FOB. NOT- TOO-LOW TEMPER.ATUB.ES

For not-too-low temperatures, such that hs/l « kIBT
and [exp(hq sv/kIsT) —1] = k~T/hq sv, we obtain,
from Eqs. (11)—(13), for the PA interaction

~ I ~ II III
jpA + jpA + jpA~

where
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ii .ii,k k, f' le~u, kETc' 5 i'v —vp )
&4+25 s2uWr ( vpv2 r

- —1/2
x 1+ e (v2 —1)

l2
8(v —1)

4~2n'k. w (EH+ E.)'
t2 (E, + E~)2

S

) - -i/2

Here E, = hA k, /~e~w, is the characteristic electric
field defining the influence of the channel boundaries,
E, = w sB/a2, and vp = v(k„0) = E,/E, For a .chan-
nel of zero thickness, it follows from Eq. (17) that Eq. (10)
is fulfilled for EH ) E„ i.e. , the smallest EH for which
NDC is possible is E = E,/2 if E, = E,/2. The cor-
responding threshold speed is (n,, = m*w /2vrhcu, is the
electron density)

aild

GAPA
— SPA( ke~ kZ)~2PA = GAPA(ke~ kE) ~ (16)

If v(k„kE) ) 1, ~v( k„k—E)~ ( 1, then jpA ——jpiiA ——0,
and from the last three equations we obtain

m*muk~Tc' EH where A = ~e~u, c'm'kET/4vr2h s2~ and

jDA jDA( k kE) jDA jDA(k kE). (22)

From the last two equations for t, = 0, EH + E, ) E„
and ~E~ —E,

~

( E, we obtain

(E~+E )2

From Eq. (23) it is evident that the breakdown condi-
tion (10) is impossible. Consider now Eqs. (21) and (22)
for E~ & E~ + E, . In this case jDA

——0 and for the zero
thickness channel we have

«r EH» E, we have jz oc 1/EH. If finite thick-
ness is taken into account the corresponding result for
(EHt, /E, l,) )) 1 is jg oc 1/EH. For other values of the
parameters we can again have NDC with 6~ &( 8.

For the DA interaction under the conditions hs/t ((
kET from Eqs. (11)—(13) we obtain Eqs. (14)—(16) with
the subscript PA replaced by DA. Here

jDA —= jDA(k kE)
~ II ~ II

e(v -1),(v —vp ) v + 1+ (v2 —1)t /t

( vpv2 r [] +. (v2 ])t2/t2~sy2

(21)

[e(E s
2mhn, 2

(18) (E~ + E )2 (EH E )2 (24)

That is, electron-phonon interaction at the boundaries
of a narrow channel can lead to a threshold speed for
the breakdown smatter than the speed of sound in sharp
contrast with wide samples, see also Refs. 12—14 for
T = 0, where this is possible only for v~ & s. For a chan-
nel of finite thickness t, we have E = Ee/A+ assuming
that v = (E, + E)/E, ~ 1 in which case the typical q,
tends to 0. Then the minimum threshold speed is

2+ j2/t2

For EH )) E, it follows from Eq. (24) that jg tx EH
and j~ oc E~, i.e. , the CVC is Ohmic and NDC is absent.
However, if E~ = E, NDC is possible if (E+ E,)/E, =
1+ 2E,/E, ) 1.84. In Fig. 3, the CVC is shown for
different values of E,/E, using Eq. (24).

consider again Eqs. (21) and (22) for E, ) E„EH
and zero channel thickness. In this case for E, —EH )
E, NDC is absent. However, upon increasing EH by
AEH = AE = maxjhA~/~e~cu, l, kETm'w2/h~e~w, k, ), in
the neighborhood of E = Ee —E„NDC appears again as
jd decreases sharply due to the vanishing of jDA. In par-

If we take 1/l, = bp/6 we obtain / /l, —hbp/6m"w, —
1 or 1.3, in line with the experimental conditions of
Refs. 4 and 5. Thus the Bnite thickness l, can make
the threshold speed substantially smaller than that per-
taining to the zero-thickness 2DEG. Notice that for the
parabolic potential V& we have v = ~e~E~/2vrhne
EHw, /Bw = vD~, /a = vD because of the stated con-
dition ~, &) A. For the more realistic potentials V„' and

V„ the diIII'erence between v and vd becomes smaller so
we can practically neglect it.

Another case where NDC is permissible for all values
of E~ is obtained from Eqs. (14) and (15) for EH +E, )
E„ i.e. , for v(k„kE) ) 1 and EH —E, ) E„ i.e., for
v( —k„kE) ) l. Assuming l, = 0 we have jpiiAi ——0 and

E /E, (E)

1.04

10—

0.96

jd = m 77lh)k~TC 1 1

4~2@'k.w "
(EH + E.)' (EH —E.)'

(2o)

This case corresponds to relatively large EH and the
threshold speed vD is larger than s. From Eq. (20)

1.2

i*le*(E)
FIG. 3. Current-voltage characteristics for the DA inter-

action corresponding to Eq. (24) (EH ) E, + E, = E); the
solid, dashed, and dotted curves correspond to g = E,/E, =
0.3, 0.5, and 1, respectively.
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ticular, for E,/E, —1 (& 1,AE (( E in the region under
consideration of EH we have v, (& s, i.e. , the breakdown
of the QHE here is caused by NDC for relatively small
currents and Hall fields.

We notice that from Eqs. (14)—(16), (21), and (22)
we have the possibility of dissipation (j~ P 0), in the
absence of NDC, for E,/E, 1; even if EH & E„ i.e. ,

if vLi ( s, it follows that jz is not exponentially small.
Such a weakly dissipative regime would be established
for finite EH if E, & E, and immediately for EH = 0
if E, ) E, . Below for definiteness we consider the @HE
regime as (i) nondissipative if j~ = 0 and (ii) weakly
dissipative if js P 0. Equation (10) is associated with
such a weakly dissipative regime which can be totally
unstable if Eq. (10) is fulfilled for all E~ pertinent to
this regime.

IV. CVC AND BREAKDOWN
AT LOW TEMPERATURES

We now consider temperatures low enough that the
inequality r = (hsv/lk&T)2/2 )) 1 holds. Then for the
PA interaction with rl = E,/E, & 1 and rl~ = (EH 6
E,)/E, we assume that ~EH —E,

~
& E, and

0 ( q+ —1 (((r/2)min(i/A; +~ ),' 3A2

where A~ ——1 6 l2/l2. The last inequality allows us to
take Io = 1 in Eq. (12) and obtain, from Eqs. (11)—(13),

s(1 —rl) & v & sr'(1 —rl )/rl „. Figure 4 shows the
CVC for different rl using the values xT = 2.5, A+ = 2,
and A 0 as determined from the experimental pa-
rameters of Ref. 4. A weakly dissipative stable regime
holds for 0.3 & (EH/E, ) ( 0.35 if rl = 0.7. The corre-
sponding value for the resistivity p, as obtained from
Eq. (26) and the expression p» ——E~/j ~

—j~/EH(cro )z
is 8 x 10 ~ 0/0 and compares well with the experimental
one 5 x 10 ~ A/CI before breakdown as obtained with4
s = 2.48 x 10 cm/sec, B = 11.3 T, W —200 pm,
T = 0.95 K, etc.

Further analysis of Eqs. (11)—(13) and (26) reveals that
condition (10) can be satisfied for a variety of combina-
tions of the parameters EH, E„E„rl,and xl . In gen-
eral, increasing the thickness t, leads to smaller break-
down velocities.

Similar results hold for the DA interaction, i.e. , de-
pending on the parameters "sometimes we have NDC
and breakdown, sometimes we do not. For instance, for
rI2xT/2 ) l, rl ( 1, and 0 (

ran+2
—1 (( 1 we obtain

jd =jDA(E„EH) = (12I'/l )ran+[As(7/xT) —AEi(rl+xT)].

(»)
From here it is easy to show, for g z& )) 15, that NDC is
impossible in contrast with the PA interaction where it is;
cf. Eqs. (26)—(28). Another case where NDC is possible
is realized for rl—:(EH —E,)/E, ) 1, rl2x2z /2 ) 1, and
x2T & 2. Assuming [rl —l]2 « 1 we obtain

i~=ip'A(E. E~)
= I'(As(rlxT) —As(rl+xT)

—3A+ (rl+ —1)[As (rjxT ) —A5 (rl+xz )]),

6r ~~
[2 ~ X+(q' —1)]» (30)

where I' = ~e~cu, c'/2' h sl~W, xT = hs/lkrrT, and
A~(x) = exp(x /4)D „(x) with D ~(x) being
parabolic cylinder function. 7 We have used the approxi-
mation nq. —exp( —hq~srl/kryo T) justified under the con-
sidered conditions. From Eqs. (10) and (26) the condition
for breakdown, for minE~ = E = E, —E„reads

Here NDC is satisfied even for t, = 0. In the opposite
limit, rlz )) 1 we obtain, from Eqs. (11)—(13) for l, = 0,

1.2

xT A4(xT) —2A+[As(rlxT ) —A5(xT)] ( 0, (27)

and rl2x72, /2 ) 1; here rl+ ——1 and q, —+ 0. Using the
values of B,8, and T from Ref. 4 we have 2:T = 2.5,
A+ = 2, and A = 0. We have fulfillment of Eq. (27),
i.e. , NDC for g ( 0.65; this corresponds to the smallest
threshold speed v = sE/E, = 0.35s that is close to the
observed value. The condition (27) leads to v & s for
larger values of xz if rl is sufficiently small. For instance,
if g xT )) 15 and g «. 1 we obtain the breakdown
condition for g+ & 1 in the form

E /E (E)

1.0—

0.8—

2A+q+ & 2:Tg .5 2 5
(28) 0.7

If in Eq. (28) we take rl+ ——1 and denote the max-
imum rl by rl~~„, we find that the lowest Hall voltage
for breakdown corresponds to 6~ = (1 —q „)s. This
value of 6 cannot be lowered for g+ & 1 as inspection
of Eq. (28) shows. A weakly dissipative stable regime
is established, in the sense defined above, if g & g
and the corresponding drift velocities are in the region

1.0 1.2

FIG. 4. Current-voltage characteristics for the PA inter-
action corresponding to Eq. (26) (zT = 2.5, l, /l = 1,
E = E, —E, & 0); the solid, dashed, and dotted curves
correspond to g = 0.6, 0.7, and 0.8, respectively.
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jd(x) = (&/~) [E.'/E,'(x) —&+'] (32)

For EH )) E, the dependence j~ = j~(E~) becomes al-
most Ohmic.

V. BREAKDOWN RELATED
TO FLUCTUATIONS IN THE

CONFINING POTENTIAL

We now consider the possibility of the breakdown due
to smooth fluctuations in the confining potential that de-
pend on the x coordinate. Given the experimental way
of producing a 2DEG we expect that these fluctuations
are more pronounced in the z direction than in the y
direction. We therefore consider only fluctuations of a
characteristic scale A )) t which make the ground elec-
tric subband E,p depend on x, E,p = E,p(x), but for
simplicity we take 0 constant, independent of x. This in
turn makes yRE and yr, E fluctuate with x. Consequently,
kRE = —kr, E = k+ Ek with ~Kk~ && k and k representing
an average over a segment l )) A~. We further assume
that Ak takes any value in the interval —Akp, Akp with
equal probability.

We first consider the PA interaction at low tempera-
tures for x&g+ ))2', rl+(x) —= [E,(x) + EH]/E, ) 1,
and —g (x):—[E,(x) —EH]/E, & 1; we then obtain

where 6 = ~e~u, c'k&T /2n. 5 s m'cD; if —rl (x) & 1
the result is

jd(x) = —(&/~) [n '(x) + n+'(x)]. (33)

K+A Ep

jpdE„ (34)

where E corresponds to k and

Notice that if j~ is given by only Eq. (32), or (33) the
breakdown condition (10) is not fulfilled. For instance,
if E, )) E„Eq. (33) shows that NDC is absent for
0 & vD & s(E,/E, ); that is, low-voltage breakdown,

such as when 0 ( vd —s s, is impossible. Similar re-
sults are obtained for the DA interaction. We suppose
that the characteristic region for the transition from Eq.
(32) to Eq. (33) is described for fixed x by AE~
AE « AEp, where AEp corresponds to Akp, here AE =
max(A~ k~T/~e~~, s, kgyTm'(D~/h, ~e~cu, kj. Using the po-
tential V„' we consider the case (yRF —y„), (yi —yLE) «
y„—yt, i.e. , W —y„—yt. Then it is possible to neglect
the x dependence of EH and W in Eqs. (32) and (33) .
The average of jg(x), denoted by js(x), is given by

EEs
&~ —= &~(x) = ~ '~[(E —&Ep) '+E. ' —(E. +Em) '

44Ep W
+(E+&Ep+ E~) ' —(E —A-E, + E„) ' —(E+ g-Ep —E„)-2], (3s)

if (i) E+AEp )Ea+EH and (ii) E, EH & E 2—Ep &—
E, + EH. Only this case is favorable for breakdown. In
connection with Eqs. (34) and (3S) one can see that upon
increasing EH the contributions to jd determined from
Eq. (33) diminish while those determined from Eq. (32)
increase. This leads to a decrease in jd. Apparently, if a
region EH existed for which NDC is possible it would be
of width at most 2AEp. From Eq. (35) the breakdown
condition reads

(E, + EH) '+ (E —AEp + EH) '

((+14)/7 (EH/AEp & ((+1), 7/6 & ( & 7/2,

(( —1) & EH/AEp ( ((+ 1), ( & 7/2.
(38)

I

only confining potential fluctuations at the left and right
boundaries will be important for NDC; therefore, they
can be assumed to be statistically independent. Finally,
for the DA interaction an analysis similar to that given
above leads to the following conditions for breakdown:

(E + AEp + EH—) —(E + d Ep —EH) s & 0.

((+ 3)/2 & EH/AEp & ((+ 1), 1 & ( & 5,

(( —1) &EH/sE«((+1), (&s.
(37)

As can be seen, the region of EH for NDC is not
greater than 2LEO, as stated earlier. Since dissipation
is connected with processes at the channel boundaries

(36)

We write E = E, + (AEp with ~(~AEp && E, and
assume EEp, EH « E, . Then from Eq. (36) taking into
account (i) and (ii) the breakdown condition becomes

VI. CONCLUDING REMARKS

The main result of this paper is that the electron-
phonon interaction in narrow two-dimensional channels
leads to a substantial dissipation at the edges of the chan-
nel and consequently to a (low-voltage) breakdown of
the dissipationless @HE regime if criterion (10) is sat-
isfied. This can happen for drift velocities vii smaller or
much smaller than the speed of sound s in sharp contrast
with wide channels where all previous treatments predict
breakdown for vD & s. In general, the finite thickness of
the channel leads to a v~ smaller than that of the zero
thickness channel. A variety of situations with or with-
out NDC (or breakdown) can occur depending on the
values of the pertinent parameters. Support for our pic-
ture of the breakdown of the @HE as a destruction of a
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nearly dissipationless regime due to NDC can be found
in Refs. 4, 5, 10, and 11 and the review in Ref. 1; in
many experiments the onset of dissipation in the @HE is
related to instabilities, hysteretic behavior, etc. To our
knowledge these results are new. Below we discuss the
relevant approximations and assumptions used in obtain-
ing them.

The main assumption was that the term —eE x in
Eqs. (1) and (5) was small enough that perturbation
theory could be used, i.e. , that E was weak thus lim-
iting the results validity. This could be satisfied if, e.g. ,

E~ &( EH. Indeed, this is a sufhcient assumption and is
reflected in the final results since from Eqs. (6)—(8) we
obtain E = a»EH/a„- E~p»/p„(( EH. This con-
dition, which is different from the low-voltage one vD & s,
is usually satisfied in the experiments. s s io ii is Assum-
ing its validity and using the experimental4 values for
p and p& just before and after the breakdown we find,
respectively, E~/EH = 10 and 10 . Therefore the
approximation E « EH is well justified.

As explained in the text, the assumption about the
parabolic confining potential, made for analytic simplic-
ity, was not at all crucial and could be relaxed through
the use of more realistic models such as V„' or the more
general V„. With regard to the confining frequency 0 we
remark that we have not attempted to express it in terms
of the channel width W. Model expressions, 0 = f(W),
can be found in Ref. 16.

The principal reason for the importance of the
electron-phonon interaction, which leads to dissipation
mainly at the edges of the narrour channel is that in the
latter, in contrast with the iiiide channel, the Landau lev-
els are tilted upwards at the edges and cross the Fermi
level; cf. Figs. 1 and 2. Therefore, the interaction and
the consequent dissipation will be more important for the
electrons that are closer to the Fermi level. This being
the case it is then reasonable to expect modifications of
the conditions for breakdown on the drift velocity vD as
presented in the text. In fact, a weakly dissipative regime
would be established when ii(k„A:@) & 1 as the 8 func-
tion shows in, e.g. , Eqs. (14) and (21). It is reassuring
that this condition is equivalent to the following one on
the drift velocity v~(y, ) at the channel edges y, = yRE
[B ) O, EH & 0 in Eqs. (14) and (21)j. Assuming a
parabolic confining potential we have

1 de m*02y,
& s. 39eB dy eB

Since e & 0 this means that the dissipation in narrow
channels starts when the average channel drift velocity
v~ is smaller than s; here a small difFerence between v~
and vD has been neglected. In contrast, in wide chan-
nels the dissipation starts when vD is larger than s as
Eq. (39) shows for A ~ 0 since it is valid for the more
realistic potential V„'. We further notice, with reference
to Fig. 2, that at the edges of the channel, Yp = YRF
or Yp = YLE, the contribution to the dissipation decre-
seas with temperature in a power-law fashion if the cor-
responding drift velocity v~(YRE) or vLi(Yr. E) exceeds s.
Here the characteristic extent by cx T of the edge states

that contribute to jz tends to zero when the temperature
does. If at the left edge we have v~(Yr, E) & s, i.e. , for
vo much larger than that of Fig. 2, we can have electron
transitions from full states to empty ones only due to
phonon emission and hence a finite dissipation at T = 0.

Because dissipation occurs mainly at the edges we have
been able to use more realistic models for the confining
potentials, when 100 pm & W )& 1 p,m, namely V„' and

V„, with well-defined edges. The results as explained in
the text agree well with the essential features of those
of Ref. 4 previously, to our knowledge, not explained.
We mention in particular the agreement between the cal-
culated and observed values of vLi and p, . More im-
portant, the current-voltage characteristics, as detailed
at the end of Sec. II, matches well the observed one
and lends support to the model V„with different confine-
ment at the edges (A~ g 0 ). We emphasize that the
observations of Ref. 4 are not unique since low-voltage
breakdown with similar characteristics was observed in
Refs. 3 and 6 and was interpreted with a model in which
the current flows mainly along the edges. In particular,
the breakdown in Ref. 3 was observed in sample 2, 4 p,m
wide, for @LE & 1.6 x 10s cm/sec& s near a filling fac-
tor v = 2 (B = 7 T) and for vLi —4 x 10 cm/sec« s
(B = 7.5 T) in agreement with our findings. The subse-
quent interpretation used the electron-phonon interac-
tion model of Ref. 9.

Our treatment of the results of Ref. 4 involved mainly
the intra-Landau-level transitions. The interlevel ones,
although present, did not contribute much to the current
for the conditions stated. This is not always the case
and depends mainly on the parameters. For instance,
in Ref. 3 both kinds of transitions occur depending on
the value of the Hall voltage (oc EH), In Ref. 19 the
high breakdown current densities (not applicable to our
case) are clearly associated with interlevel transitions and
again with electron-phonon interaction. Indeed, for the
narrowest sample of Ref. 18 (L = 10.2 pm, W = 1 pm)
and the h/2e plateau at B = 6.3 T the critical current
density 29 A/m, obtained in Ref. 19, is close to the ex-
perimental one and gives vLi —5.6 x 10 cm/sec )) s.
It follows that exp( —hu, /2m*v+~&) = 4 x 10 2 ) 6y/W =
10 z; this is opposite to what we assumed after Eq. (10).
Notice that for another sample (L = 14 pm, W = 66 pm)
Fig. 5 of the same reference gives vD & 4 x 10 cm/sec
g( s.

It is worth emphasizing that in narrow channels we
do not always have vD )& s. Indeed, in Ref. 11 the
breakdown for one constriction (L = 10 pm, W = 1.5
pm), before illumination, was observed at vri & 3.4 x 10
cm/sec- 1.4s as is easily obtained from curve A of Fig. 1
and the critical currents of Fig. 2 of this work. This is
at least one order of magnitude smaller than the criti-
cal xiii reported in Refs. 18 and 19 for comparable values
of W, L, B,T. In Ref. 20 the critical vD for the channel
with L = 10 pm and W = 4 p,m, before illumination, was
2 x 10s cm/sec& a. That is, for rather narrow channels,
W ~ 1 pm, the breakdown starts usually for vg s but
in some cases for vD &».

Within our model we can understand qualitatively two



16 418 O. G. BALEV AND P. VASILOPOULOS

more observations: the increase in vD, after illumination
of the sample, reported in Ref. 11 and the large difFerence
in vD between Refs. 11 and 18, for rather similar values of
R", L, etc. , despite the inapplicability of our theory to the
results of the latter. The first one is due to an increase
in the electron density which leads to an increase in 0
and, consequently, in the parameter E, that modifies the
relevant breakdown conditions. For instance, if E, ) E,
we have no breakdown for 0 ( vD/s ( (E, —E,)/E„
based on Eq. (33); that is, the larger E, the larger the
critical v~ for breakdown [if (E, —E,)/E, ) 1 we have
v~ ) s]. As for the second observation we simply have
to assume that in Ref. 18 we had E, )) E, and in Ref. 11
E, ~ E, and refer, e.g. , to Eqs. (20) and (33). Notice
that for E, )) E, we have EH ) E, (for the region of
possible breakdown) and our treatment ceases to apply.

Finally, we have shown that breakdown is possible

when in addition to the electron-phonon interaction there
exist fluctuations in the confining potential along the z
direction. The fiuctuations modify the breakdown condi-
tions; cf. Eqs. (36)—(38). Not being aware of any relevant
experimental data we cannot test our theory in this re-
spect.
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APPENDIX

Using the 6' function in Eq. (8) we first carry out the
integration over q, and then that over q„. Then we obtain

] e]cu,c'
425 * 2W dq dk q [q v] +'(f[Eo(k )] —f [Eo(k —q )])

1 1
~[Ep(A: }—Ep(kx —qx}j/kaT 1 gfisq 'U/k~T

[ 2lzp (- 1)/4]
—q i [i+A+(6 —i)/zj/z (Al)

where Eo(k ) = Eol,.(EH = 0) = hem/2+ h kz/2m+ E,o and

q~8&0, 8 &1. (A2)

Here Io(x) is the modified Bessel function and v = v —(hq~/2m s)(A/u) . Since her )) k~T, we have approximately
f[Ec(k~) —f(Eo(k~ —q~)] ——2k~q~b(k —kez). Moreover, because k, is much larger than the typical q~ we can
approximate v by v. Then from Eq. {Al) we obtain, after the integration over k, Eq. (11) of the text.
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