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Nonlinear optical rectification in parabolic quantum wells with an applied electric field
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Optical rectification in parabolic quantum wells, with an applied electric field, due to resonant inter-

subband transitions is analyzed using a compact density-matrix approach. The large dipolar matrix ele-

ments obtained in such structures are partly due to the small effective masses of the host materials and

are interpreted in terms of the participation of the whole band structure in the optical transitions. The
other origin of the large optical rectification coefficient lies in the possibility of tuning independently the

frequency coo of the parabolic potential and the applied electric field F.

I. INTRODUCTION

Wide parabolic quantum wells (PQW's) have been pro-
posed as structures in which a high-mobility quasi-three-
dimensional electron gas can be realized. These wide
PQW's have recently been grown' by tailoring the
conduction-band edge of a graded Ga& Al„As semicon-
ductor. Quantum confinement of carriers in a semicon-
ductor parabolic well leads to the formation of discrete
energy levels and the drastic change of optical susceptibil-
ities. One of the most remarkable properties of these
quasi-two-dimensional electronic systems is that the opti-
cal transitions between the size-quantized subbands are
feasible. The electrons are quantized into subbands
where their wave functions in the growth direction have
the form of envelope functions with an extension equal to
the effective well width, i.e., in the range of a few nanom-
eters. Electromagnetic waves may induce electronic tran-
sitions between these subbands. The dipole matrix ele-
ments associated with these intersubband transitions have
the same order of magnitude as the effective well width
leading to extremely large absorption.

The dipole matrix elements are thus in the nanometer
range instead of the few picometers obtained in usual
molecular or ionic systems. Since second-order optical
susceptibilities have a cubic dependence relative to the di-
pole matrix elements, strong second-order optical non-
linearities are expected in multiple quantum wells
(MQW's) insofar as inversion symmetry is broken. In
their work, Gurnick and DeTemple have suggested ob-
taining this asymmetry by growing Al„Ga& „As MQW's
with asymmetric composition gradients of A1 in the
growth direction. In their paper, these authors have
considered an asymmetric Morse potential and have
shown that nonlinearities of 10—100 times larger than in
bulk materials could be theoretically possible. Khurgin
later suggested using asymmetric coupled quantum
wells. Ahn and Chuang proposed to bias a symmetric
QW electrically to obtain this asymmetry. This has been
realized by Fejer et al. , who obtained a second-
generation coefficient more than 70 times higher than in

bulk GaAs. In a more recent work, Yuh and Wang sug-
gested that the use of a step-quantum-well structure,
which consists of a small well inside a larger one, would
be easier to fabricate and could yield also large second-
harmonic nonlinearities. Rosencher et al. have shown
that these step QW's could be designed so that the ab-
sorption could be doubly resonant, leading to second-
harmonic-generation coefficients more than three orders
of magnitude higher than in bulk GaAs. ' These latter
authors have realized different step QW's and observed
indeed extremely large second-order optical nonlineari-
ties. " These huge nonlinearities in step QW's have been
confirmed by Karunasiri, Mii, and Wang, who measured
linear Stark effects as high as 0.44 meV/kV. '

In this paper, we study the optical rectification of a
parabolic quantum well with an applied electric field. In
Sec. II we shall present the theoretical development of
perturbation theory and density motion, and give the
simple expressions of nonlinear optical rectification. In
Sec. III we will give our results and discussions. We find
that in the PQW's with an applied electric field the dipole
matrix elements po, h increase with the enhancement of
the electric field F, but increase with the decrease of the
frequency coo of the parabolic potential (see Fig. 1). We
also find that the optical rectification yo

' is six orders of
magnitude higher than in bulk GaAs.

II. THEORY

Electrons in PQW's with an applied electric field are
described by the effective-mass Hamiltonian

+ + +—'m*moz +qFz,
2m Bx Bg Bz

where z represents the growth direction, A is Planck's
constant, —,'m*cooz is the parabolic confining potential in
the quantum well, and F is the applied electric field. The
conduction-band effective mass m* will be taken to be
constant in the rest of the paper. The eigenfunctions
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'Il„i,(r) and the eigenenergies E„ i, are solutions of the
Schrodinger equation H +„i,( r ) =E„k+„i,( r ) and are
given by

and

W„„(r)=C„(z)U,(r)e (2)

E„ i =E„+
2m

Here, kII and rII are the wave vector and coordinate in the
xy plane and U, (r) is the periodic part of the Bloch func-
tion in the conduction band at k=0. 4„and E„are, re-
spectively, the envelope wave function and the transverse

energy of the nth subband, solutions of the one-
dimensional Schrodinger equation Ho@„(z)=E„4„(z),
where Ho is the z part of the Hamiltonian H in Eq. (1),
i.e., Ho= —(iri /2m )(8 /Bz )+—,'m*cooz +qFz. We
know that the Schrodinger equation can be solved exact-
ly.

If the structure is doped, at sufficiently low tempera-
ture most of the electrons are located in the ground sub-
band c0. Let us consider an electromagnetic field of fre-
quency co which is incident with a polarization vector
normal to the parabolic wells. The polar interaction is
given by qEoz cos(cot ), where q is the electronic charge.
Time-dependent perturbation theory shows that the elec-
trons are then in the steady state

e t COt

(coo„—co)+ „ fk~~
—

k~~ f
+il „o2m*

where coo„=ED„/iii=(E„Eo)/fi —is Bohr's frequency,
and kII and kII are the parallel wave vectors in subbands n
and 0, respectively. We have made the near-resonant ap-
proximation [neglecting the (co+coo„) terms] and neglect-
ed transient behavior [exp( icoo„t ) terms] by introducing
the lifetimes I „0. Symmetry considerations on Bloch
states show that

The evolution of the density matrix is given by the time-
dependent Schrodinger equation

[Ho qzE ( t ),p ]; —1;—(p —p' '),
Bt lA

(7)

For simplicity, we will assume in the following only two
different values of the relaxation rates: ri= 1/T, for
i =j is the diagonal relaxation rate and 12=1/T2 is the
off-diagonal relaxation rate. Equation (7) is solved using
the usual iterative method: '

p(t) =g p
" (t),

with

where 6 is the Kronecker delta function.
Now we will present a formalism for the derivation of

nonlinear optical rectification in parabolic quantum wells
with an applied electric field. Let us consider the system
described by the Hamiltonian

Ho= (fi /2m*)(B /—Bz )+—,'m'cooz +qFz .

At thermal equilibrium, the density matrix p' ' is a diago-
nal one, in which the diagonal elements p,',

' are the sur-
face thermal population p, of level E,- given by the Fermi
level in the parabolic quantum well. The system is excit-
ed by an internal electromagnetic field

E (t) =Ee'"'+Ee

(n+
iJ

Bt

1)

I [H,p'"+ "],,

iver

—p'"+ ""]
l

where g'", yz„', and g0
' are the linear, second-harmonic

generation, and optical rectification coefficients, respec-
tively. The electronic polarization of the nth order is
given by

(, n)P ' "'( t ) =—Tr(p'" 'qz ),
s

where s is the area of interaction.
We finally find the optical rectification coefficient per

unit surface:

~")=4 q 3p

0 ~2 01
~o

(12)

It is clear that optical rectification will occur in our mod-
el where the mean electron displacement 6 does not equal
zero (from the calculation, we get b, =qF/m *coo). We
can see from Eq. (12) that the enhancement of the optical
rectification y0

' originates from the contribution of @016.
We can tune independently the frequency of the parabol-
ic potential and the applied electric field to optimize
po'd, . An examination of Eq. (12) shows different ways to
enhance the y0 '.. the geometrical factor p016, the doping
concentration p„and the time constant product T1 T2.

[qz, p'"'],"E(t) .
lA

The electronic polarization of the PQW will also be a
series expansion as in Eq. (8). We shall limit ourselves to
the first two orders, i.e.,

P(t)=(e~~ "Ee'~'+e~g~E2e '~')+c c +e~. ~. 'Ei
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T2 is certainly governed by intrinsic mechanisms such as
electron-electron interaction or optical-phonon emission
for an excitation energy, without clear possibilities to act
upon it. On the other hand, T, is a population relaxation
time and can be enhanced by storing the excited electrons
on a metastable level.

III. RESULTS AND DISCUSSIONS

In Fig. 1, we show that the dipolar matrix elements

pz&A increase with the enhancement of the electric field F
and increase with the decrease of the frequency mp of the
parabolic potential. Since we know that if the electric
field F is too strong, it will break down the semiconduc-
tors, that means there is a superior limit to F. Of course,
there is also a limit to coo. We get the optimum values
F=2.0X10 V/m and coo=3.6X10' s

Figure 2 shows the maximum second-order nonlinear
susceptibility (optical rectification) as a function of pho-
ton energy obtained in this model. We have assumed
usual relaxation times of T2 =0.2 ps and T& =1 ps." We
optimize co=10' s ', pz=5X10 m, F=2.0X10
V/m, and coo=3.6X10' s '. In our calculation, the
effective parabolic width 8'=4000 A and the height
V=150 meV. ' Our curve is compared with the one
given by the classical polarizable sphere limit of Gurnick
and DeTemple. In their paper, these authors estimate
that the classical model leads to limit values which are

higher than the ones obtained using the quantum Morse
potential model. This is not so in our case. The huge
enhancement in the theoretical values of the maximum
susceptibility in our model comes from the possibility of
independently tuning the applied electric field F and the
frequency coo of the parabolic potential. Comparing the
order of magnitude for optical rectification with two oth-
er possibilities —biased quantum well and asymmetric
quantum well —we know that our results have the same
order of magnitude for optical rectification as the results
obtained in Refs. 5 and 7.

In conclusion, we have used a compact density-matrix
approach to analyze the optical nonlinearities in parabol-
ic quantum wells with an applied electric field due to res-
onant intersubband transitions. The origin of the large
oscillator strengths in GaAs parabolic QW's is analyzed
in terms of the contribution of the optical transition over
the whole band structure of GaAs. The dipolar matrix
elements which lead to the maximum values of the
second-order susceptibility are gained. We thus show
that the huge nonlinearities observed in these structures
are due to (i) the effect of the small effective mass (i.e.,
mo = 14.9m * in GaAs), and mainly (ii) the possibility of
tuning independently the frequency of the parabolic po-
tential and the applied electric field. Values of optical
rectification coefficients as high as 1.6X10 m/V at
10.6 pm (i.e., six orders of magnitude higher than in bulk
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FIG. 1. Variation of the product of dipolar matrix elements

pp&A as a function of the electric field F. It is plotted for three
different frequencies cop of the parabolic potential: (a)
cop=90X 10 s (b) Q)p= 1.04X 10 s ' and (c) ct)p=3 X 10
s '. It shows that the dipolar matrix elements pp&A increase
with the enhancement of the applied electric field F and increase
with the decrease of the frequency cop of the parabolic potential.

FIG. 2. Quantum limitation of go'~' in parabolic quantum
wells. The diagonal and off-diagonal relaxation times are 0.2
and 1 ps, respectively; co = 10' s ', p, = 5 X 10 m

cop=3.6X 10' s ', and F=2.0X10 V/m. The effective para-
bolic well width 8'is 4000 A and the height V is 150 meV (Ref.
14). The results are compared with the polarizable sphere limit
of Gurnick and DeTemple (Ref. 5).
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GaAs) may be obtained in optimized structures. Finally,
it is hoped that this paper would stimulate more experi-
mental work, which could be helpful in an understanding
of the optical nonlinearities in the parabolic quantum
well with an applied electric Beld.
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