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Calculation of minority-carrier mobilities in heavily doped p-type semiconductors
in the dielectric-function formalism
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An alternative approach for the calculation of minority-carrier mobilities is proposed. This approach
is based on the self-consistent-field (SCF) method, and it combines elementary excitation theory with an

appropriate transport theory beyond the relaxation-time approximation. Detailed information on ele-
mentary excitations of majority holes at Pnite temperature is obtained from the spectral density function
(Im[ —1/eiq, co)]) derived by the SCF method. Also, the finite lifetime of holes has been incorporated
and a suitable form for the coupling of longitudinal-optical phonons, plasmons, and single-particle exci-
tations is described. We have calculated minority-carrier mobilities for p-type GaAs and p-type Si,
which show excellent agreement with available experimental data for a wide range of hole concentra-
tions. Suggestions for improvements to this approach are described.

I. INTRODUCTION

Minority electron mobility in heavily-doped semicon-
ductors is an important macroscopic quantity in many
applications and several issues concerning this physical
property of semiconductors remain to be resolved. Evalu-
ation of minority-carrier mobility is a nontrivial problem,
both experimentally and theoretically. Increasing data
for minority electron mobility have become available in
recent years, especially for GaAs. These data have been
obtained from sophisticated experiments such as the
time-of-flight measurement' and the common-emitter
cutoff frequency measurement with adequately fabricated
heterojunction bipolar devices, in addition to other
experimental methods. " Experiments for Si are fewer
in number. '

Theoretical calculations of the minority electron mo-
bility for GaAs were first made by the variational
method. ' Recently, Monte Carlo simulations have also
been applied. ' ' However, as pointed out by Beyzavi
et ah. , the calculated mobility does not agree well with
their experimental data, either at room temperature or at
low temperature. At room temperature, the observed
minority electron mobility is as much as a factor of 2
below the ionized impurity-dominated value. As temper-
ature decreases, the experimental mobility increases
much more sharply than the theoretical prediction. The
variational method and Monte Carlo simulations are
both effective for the calculation of carrier mobilities
when the scattering mechanisms are described correctly.
In earlier theories, electron-hole scattering was calculated
by the same formula as that used for ionized impurity
scattering in the center-of-mass coordinate system, and
plasmon scattering was neglected. This approximation
loses validity for fully degenerate conditions since hole
transitions are strongly prohibited by the Pauli exclusion
principle, while the collective excitation (i.e., plasmon)
comes into play.

Minority electron transport should be described by the
appropriate application of the many-body theory. The

significant many-body effects are dynamical screening
and collective excitations. Very recently, Lowney and
Bennett showed a refined calculation of majority- and
minority-carrier mobilities for GaAs (Ref. 19) and Si.
They incorporated plasmon scattering in the variational
method, and applied phase-shift corrections beyond the
Born approximation for ionized impurity scattering and
minority-carrier —majority-carrier scattering, where the
Pauli exclusion principle for majority carriers was ap-
proximated by removing those states with energies below
the Fermi energy. Also, Fischetti reported a detailed
study of the effects of plasmon scattering on the majority-
and minority-carrier mobilities along with a phase-shift
analysis for ionized impurity scattering in Si. ' In these
calculations, the effects of interband transition of holes
were neglected and the Bohm and Pines approach of in-
troducing a wave-vector cutoff was adopted for the
electron-hole interaction. As pointed out by Rorison and
Herbert in their study of the electron-electron interaction
using the random-phase approximation (RPA), the con-
cept of wave-vector cutoff in n-type semiconductors be-
comes invalid as the carrier density is lowered. In
heavily-doped p-type semiconductors, the definition of a
cutoff wave vector for hole plasmons becomes more am-
biguous due to the extended and complicated Landau
damping region. The dynamical response of a hole gas is
significantly affected by interband transitions between the
heavy-hole band and the light-hole band. ' In addi-
tion, our recent work has demonstrated the importance
of collision damping of coupled collective excitations due
to finite hole lifetime, i.e., the short interval time between
scattering events. The resulting damped plasma modes
are coupled to longitudinal-optical (LO) phonons in
zinc-blend e semiconductors. Coupling of hole-
plasmon —LO-phonon modes and the broadening of these
modes in p-type GaAs have been observed experimentally
by Raman scattering. Major issues which need to
be addressed in minority electron mobility calculations
include (i) electron-hole interactions related to the inter-
band hole transitions within the valence bands and (ii) the
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coupling of LO phonons and plasmons.
An effective method to describe minority-carrier trans-

port in a heavily-doped semiconductor is to extend the
dielectric-response-function formalism to an appropriate
transport theory. Although there are limitations, the
RPA or self-consistent-field (SCF) method is a tractable
and reasonable approach for describing the many-body
effects in heavily-doped semiconductors since the
effective interparticle radius is usually small in such ma-
terials. By evaluating the frequency- and wave-vector-
dependent dielectric-response functions for majority
holes, we can develop a more comprehensive method for
the calculation of minority electron transport. In this
method, detailed information of elementary excitations of
the hole gas is obtained from the spectral density func-
tion (Im[ —1/e(q, co)]), and the static dielectric function
e(q, O) describes the screened impurity potential incor-
porating the multiple structure of the valence band.

The purpose of this paper is to examine the accuracy of
our dielectric-function approach derived by the combina-
tion of elementary excitation theory and an appropriate
transport theory. Our model incorporates the dynamical
interaction between minority electrons and majority holes
within the Born approximation. The calculated results
are compared with experimental data for heavi1y-doped
p-type GaAs and Si.

II. THEORY

where r(EI, ) is the relaxation time for elastic scattering,
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Here, 8'k'k. is the elastic-scattering rate from k to k' and
e is the angle between k and k'. Also, I 0(E&) and
I (P,Ez ) are defined by the following integrals:
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Here, 8'k"k. is the inelastic-scattering rate from k to k';
thus, I 0(E&) is the total inelastic-scattering rate. Retain-
ing first-order nonparabolicity, we obtain the minority-
carrier mobility as
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A. Basic formulas

Ak =y(Ek ) =Eq(1+aEq ),
2m

(2)

where m * is the effective mass at the bottom of the con-
duction band. The nonparabolicity factor o. has a
moderate effect on mobility at room temperature. The
electron velocity is given by

v(k) = Ak

m *(1+2aEk )

We assume nondegenerate statistics for minority-carrier
distribution. Thus, the iterative form for P(Ez) in our
case is given by

(4)

In order to describe inelastic scattering correctly, we
adopt the iterative method ' since the relaxation-time ap-
proximation cannot be applied when nonrandomizing
inelastic-scattering mechanisms dominate. Under weak-
field conditions, we can apply the first-order Legendre
polynomial expansion of the full distribution function,

~f0(E~)f (k) =fo(Ek) —eFU(k)p(Ek) cos8,
k

where 8 is the angle between velocity v(k) and electric
field F. Here, we assume a spherical conduction band in-
corporating first-order nonparabolicity, i.e., the energy-
momentum relation is given by

B. Scattering mechanisms in zinc-blende semiconductors

In heavily-doped zinc-blende semiconductors (e.g.,
CxaAs), the dominant scattering mechanisms are ionized
impurity scattering and inelastic scattering due to the
coupled LO-phonon-plasmon excitation and the single-
hole excitation. The elastic-scattering rate due to ionized
impurities is given in the Born approximation by

wk'], +q=N, ~(k+q~ v(r)~k) ~~5(Eg+ Ek), —

4 2

&(r)=g
q e(q, O)q

(10)

where E(q, O) is the SCF static dielectric function and N,
is the density of ionized impurities. The SCF method is a
good approximation since the SCF dielectric function can
incorporate the anisotropic band structure and reproduce
characteristic features of the potentials obtained by the
nonlinear Hartree approximation and the Kohn-Sham ap-
proximation. We assume that the compensation ratio is
zero and that all of the acceptor impurities are ionized,
i.e., p =N;. This assumption eliminates the use of some
fitting parameters. The final form for evaluation of the
relaxation time for elastic scattering is
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density function [i.e., Im[ —1/e(q, co)]] in the Born ap-
proximation,
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The inelastic-scattering rate is given by the spectral
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Using Eqs. (6) and (7) we obtain
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where n(fico) is the Bose function and y(Ek) is de-
fined by Eq. (2). The limits of integration are
taken as iiico,„=fi q(2k —q)/2m *(1+2aEk ), Acorn;„
=max[ —fi q(2k+q)/2m (1+2aEk), —6k&T], and
0(q (k+[k +12kiiTm'(1+2aEk)/R ]'~ . These ex-
pressions imply both energy emission and absorption pro-
cesses. The dielectric-response function for a zinc-blende
semiconductor is calculated from the following equa-
tion:
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For the valence bands in zinc-blende semiconductors, the
overlap factor is given by

r

[Fk,k+q /2-
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where the indices n and l denote either the heavy-hole

where c. is the high-frequency dielectric constant, and
coLo (coTo) is the longitudinal- (transverse-) optical pho-
non frequency. The second term in Eq. (15) is the hole
dielectric function derived by the SCF approach, where
P(q, co+i/rk ) is given by

band or the light-hole band, and y is the angle between k
and q. The hole relaxation time ri, (not to be confused
with the electron relaxation time r) is obtained from the
experimental hole mobility (i.e., 1/rh =e/p&mh). The
third term in Eq. (15) is the lattice dielectric function
and I T is the damping constant due to the anharmonici-
ty of optical phonons.

C. Scattering mechanisms in covalent semiconductors

For heavily-doped covalent semiconductors (e.g. , Si),
the dominant scattering mechanisms are almost
the same as for zinc-blende semiconductors with some
modification. Since there is no polar optical interaction
in covalent semiconductors, the total dielectric-response
function is given by

4 e2 ( 1+i /co'rh ) (q&co+ i /rh )
E(q, co)=so-

q 1+(i/co1i, )P(q, co+i/r&)/P(q, 0)

where co is the static dielectric constant. In the spherical
band approximation, we can use the same formulas given
by Eqs. (11), (13), and (14).

In addition to the above scattering processes, we con-
sider acoustic-phonon scattering and intervalley phonon
scattering. Screening for the deformation potential is an
unsolved problem since the "unscreened potential'* can-
not be defined explicitly in the presence of free car-
riers. ' However, if we assume that nuclear displace-
ment produced by the phonons is the same in the absence
or presence of free carriers (although this is not true in
general), the deformation potential is screened by free
carriers in exactly the same way as the macroscopic po-
tentials from long-range interactions. In this assump-
tion, for consistency, we incorporate screening for
acoustic-phonon scattering using the SCF dielectric func-
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tion. Since the phonon energy is much smaller than the
thermal energy, we can assume energy equipartition, the
elastic-scattering approximation, and the static screening
approximation. Dividing the q-Fourier component of the
unscreened deformation potential by [E(q, O)/Eo], we ob-
tain the scattering rate of an electron from k to k+ q,

2

1

r(Ek)
1 1 ~ 1

&i~&(Ei ) rR.(Ei ); brinier, i(Ei )

III. RESULTS AND DISCUSSION

A. Parameters

total relaxation time is then given by

(22)

where = is the deformation-potential constant, u is the
longitudinal sound velocity, and p is the density of the
material. Thus, unlike the unscreened potential,
acoustic-phonon scattering becomes anisotropic for
momentum relaxation when screening is included. The
final form of the relaxation time [Eq. (5)] is then given by
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where (D,K), is the coupling constant, co,. is the phonon
frequency for ith phonon modes, and Zf is the number of
possible equivalent valleys. In both Eqs. (20) and (21), we
use the material parameters listed in Ref. 37. Finally, the

On the other hand, screening of inter valley phonon
scattering can be neglected since intervalley scattering is
accompanied by a large momentum transfer [E(q, co)—+so
when q~+ ~]. Also, although intervalley phonon
scattering is an inelastic process, I given by Eq. (7) be-
comes zero since the intervalley phonon scattering is a
momentum randomizing process for final states. '

Therefore, we can define a "relaxation time" for this
scattering as

We have adopted the standard input parameters listed
in Table I. However, the valence-band parameters re-
quire more careful consideration. In order to calculate
Eq. (16), the parabolic band approximation for the
valence band must be applied, although the actual
valence band is quite complicated. In order to investigate
the energy dependence of hole effective-mass ratios,
which are assumed to be single values in our formalism,
we have estimated "average conductivity effective-mass
ratios" according to Ref. 38 as shown in Appendix A.

Figure 1 shows the average conductivity effective-mass
ratios for holes as a function of hole energy in GaAs and
Si. Here, we have adopted the valence-band parameters
A = —7.65, B = —4. 82, C = —7.71, and 5=0.34 eV for
GaAs, with A = —4.22, B = —0.78, C = —4. 80, and
6=0.044 eV for Si, where A, B, and C are given in atom-
ic units. As can be seen, the energy dependence of the
valence-band effective-mass ratios is not significant for
GaAs. Therefore, we have adopted the standard
effective-mass values at the top of the valence bands re-
ported in the literature. On the other hand, the nonpara-
bolicity of the valence bands is quite significant for Si,
producing important effects for very heavily-doped con-
ditions. The strong dependence of hole effective-mass
values on hole energy will inhuence the screening effects
and collective excitations significantly. Larger effective-
mass values will be more effective for static screening in
the Coulomb interaction and produce smaller plasmon
energy. In this paper, we have adopted two sets of
effective-mass values as listed in Table I; the standard
values at the top of the conduction band and the values
deduced from Fig. 1. The latter choice is also consistent
with the density-of-states efFective-mass ratios for the
large hole energy calculated in Ref. 40. We have also

TABLE I. Material parameters for GaAs and Si.

GaAs Si

Conduction-band parameters
0.07
0.07
0.64

Valence-band parameters
0.50Heavy-hole effective-mass ratio

Light-hole effective-mass ratio 0.082

Conductivity effective-mass ratio
Density-of-states effective-mass ratio
Nonparabolicity factor (eV ')

0.26
0.32
0.5

0.53(1.2')

0.155(0.2')

High-frequency dielectric constant
Static dielectric constant
TO-phonon energy (meV)
LO-phonon energy (meV)

'Deduced from Fig. 1.

Dielectric parameters
10.9

33.8
36.5

11.7
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FIG. 1. Average conductivity effective-mass ratios for the
valence bands in (a) GaAs and (b) Si obtained from the equa-
tions given in Appendix A.
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neglected the split-off band. Although it is relatively
close to the top of the valence band in Si, we assume the
effect of the split-off band is small since its contribution
to the total hole population is very small.

For the conduction band, we have assumed a single
spherical band with first-order nonparabolicity. This ap-
proximation is fairly accurate for GaAs since most
minority electrons are located near the bottom of the I"
valley at low electric field. For Si, we have used two
effective-mass values for the conduction band, i.e., the
conductivity effective mass (m*=m, ) for mobility [Eq.
(8)] and the density-of-states effective mass (m *=md ) for
scattering rates [Eqs. (13), (14), and (22)].

Another important parameter in our theory is the
damping constant fi/~I, which is obtained from
1/~I, =e/pI, rn&. For hole concentrations of interest, ap-
propriate values of A'/~& are 0.01—0.05 eV since hole
mobilities between 50 and 200 cm /V sec are typical for
both GaAs and Si at room temperature. For the damp-
ing constant of optical phonons, we have adopted
A'1 T=2. 5 X 10 eV (=2 cm '), which is the typical ex-
perimental value for GaAs at 300 K. '

B. Electron mobility in p-type GaAs

Our theoretical calculation has been compared in a
quantitative way with experimental data for GaAs. The
first test of the theory is the comparison of our results
with experimental work of Beyzavi et al. , who investigat-
ed the temperature dependence of minority-carrier mobil-
ities. Figure 2 shows the temperature dependence of
minority-carrier mobilities for a hole concentration of
4X10' cm with Alrj, as a parameter. We have as-
sumed two values of fi/rh (0 and 0.02 eV) for compar-
ison. Also plotted are the experimental data of Beyzavi
et al. as well as the theoretical values obtained by the
conventional method of Walukiewicz et al. ' Our results
show excellent agreement with the experimental data for
A/~& =0.02 eV, which is obtained for a majority hole mo-
bility of about 100 cm /V sec. The result with A/~& =0
gives systematically larger values than the experimental
results. As shown in Fig. 2, the previous theory does not
explain the temperature dependence of electron mobili-
ty, where the electron-hole interaction was incorporated
in the elastic-scattering approximation, i.e., ionized im-

0 I I I I I I

0 50 100 150 200 250 300 350
Temperature (K)

FIG. 2. Electron mobilities for GaAs as a function of tem-
perature with A'/~q as a parameter (dashed line for A/~z =0 and
solid line for A/~z =0.02 eV). The theoretical results are com-
pared with the experimental data available in the literature, as
well as the value calculated by the conventional method
(dashed-dotted line).

purity scattering" rates were merely doubled for uncom-
pensated materials. This approximation may be qualita-
tively reasonable for a nondegenerate hole gas, since the
hole mass is much larger than that of an electron and the
scattered electron loses little energy during the scattering
event. However, in a fully degenerate hole gas, most
holes are prohibited from scattering due to the Pauli ex-
clusion principle. This leads to a reduction of two-body
scattering between a hole and an electron. This is the
main reason why we observe a sharp increase in mobility
as temperature decreases below about 150 K. At higher
temperatures, on the other hand, two-body scattering is
important and the collective excitations (hole plasmons,
which are coupled to LO phonons in zinc-blende semi-
conductors) emerge as well, resulting in significant reduc-
tion of mobility.

In order to examine the scattering mechanisms more
quantitatively, we have calculated the energy-dependent
momentum relaxation rates. For this purpose, we define
the "momentum relaxation rate" for inelastic scattering
as l,„v(k')= f W„'"„, 1 — cose dl',

+"(E&) ' v k
(23)

where each symbol has the meaning described in Sec. II.
This definition is sometimes used in the balance equations
for solving transport problems and is also adopted in Ref.
21 for plasmon scattering. Although Eq. (23) is useful,
e.g. , for the evaluation of relaxation rates of hot elec-
trons, it is strictly valid for the mobility calculation only
when r(Et, )=r(Et, ), as is the case for elastic scattering,
where r(Ek) is the total "momentum relaxation time. "
Therefore, if the total relaxation rates change abruptly
with electron energy, this formula may give a significant
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error in mobility calculations. Figure 3 shows the
momentum relaxation rates for elastic and inelastic
scattering obtained from Eq. (23) as a function of electron
energy with fi/rI, as a parameter at 77 K [Fig. 3(a)] and
300 K [Fig. 3(b)] for a hole concentration of 4X10'
cm . For ionized impurity scattering, we have shown
only one curve in each graph since the elastic-scattering
rate is not affected by a finite value of ~&. In our for-
malism for inelastic scattering, for the sake of accuracy
we do not distinguish LO-phonon scattering, plasmon
scattering, and two-body scattering. At low temperature
[Fig. 3(a) at 77 K], most electrons are located near the
bottom of the conduction band [effective energy range in
Eq. (8) is about 0—50 meV and the characteristic electron
energy is 3k~ T/2- 10 meV], where the momentum re-
laxation rates due to inelastic scattering are increased by
the finite value of ~&. This is due to broadening of the
collective excitation modes toward smaller co at small q,
which can interact with low-energy electrons. At higher

5000
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temperature [Fig. 3(b) at 300 K], momentum relaxation
rates due to both the elastic and inelastic scattering in-
crease for low electron energy. Here, the increase of
average hole energy results in weakening of static screen-
ing, and elementary excitations are thermally excited.
Although the modification of the momentum relaxation
rates for inelastic scattering due to the finite value of ~& is
significant, the actual effect on minority mobility is
moderate at 300 K. Since the effective energy range in
Eq. (8) is extended over about 0—150 meV, an increase in
momentum relaxation rate at small electron energy and
decrease at large electron energy cancel each other in the
final result of mobility.

Figure 4 shows electron mobility at 300 K as a func-
tion of hole concentration with A/~& as a parameter
(solid line for R/rz =0.02 eV and dashed line for
A'/rh =0.05 eV), along with the experimental data from
the literature. The dashed-dotted line is the result includ-
ing the multi-ion screening correction, which will be dis-
cussed later. In general, as doping density becomes
higher, hole mobility becomes smaller, resulting in a
larger damping constant (A'/rh). Although the experi-
mental data are highly scattered, overall agreement is sa-
tisfactory, especially for hole concentration up to 10'
cm . The tendency of the U-shaped curve qualitatively
agrees with the results of Furuta and Tomizawa. Near
the minimum of the curve (around 3X10' cm ), cou-
pled collective excitations interact most effectively with
thermally injected electrons. These features are clearly
visible in Fig. 5, where momentum relaxation rates
[1/r(E&)) are plotted for an electron energy of 40 meV
( —3k&T/2). The solid line, the dashed-dotted line, and
the bold solid line denote momentum relaxation rates for
inelastic scattering (calculated with fi/rh =0.02 eV), elas-
tic scattering, and the sum of these two, respectively.
Also, the corresponding momentum relaxation rate due
to unscreened LO-phonon scattering is shown (dotted
line) for comparison. Up to the hole concentration of

Energy (meV) 0 ~ ~ I

) 017 ) 018 1019 ) 020

FIG. 3. Momentum relaxation rates [1 (/Er)] defined by Eq.
(23) for minority electrons in GaAs as a function of electron en-

ergy for the ionized impurity scattering (dashed-dotted lines),
and for total inelastic scattering with A'/~z as a parameter
(dashed lines for A/~h =0 eV and solid lines for A/~z =0.02 eV)
evaluated at (a) 77 K and (b) 300 K. The dotted lines denote the
corresponding relaxation rates for unscreened LO-phonon
scattering for comparison.

Hole Concentration (cm ')

FICx. 4. Electron mobilities for GaAs as a function of hole
concentration evaluated at 300 K with fi/wz as a parameter
(solid line for A/~& =0.02 eV and dashed line for R/Tg 0.05
eV). The theoretical values are compared with experimental
data available in the literature. The dashed-dotted line denotes
the results with multi-ion screening (MIS) correction.
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FIG. 5. Momentum relaxation rates in p-type GaAs for elec-
tron energy of 40 meV (which corresponds to 3/2k~ T) at 300 K
as a function of hole concentration. The solid line, dashed-
dotted line, and bold solid line denote momentum relaxation
rates due to inelastic scattering (A/wz =0.02 eV), elastic scatter-
ing, and the sum of these two, respectively. The dotted line
denotes the corresponding relaxation rates for unscreened LO-
phonon scattering, as a reference.

about 3 X 10' cm, the LO phonon is antiscreened and
the interaction with electrons is enhanced. At the same
time, plasmon scattering is important. Antiscreening and
screening for LO phonons in n-type zinc-blende semicon-
ductors have been discussed by Ridley. This condition
(p —3 X 10' cm ) is the coincidence point of the uncou-
pled LO phonon and the plasmon frequency, where actu-
al two modes interact strongly. As hole concentration
becomes larger than about 3X10' cm, the interaction
between minority electrons and coupled modes becomes
less effective and impurity scattering dominates. This is
due to the fact that the plasmon energy becomes too large
to interact with thermally injected electrons, and also the
LO-phonon mode is strongly screened by higher-
frequency plasmons. At very high hole concentrations,
the momentum relaxation rates due to total inelastic
scattering becomes even smaller than those for bare LO-
phonon scattering. These effects result in an increase of
minority-carrier mobilities for hole concentration above
about 3 X 10' cm range. However, the mobility de-
creases again for the very heavily-doped conditions due
to the increase of dominant impurity scattering rates.

In Fig. 4, the deviation of our results from experimen-
tal data becomes larger for the larger hole concentrations
() 10' cm ), even when we adopt a larger collision
damping constant (e.g., filrh =0.05 eV). In this regime,
where ionized impurity scattering dominates with strong
screening by majority holes, improvements in our theory
are needed. For example, the Born approximation in our
theory may not be adequate. The Born approximation
for impurity scattering is accurate when 4k /q TF&)1
where k is the wave vector of an electron and q T„ is the
Thomas-Fermi (or Debye-Huckel) screening vector.
Also, our basic assumption for inelastic scattering by col-
lective excitations is that the electrons are weakly cou-
pled to the many-particle system, which is true for fast

electrons. Thus, it may be essential in this regime (with
the hole concentration greater than 10' cm ) to go
beyond the Born approximation, not only for ionized im-
purity scattering, but also for collective excitations.
These issues have been discussed in a recent study using
phase-shift analysis by Lowney and Bennett. ' A rigorous
and comprehensive treatment beyond the Born approxi-
mation is beyond the scope of this work. Here, an effort
has been made to improve accuracy within the current
formalism. We have applied the multi-ion current (MIS)
correction for ionized impurity scattering discussed by
Meyer and Bartoh as shown in Appendix 8, which is
denoted by a dashed-dotted line in Fig. 4. This effect is
significant in the strong screening limit. After incor-
porating the MIS correction, agreement with experimen-
tal values is improved although the difference is still
about 30%. Other possible corrections include multiple
scattering and impurity dressing discussed by Moore.
Although his final formula is easily applicable to our cal-
culation and the effects may be significant, this theory is
questionable since the truncation of the expansion after a
few terms may be invalid even when the low-order terms
are small. Therefore, we have not adopted these
corrections in this paper. We can also assume other pos-
sibilities from a practical point of view. The data appear
to depend strongly on the experimental conditions, such
as the species of dopants and the crystal quality of the
material samples. The latest data by Colomb et aI. for
samples with carbon doping give the highest values of
mobility. On the other hand, the data by Keyes et al.
(doped with Mg and Zn) show systematically lower
values than other experiments. The remaining data ex-
cept for Refs. 9 and 10 (Ge doped) were obtained with
Be-doped samples. Also, Furuta and Tomizawa mea-
sured the high-field time of flight ()2.5 kV/cm), which
results in more frequent scattering events than at low
field. The high field strongly modifies the electron distri-
bution and effective electron temperature, which would
be better described by, e.g., the Monte Carlo method.
However, evaluation of the field effect on screening is still
an unsolved problem. Also, for very heavily-doped ma-
terial, other effects such as the warped structure and
band tailing of the valence band may become significant.
For further discussion, more experimental data are need-
ed. Unfortunately, experiments in this region are ex-
tremely diflicult because of the very short recombination
lifetime of minority carriers due to dominant Auger pro-
cesses.

C. Electron mobility in p-type Si

Figure 6 shows minority-carrier mobility as a function
of hole concentration calculated with two sets of hole
effective-mass ratios. Here, we have assumed a single
value of damping constant of fi/~& =0.01 eV. In our
theory, the choice of appropriate hole effective-mass
values is important and other corrections cause only
secondary effects. The major differences of electron
scattering mechanisms in Si from those in GaAs are the
absence of the polar LO-phonon scattering and the con-
tribution of other scattering mechanisms. Acoustic-
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FIG. 6. Electron mobilities for Si as a function of hole con-
centration evaluated at 300 K with A/~I, =0.01 eV. The dashed
line and the solid line are calculated with mhh =0.53m 0,
m Ih

=0. 155m 0 and mph'
= 1.2m p m Ih

=0.2m 0, respectively.
The theoretical values are compared with experimental data
available in the literature.

phonon scattering and intervalley phonon scattering play
moderate roles in the reduction of mobility only at small
doping densities although they can never be neglected.
Screening for acoustic-phonon scattering is small for hole
concentrations below 10' cm while it is significant for
higher concentrations where other scattering mechanisms
dominate. The agreement between the dashed line (with
smaller effective-hole mass values) and the experimental
data is excellent below the hole concentration of 10'
cm, while this line is monotonically decreasing and de-
viates from experimental values at larger hole concentra-
tions. At very heavily-doped conditions, we believe that
the ionized impurities are strongly screened by "very
heavy" holes, which is qualitatively explained by the
better fit by the solid line (with larger effective-mass
values). The strong nonparabolicity of the valence bands
will be important in this region. We have obtained a
minimum in the solid line similar to that observed for
GaAs. The shallowness (or even the absence in the
dashed line) of this minimum is attributed to the absence
of polar phonon interaction. In polar semiconductors,
the coincidence of the uncoupled LO-pho non and
plasmon frequency provides a turning point, where the
effects of "antiscreening" and "screening" for the LO-
phonon modes take turns. In Si, there is no such point
and "uncoupled" plasmon scattering plays a moderate

role in the reduction of minority carrier mobilities for
small hole concentrations. At higher hole concentra-
tions, ionized impurity scattering plays a major role in
determining mobility.

IV. CONCLUSION

We have proposed an alternative approach for the cal-
culation of minority-carrier mobility in heavily-doped p-
type semiconductors based on the dielectric-function for-
malism incorporating the broadening of collective excita-
tions. Our calculation for p-type GaAs shows excellent
agreement with recent experimental data, where we have
calculated minority-carrier mobilities as a function of
temperature and hole concentration. This result estab-
lishes the accuracy of the dielectric-function approach for
the calculation of minority-carrier mobility. At moderate
doping ( (3 X 10' cm ) in p-type GaAs, inelastic
scattering due to coupled collective excitations dominates
in determining minority-carrier mobilities, while ionized
impurity scattering becomes increasingly important at
higher doping densities. We have also successfully calcu-
lated the minority-carrier mobilities for p-type Si as a
function of hole concentration by incorporating the ma-
jor scattering mechanisms. Since our theory derives the
damping constant parameter from experimental values of
hole mobility, it should prove useful for predicting
minority-carrier mobilities for other p-type semiconduc-
tors. Theoretical development in the dielectric-function
formalism beyond the Born approximation is required for
further understanding of electron transport in very
heavily-doped semiconductor materials (e.g. , p ) 10'
cm for GaAs).
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APPENDIX A

Although the estimation of average conductivity
effective mass shown in Ref. 38 is not rigorous, it is useful
and easy to estimate. We will show equivalent but more
explicit formulas here.

Conductivity effective mass along the k direction in the
ith band is given by

3Q(8, $)y, +22 (b, —3Ek)y; —El, (3Eq —2b, )
m, (E„)=(xkr'(aE yak)], =

3P(8,$)y, +2(b, 3E~)Q(8, (h)y, + AEk(3Ek——2b, )

Q(8, $)= —A +B +C q(8, $),
P(8,$)=(A +2B)(2 B) —3C (A B)q—(8,$)—54[(B —+C2/3) i2+B(B +C l2) jp(8, $),
q(8, $)=sin Ocos /sin /+sin Ocos 8,
p(8, $)=cos Osin Ocos /sin P,

(Al)

(A2)

(A3)

(A5)
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and y, is the root of the equation,

H3& +H2& +H&& +Hp =0

where

H3 =P (O, y),
Hz =(b, —3EI, )Q(8, @),
H, = AE„(3Ek —2b, ),
Ho =Eq(Eq —b, ) .

(A6)

(A7)

(A8)

(A9)

(A10)

where q T„ is the Thomas-Fermi wave vector given by

4 2

qTF — j g(E) — dE
Ep 0

(A13)

2 = 2
qM WTF (A14)

and where g(E) is the density of states. According to
Ref. 44, q T„ is replaced by qM which is obtained from the
following equations:

m, =
—,', [6m, (100)+8m, (111)+12m,.(110)] . (A11)

APPENDIX B

Accordingly, we obtain a weighted average of m; by the
simple equation

0 zq

I z ' fodz

2~hX;e
q 2

~Ok@ TqM

h = 1 —(1+Dql ) exp( DqM ), —

(A15)

(A16)

(A17)
Meyer and Bartoli showed that ionized impurity

scattering is intrinsically a multi-ion process and the use
of a tightly screened, isolated-impurity model is unphysi-
cal. " Here, we have applied their formula in the Born
approximation.

When q/2kF «1 where kF is the wave vector at the
Fermi level, the SCF dielectric function reduces to the
Thomas-Fermi screening function

T

E(q, 0)~Eo— P (q, 0)
4~e qM

qTF

2

(A19)

(A18)

After obtaining qT„and qM, we have replaced the SCF
dielectric function with

2

E(q, 0) —Eo 1+
q

(A12) A more complete discussion and the details of the phase-
shift analysis is given in the original paper.
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