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The generation and detection processes of coherent phonon oscillations in germanium are described
within an extended density-matrix model. In the relevant hierarchy of equations of motion for the gen-
eration of the phonon oscillation, the anisotropy of the hole distributions related to the anisotropy of the
interband dipole matrix elements is identified as the driving force of the coherent vibration. The optical
detection of coherent phonons in reAectivity is based on anisotropic band-gap modulations due to the
coherent displacements, weighted with the deformation potential of the valence bands.

I. INTRODUCTION

Coherent phonon oscillations in solids can be excited
impulsively by a single femtosecond laser pulse whose
duration is shorter than a phonon period. These
coherent oscillations are observed in time-resolved opti-
cal probing experiments as periodic modulations of
reAectivity or transmission. The amplitude and phase of
the oscillation are recorded in the time domain by these
techniques.

Time-resolved observations of coherent optical pho-
nons have been reported for a large number of solids, e.g.,
III-V (Ref. I) and III-VI compounds, group-V elements,
and superconductors. Recently, coherent optical pho-
non oscillations have been observed in germanium.

The first phenornenological explanations of impulsive
driving forces are based on the theory of stimulated Ra-
man scattering, but do not include a microscopic model
for the derivatives of the dielectric tensor. In the case of
III-V semiconductors, the ultrafast charge separation in
surface space-charge fields has been identified unambigu-
ously as the driving force. ' For semimetals, a model
based on electronically induced displacement of the ion
equilibrium coordinates has been proposed.

These considerations cannot be transferred to the case
of centrosymmetric semiconductors such as Ge. A
theoretical explanation for the optical excitation and op-
tical observation of coherent phonons in this nonpolar
material is still missing. The focus of the present paper is
to develop a time-dependent theory for the excitation of
coherent vibrations in this material, explaining both the
observed symmetry and the phase of the oscillation.
Each step of the excitation and detection of the phonon
oscillation should be described on a microscopic scale.

For these attempts, it is most important to distinguish
between a formalism based on transition probabilities,
which is generally referred to as Fermi's golden rule, and
calculations based on equations of motion for time-
dependent observables. The Fermi golden rule treatment

requires a separation of time scales between fast oscilla-
tions e ' ' governed by the energy A'co of the processes
under investigation, and the much longer observation
time. In the experiments we want to describe, laser
pulses of 50-fs full width at half maximum (FWHM)
duration are used to drive and detect oscillations of the
optical phonon in Ge with a period of T =2m/co= 110 fs.
It is obvious that the time scales cannot be separated in
this type of experiment.

Methods based on equations of motion for time-
dependent quantum correlations can overcome this prob-
lem. Two types of formalisms are used: the electronic
density matrix, defined as a quantum correlation refer-
ring to a single reference time, ' '" and nonequilibrium
Green's-functions techniques describing the propagation
of particles between two different microscopic times. ' '
For the present case, the electronic density-matrix ap-
proach is chosen.

In fact, the limits of the applicability of Fermi's golden
rule on a femtosecond time scale are not always respect-
ed. Calculations based on the electronic density-matrix
formalism are able to demonstrate that femtosecond opti-
cal pulses drive electronic correlations between degen-
erate subbands which are not existent in equilibrium but
inhuence transient optical signals. ' '

In order to model the coherent-phonon effect, the
hierarchy of equations of motion has to be expanded to
include fermionic and bosonic observables. Strictly
speaking, this extension goes beyond the electronic densi-
ty matrix. Nevertheless, we call it a density-matrix ap-
proach because it is based on equations of motion for
quantum correlations referring to a single reference time.

The main result of our investigation is that the anisot-
ropy of the excitation of electron-hole pairs drives the
coherent optical-phonon oscillation. Particularly, the an-
isotropy of nonequilibrium hole distributions in k space
launches the coherent modes. Crucial to the selection
rules of both the driving force and the detection of the os-
cillation is the anisotropy of the interband dipole matrix
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elements, not the anisotropy of the band structure.
In Sec. II, the experimental facts are briefly reviewed.

Section III introduces the equations of motion for pho-
nonic and electronic quantities in their most general
form. In Sec. IV, the relevant iteration path for the gen-
eration of the coherent phonons in germanium is
identified. This leads to a prediction of the symmetry
dependence which meanwhile has been checked experi-
mentally. In Sec. V, the principles for the detection of
phonons are presented. The experimental results on the
initial phase of the phonon oscillations are discussed in
Sec. VI.

II. EXPERIMENTAL OBSERVATIONS
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FIG. 1. The time derivative of the anisotropic part of the
reAectivity AR =(hR~~ —hR~) of the test pulse in arbitrary
units. AR means the difFerence in reQectivity between the
y, =45 and —45 settings of the test pulse, 0/Bt the time
derivative. The time axis has been shifted to make the time zero
coincide with the dispersive feature near zero delay. The inset
shows a fit to the oscillatory part of the data.

Irradiation with a single femtosecond laser pulse in-
duces modulations in the reflectivity signal which are
monitored by a second attenuated test pulse. Both the
excitation and the test pulse have 50-fs duration with 2-
eV photon energy. They propagate along the [0,0, 1]
direction orthogonal to the Ge surface. The excitation
pulse is polarized along [1,1,0], while the test field is
along [1,0,0]. The refiected pulse is split into components
along [1,1,0] and [1,1,0] and the difference of refiectivities
AR =hR~~ —hR~ along these polarization directions is
recorded. In Fig. 1, the experimentally determined time
derivative of this anisotropic reflective response,
B(b,R)/Bt, is shown. A coherent oscillation with a fre-
quency of v=9. 1 THz is clearly resolved, matching ex-
actly the I z5 optical-phonon frequency in germanium.

This detection geometry is analogous to the reflective
electro-optic sampling (REOS) technique in polar materi-
al, ' where both the electric field and the phonon displace-
ment contribute to the electro-optic signal. Because the
y' ' tensor is parity forbidden in nonpolar material, only
the deformation-potential interaction remains.

The experimental proof of the theoretically predicted
symmetry dependences for the excitation and the detec-
tion of the phonon oscillation has been discussed else-

where in detail. Here we restrict ourselves to reproduc-
ing experimental data obtained with the technique analo-
gous to reflective electro-optic sampling, with special em-
phasis on the initial phase of the coherent oscillation. In
time-resolved femtosecond experiments, the zero time de-
lay between pump and test pulses is usually determined
through two-photon absorption in GaP crystals. For
technical reasons, zero time delay can be determined only
with an accuracy of +10 fs. Due to these experimental
uncertainties, the exact determination of the initial phase
of the coherent oscillations is dif5cult. Therefore we
define zero time delay by the moment when the time
derivative of the refiectivity change B(AR)/Bt passes
through zero. As discussed in detail in Sec. IV, this is a
natural reference point for discussing the phonon phase,
because rnernory times and coherence effects influence the
dispersive electronic feature in the same way as the phase
of phonons.

The solid line in the inset of Fig. 1 shows the oscillato-
ry part of the reflectivity data differentiated in time be-
tween At =200 and 700 fs. The dashed line is a fit to the
measured data, extrapolated back to the time delay
At=0. The experimental data exhibit a clear cosine
behavior, indicating a sine behavior of the phonon-
induced modulation of the reflectivity itself.

III. THEORETICAL BACKGROUND:
DENSITY-MATRIX FORMALISM

Different representations for the electronic density ma-
trix are used in the literature: a bilocal, a doubled k
space, or a mixed r-k Wigner representation. ' '" In the
case of spatial invariance, all relevant information is con-
tained in a single k-space representation. The equations
of motion are derived in a bilocal picture. Since all repre-
sentations with a complete set of variables are equivalent,
Fourier transforrnations between them are used in the
following way in order to obtain the most compact nota-
tion in each case. The conduction-band submatrix is
denoted by C„, the valence-band hole submatrix by D„...
and the interband submatrix by Y„."

The commonly used equations of motion for the elec-
tronic density matrix contain only the interaction with a
light wave. These equations have to be completed by ad-
ditional terms to include electron-phonon coupling. In
this section, we develop a hierarchy of equations of
motion including the oscillatory degree of freedom of the
optical phonons. A second quantized Hamiltonian in a
discrete site representation serves as a starting point. "'
By computing this Harniltonian with two-point fermion
operators at the discrete sites, Heisenberg equations of
motion for these bilocal quantities can be generated. The
equations of motion in continuous spatial variables follow
from the equations of motion for the operator-valued
quantities at discrete sites by a band-limited interpolation
and ensemble averaging. "' Furthermore, equations of
motion for phononic quantities (& q~', 8z&) have to be
taken into account.

The free phonon Hamiltonian is taken in the standard
form. In first order of phonon displacement, the Hamil-
tonian for electron-phonon coupling can be written as a
phonon-assisted hopping between lattice sites I,j,
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ik.(R —R/)Xge ' ' t~„„(q,k),
k

(2)

~cp,h g P Tcjc'l cjc'I P ~v'lvj ~vj v'I
lj ce' UU

where f'~"„,
&

gives the coupling strength for phonon-
assisted transfer between different lattice sites.
C, , I=c, c, &

describes the hopping of an electron from
band c' at site I to band c at site j, B,j„.& =d„jd„~ the hole
hopping between the valence bands. In order to use the
selection rules in the vicinity of symmetry points in the
Brillouin zone, it is convenient to transform the operators

&in. to matrix elements between Bloch functions:

ph ]. iq (R.+RI )/2

& Xe (&—.+& ~)
qA,

where tz„„,(q, k) are matrix elements between lattice
periodic parts of Bloch-functions,

t~„, =fq„(q)5„„+
' 1/2

2~fI5/3 p~qx

N being the number of unit cells, 0 the crystal volume, p
the crystal density, and co & the phonon frequency.

fq„(q) is the matrix element of the long-range Frohlich
interaction, and dz„„(q,k) the matrix element of the
short-range deformation-potential interaction, summed
over nonvanishing reciprocal-lattice vectors Q,

1/2

q e,q(q) V, (q)( u, +,» „(r)luff —q/2, v'(r) &
ZVM2NM, co g

1/2

d&„„,(q, k) = —g e,&(q)( u&+&/2 „(r)lO' V„V,"(q, r)l u~ q/z „(r)&

M,

(4)

V,"(q,r)= g V, (q+Q)e'~'
QWO

where the u s are the lattice periodic parts of the Bloch functions, M, is the mass of ion s, V, (q) the ionic potential of
ion s, and e,&(q) the polarization vector of atom s in mode A, . The Frohlich interaction is only present in polar material,
while in nonpolar material the contributions of the two ions compensate because of M~ =Mq and e&z(q) = —e2x(q).
The commutation and band sampling procedure has been described elsewhere, ""and can be worked out by similar
algebra In the following, equations of motion for phononic and electronic quantities are formulated with the full ma-
trix elements t&„(q,k) and t&, , (q, k). They describe both Frohlich and deformation-potential interactions in polar ma-
terial, while in Ge only the deformation-potential interaction remains.

A. Equations of motion for phononic quantities

Two types of phonon observables have to be discussed: occupation numbers nz&=(&zz8zz & and displacements
((& &~+it ~) &. In order to achieve a compact notation, the elements of the electronic density matrix are used here in
a Wigner representation. The temporal evolution of phonon occupation numbers is determined by products of
operator-valued electronic interband correlations and phonon displacements:

(&zz8zz&= ——
3 fdk fdRe '~ g t&...(q, k)(d zC'„(R,k) &

—g t&„, (q, k)(az&8„(R,k) && (2n)

+— fdk f dRe'~' g tz„.(q, k)(a &C'„.(R, k) &
—g tz„., (q, k)(& &8,„.(R,k) && (2n. )'

An analysis of the averages and fluctuations of the phonon-assisted quantities on the right-hand side would lead to a
time-dependent damping theory without the long-time limit inherent in usual scattering terms in the frame of Fermi s
golden rule (non-Markovian scattering). ' The full information of the six-dimensional space of variables for the elec-
tronic correlations is important, because the neglect of the midpoint coordinate R would lead to a change in the q=O
phonon occupation number only. We will not stress this point further, but concentrate on the time-dependent phonon
displacements. It is convenient to introduce differential equations of second order, giving the usual differential operator
of a harmonic oscillator:

a'
, +,'~ &(~-,~+~,~)&=-

at2
2COq f dk fdRe '~' g tz. ..(q, k)C„.(R,k) —g tz„, (q, )kD(R, )k

(2n. )

In polar materials, the Frohlich part of the source terms is constituted by the electromagnetic coupling of monopolar
charge densities to the lattice polarization. Coherent phonon oscillations can then be driven by the ultrafast separation
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of electrons and holes in the region of band bending and boundary fields near the surface, ' which constitutes the dom-
inating driving mechanism. Corrections due to the deformation potential have not yet been observed, because their
contribution to the signal amplitude is of the order of only 1 /o.

Since the Frohlich coupling is absent in germanium, the deformation-potential interaction remains the only driving
force for coherent phonons, as will be discussed in Sec. IV in more detail.

B. Modifications of the equations of motion for the electronic density matrix

Optical experiments performed with a photon energy of 2 eV, high above the gap energy of 0.8 eV in germanium,
mainly measure interband quantities between valence and conduction bands. Therefore it is sufficient to consider the
modifications of the interband equation of motion by the electron-phonon interaction. The additional terms in the
equation of motion for the interband density Y„are the following:

Y„,(r„r2)+iQ„Y„(r„rz)=—E(R)M„(r)+—g g e 'tz. ..(q, +i V, —q/2)((a z+aqz) $, ,(r„r2) )Bt
qk v'

——g g e 't~„(q, —iV2+q/2)((a ~+aq~)$'„(r„r2)),
qA, c

where Q„ is the gap operator in the bilocal representa-
tion and M„(r) is the interband dipole-matrix element in

the notation of Refs. 11, 14, and 16. Saturation terms
due to Pauli blocking' ' are not written explicitly.
When the phonon displacement ((d qz+& z) ) is a non-
vanishing quantity, the ensemble averages
((d &+a &)Y, , (r&, r2)) in Eq. (9) can be replaced by
the product of averages. According to Eq. (8), this is

only possible if the displacement ((a z+aqz) ) is driven

resonantly by electron- and hole-density matrices.

IV. DRIVING OF COHERENT PHONON
OSCILLATIONS IN GERMANIUM

In the coherent phonon experiments in Ge, the
electron-hole pairs are generated with an excitation pulse
of 50-fs duration and a photon energy of 2 eV. The elec-
tric field E,(R, t) of this pulse can be written as

E,(R, t)=[e,e ' ' +c.c. ]F,(t), (10)

where e, =[cosy„sing„0] is the polarization vector,
k, ~~[0,0, 1] the direction of propagation normal to the
surface, co, the photon frequency, and F,(t) the pulse en-

velope.
Because of the selection rules related to the interband

dipole-matrix elements, ' ' the carriers are excited in an-
isotropic k-space distributions. It has been shown recent-

I

ly that "coherent" peaks in time-resolved transmission

experiments can be explained by the simple assumption
that the anisotropic nonthermal parts of the carrier dis-

tributions will relax to hot thermalized distributions
within characteristic times ~„and ~&& for electrons and

holes, respectively. ' ' Both times are determined by all

scattering events involved and are of the order of 10—20
fs. Cooling of the hot thermalized distributions toward
lattice temperature takes place on a much slower time

scale. ' ' The total particle distributions are composed
of coherent and thermalized parts, e.g., D„.=D„. +D„..coh th

For intersubband correlations with UAU', the thermal-

ized parts vanish. The equation of motion of the
coherent anisotropic distributions D,", can be described

explicitly by' '
D""(R —k)+ D""(R —k)

+hh

= ——E,(R) g M,*„(k)Y, ,(R,k)

—g M„(k)Y',*,(R,k)

The resulting coherent anisotropic hole matrix D of
second order in the exciting field reads

D;,'"' '(R, —k)=
z g [e,*M,*,(k)][e,M,„,(k)]G„.[e ' F, (t)G„,[e ' F,(t)] ]

g2

+ 2 g [e,M,„(k)][e,'M,",(k)]G,„,(e ' F,(t)[G„[e ' F,(t)] ]*)
g2

with the Green's functions 6„.of the valence-band equa-
tion:

G„[e ' F,(t)J

=f„„,(Ace „(k))e

and 6„,of the interband equation:

(13)
0 i[(co (k) —co ]~X d~e~'e " ' F(t+g), (14)

where f, „& is the Coulomb enhancement factor. ' ' ''
The distributions D,"," are called "coherent" because they
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are determined by the resonance condition and symmetry
of the excitation. Two types of anisotropies are involved:
The anisotropy of the band gap cos„(k) and the anisotro-

py of the interband dipole matrix element M,„.(k) and
M,*,(k).

An interpolation of recent low-temperature band-
structure calculations' to room-temperature measure-
ments of the Eo and E, gaps indicates that resonant ex-
citation with 2-eV photons occurs on an extremely aniso-
tropic k shell: for k along 6, e.g. , k~~[1,0,0], the heavy-
hole resonance occurs at ~k~ =0.13(2m/a), while for k
along A, e.g. , k~~[1, 1, 1], the resonance is located at
~k~ =0.44(2'/a), which is near the midpoint between I
and L. The band structure implies that the E, gap is a
M& critical point at or very near the L point. ' This reso-
nance is considerably broadened at room temperature:
Ay =58 meV, i.e., Tz =11 fs. This large broadening for
transitions with k along A indicates that a large portion
of the A region is resonantly coupled by 2-eV photons,
even if the E, gap is at 2.11 eV.

For transitions from the light-hole band, the anisotro-
py is less pronounced: ~k~=0. 12(2~/a) for k along b,
and k~=0. 22(2m. /a) for k along A. ' The smaller k
reduces the optical density of states, and the broadening
of the (E&+b,&) gap of 74 meV (Ref. 20) should be re-
duced in the vicinity of I . For the split-off transition, the
anisotropy is even weaker, and the optical density of
states lower because of the smaller k vectors involved.

Recent photon echo measurements in GaAs demon-
strate that the dephasing time Tz of the interband transi-
tions is strongly density dependent. ' Interpolating these
results to our excitation density of n =3X10' cm
yields a dephasing time of Tz =8 fs. This value can be re-
garded as an upper limit for Ge, because already at low
density, the dephasing times at 2 eV are considerably
shorter than in GaAs.

The investigation of the coupling symmetries has to be
based on the star of a given wave vector k, because each
star can be used as a representation of the point group.
The star of k is the set of distinct wave vectors k'=gk
found when applying the group elements g of the point
group to k. The gap energy is anisotropic in k space, but
each star of a fixed k has the same gap for all wave vec-
tors of the star. A second anisotropy arises because of
the exciting electric field, [e,M,„(k) ][e,"M,"„(k) ]. This
second type of anisotropy relaxes on a typical time scale
of rhh, compare Eq. (11). From model calculations for
GaAs at much lower density, n =1.0X10' cm, an

upper limit of ~hh in the present case is derived: ~hh & 13
fs. ' ' Within this time, internal thermalization of holes
occurs, still preserving anisotropies of the band structure,
but with equal populations for all k of the same star.

Under the conditions pertinent to the excitation of Ge,
Eq. (g) can be transformed into

+2r,„+~,', ((e „+a„))
2coTQ

d k g d g„(q,k)D„""'(q,k)
(2~)'

= pe, , e,* {[M„., (k)M,*, (k)]d~„,, (0,k)]

The optical-phonon modes transform like yz, zx, and
xy, ' while the transition dipole-matrix elements are
polar vectors, leading to a total transformation behavior
of a fourth rank tensor. Our excitation geometry requires
that the electric field of the exciting light pulse be in the
xy plane, i.e., ij H {x,y]. After averaging A&, .„;j(k)
over the star of a given wave vector k, the well-known re-
strictions of tensor elements in cubic crystals apply,
leading to the selection rule that only the phonon mode
A, =z transforming like xy contributes:

0 1 0

k'G (stark)
A„.„(k') ~ 1 0 0

0 0 0
(17)

It is important to consider the whole star of wave vec-
tors at once, because the symmetry restrictions do not ap-
ply to each wave vector separately, but only to the small-
est set of wave vectors being a representation of the point
group.

The thermalized holes cannot exert a driving force, be-
cause they have equal occupation numbers for all wave
vectors belonging to the same star. This leads to an
averaging of phononic tensor quantities transforming like
yz, xz, and xy over each star. Because of the restrictions
of the cubic crystal symmetry, the sum over the star has
to vanish. The coherent parts of the electron distribu-
tions can in principle act as a driving force, but as their
deformation potential vanishes at I, their contributions
at finite wave vector are much smaller than those of the
holes.

The total selection rule of the driving force corre-

coTQ is the optical phonon frequency at q =0, where
transverse and longitudinal phonons are degenerate, and
I h is a phenomenological dephasing rate. D;, "(q,k) is
the Fourier transform of the Wig ner distribution,
D;„'"(R,k). q describes the spatial inhomogeneity of the
hole distribution, while k gives the momentum distribu-
tion. Because the excitation creates a disklike hole distri-
bution in real space, the wave vectors q exhibit a cigar-
like distribution. This anisotropy drives longitudinal
phonons with q=qe, . The hole wave vector q is of the
order of the inverse penetration depth of the light wave,
which is very small compared to the electronic k vectors
at resonant excitation with 2-eV photons. Therefore the
inequality q «k holds for all transitions involved, and
the phonon wave vector q can be neglected in the
deformation-potential matrix element. The selection rule
for the coupling of the holes to the phonon displacement
consists of three parts: two dipole-matrix elements M
and M' according to Eq. (12), and one matrix element of
the phonon deformation potential, d z„„,(0,k ), compare
Eq. (15):

g [e,M„,(k) ][e,*M,', (k) ]d z„,, (0,k)



16 234 R. SCHOLZ, T. PFEIFER, AND H. KURZ 47

sponds to the Raman tensor of the optical phonons. Un-
fortunately, this Raman tensor is usually defined, includ-
ing the in and out resonances which do not change the
selection rule. For time-resolved optics, it is more ap-
propriate to treat the resonance conditions in the form of
time-dependent functions, as in Eqs. (12)—(15), instead of
resonance denominators adapted to stationary process-
es.'4

For small k, the matrix elements can be calculated
for any arbitrary orientation of k with wave functions de-
rived from the Kane model. These approximate wave
functions are widely used to explore anisotropies en-
countered during polarized optical excitation,
[e,M,„.(k)][e,*M,', (k)].' ' ' ' A calculation of
A„„(k)within this model allows an estimate of the cou-
pling strength near I . '

The anisotropy of the hole distribution arising from the
dipole-matrix elements is crucial for generating coherent
phonon oscillations: In the case of thermalized hole dis-
tribution, the deformation potentials are averaged to
zero, as mentioned above. The observation of coherent
phonons in Ge is therefore a direct proof of the existence
of this type of anisotropy during the optical excitation. If
the linearly polarized excitation pulse propagates along
[0,0, 1],coherent oscillations are driven with an amplitude
proportion to sin(2qr, ), compare Eqs. (16) and (17). This
excitation symmetry is confirmed in experiments. The
selection rule for the driving force due to the anisotropic
part of the hole distributions can be interpreted as an an-
isotropic weakening of the bonds between adjacent ger-
manium atoms. Each Ge atom has four next neighbors
in tetrahedral configuration, bridged by binding valence
orbitals. The excitation of electron-hole pairs weakens
the strength of bonding. As long as the hole distribution
is anisotropically distributed over the star of a given k,
the weakening is distributed anisotropically over the four
bonds. Two of the bonds form an angle of 35' with the
[1,1,0] direction while they are orthogonal on the
[1,—1,0] direction. For the other two bonds, the reverse
is true: They form an angle of 35' with the [1,—1,0]
direction and are orthogonal on [1,1,0]. When the polar-
ization of the excitation pulse is along [1,1,0], i.e.,
y, =4S', the holes are excited mainly from one of these
groups of bonds. If the polarization is turned from
[1,1,0] to [1,—1,0], i.e., from y, =45 to y, = —45', the
roles of the bonds interchange. This results in a phase
change of 180' in the phonon oscillation, or in a change
of sign, according to sin(2qr, ) = 1 for y, =45 and
sin(2y, ) = —1 for y, = —45 .

V. DETECTION OF THE OSCILLATION
BY THE TEST PULSE

The phonon oscillation is detected via an anisotropic
modulation of the reAectivity of the test pulse. As the
phonon displacement is a nonvanishing quantity, the
phonon-assisted source terms in the basic equation (9)
can be replaced by the products of electronic and pho-

nonic quantities. The interband polarization P is related
to the interband matrix Y as follows

P(R, t) = g Idk[M;„(k) Y„(R,k, t)
(2n )

+M„(k)Y'„;(R,k, t)] . (18)

Considering the selection rules to leading order in the
wave vector, the mixing of the conduction bands by the
phonon displacement is forbidden by symmetry. The
relevant equation of motion for Y is therefore

=—E(R)M,„(r)+—g g e 'dz, , (0,k)
qA. U'

X ((8 qg+aqg) )

X f (r),~rz) ~ (19)

Saturation terms with C and D have been neglected;
their features in femtosecond experiments have been dis-
cussed in detail elsewhere. ' ' In analogy to the excita-
tion field, the electric field of the test pulse is
parametrized by

E,(R, t)=[e,e ' ' +c.c. ]F,(t), (20)

where e, = [cosy„sing„0] is the polarization of the test
field, and k, ~~[0,0, 1] is the direction of propagation. In
first order, an interband density Y,'," arises according to
Eq. (19). Together with the phonon displacement
((& q~+aqz)), this interband density gives rise to the
second term in the source of Eq. (19), leading to an inter-
band matrix Y„', ' which is a linear function of the phonon
displacement ((a qz+aqz)) and of the first-order inter-
band matrix Y,",'. The diagonal contributions in the
valence-band indices v =v' dominate because of reso-
nance arguments. The effect of the phonon oscillation
therefore can be understood as an anisotropic modulation
of the valence bands in k space, leading to an anisotropic
modulation of the band gaps.

As discussed above, the excitation field drives only the
phonon mode orthogonal to the surface, A, =z, q~~e, . The
selection rule of the phonon-assisted polarization driven
by the test field again consists of three parts: the optical
dipole-matrix element M* relating the interband density
Y„,(R,r) to the polarization P' ' according to Eq. (18);
the deformation potential d z, , ( 0,k ); and the dipole ma-
trix element M hidden in the linear interband density
Y, ,(R,r) in the second source term of (19). Therefore
the overall selection rule is similar to the excitation of the
coherent oscillation, compare Eqs. (16) and (17). The an-
isotropic part of the polarization, P' ', is then proportion-
al to
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—sing,0 1 0 cosy,
P' ~ 1 0 0 e, =sin(2q&, ) sing, +cos(2y, ) cosy,

0 0 0 0 0
(21)

The first term leads to an additional polarization along
e„ the second to a polarization orthogonal to c, . Unless
unusual experimental techniques are employed, only con-
tributions along e, can be observed. The reason for this
is that the second term leads only to a slight change in
the direction of polarization of the reAected test pulse,
while the reAected intensity is only affected in second or-
der. With the present experimental setup, a sufficient
suppression of the reAected signal with polarization along
e, is not possible. If the reAected beam is not passed
through a polarizer, the reAected signal is proportional to
sin(2q&, ), since the second-order contribution coming
from the second term in Eq. (21) remains too small to be
observed. Therefore the overall selection rule for the test
field is the same as for driving the oscillation by the exci-
tation pulse.

VI. THE INITIAL PHASE
OF THE COHERENT OSCILLATIONS

The dispersive feature of B(b,R )Idt =B(AR~~—b,R& ) Idt in Fig. 1 around time delay At =0 arises from
coherent electronic contributions, affecting especially the
reAected intensity AR

~~

when the polarization of the exci-
tation and test pulses are parallel. The coherent coupling
can be interpreted as Pauli blocking of the interband
transition by anisotropic unrelaxed carrier contribu-
tions. ' ' The buildup of the anisotropic electron and
hole distributions peaks slightly after the maximum of
the excitation pulse. From a theoretical point of view, an
additional time shift in the probe signal is expected by the
finite-phase relaxation time T2, because the anisotropic
saturation terms have to be inserted into the interband
source. ' ' The maximum of the anisotropic electronic
part of the reAectivity change, bR =(b«~~ —ERE), is ex-
pected to occur at a certain positive time delay At after
the actual time delay At=0, defined by the temporal
coincidence of the intensity maxima of excitation and test
pulse. '4 "

Setting the time delay zero of B(b.R ) IBt in Fig. 1 to the
moment of passing through the 0 line means that we
define the time zero of the plot as the moment at which
the maximum of the anisotropic reAectivity is induced.
The theoretical model, presented above, leads to the con-
clusion that the coherent anisotropic hole distributions
act as the driving force of the coherent phonons in Ge.
The temporal evolution of the driving force is determined
by the buildup and relaxation of the anisotropic hole dis-
tributions. The detection of both, the reAectivity max-
imum due to nonthermalized carriers as well as the
phonon-induced reAectivity modulations implies addi-
tional temporal shifts due to the finite-phase relaxation

time T2. Both the temporal delay due to the buildup of
anisotropic carrier distributions as well as the temporal
delay due to the T2-damped interband response are can-
celed, because they are operative in the anisotropic Pauli
blocking in the same way as in the phonon-induced part
of the reAectivity. As a consequence, the phonon-
induced reAectivity modulation should exhibit a sine
behavior with respect to our reference time. Because the
total time shift of both kinds of reAectivity signatures, the
oscillating and the nonoscillating part, are of the order of
a quarter of an oscillation period, ' it is important to use
the shifted time axis of Fig. 1, where the influence of
coherence and relaxation times cancels.

In the inset of Fig. 1, the oscillatory fit to the data tak-
en at delays At )200 fs is extrapolated back to zero time
delay as defined above. It turns out that the oscillatory
part of the time derivative of the reAectivity can be de-
scribed by a damped cosine function in time, phase shift-
ed by less than 2 fs. This means that the oscillatory part
of the reflectivity itself can be described by a damped sine
function, which is a direct proof of our theoretical con-
siderations.

A crucial experiment for the checking of our argu-
ments would be the exchange of excitation and test
pulse. This would provide the possibility of measuring
the joint effects of the lifetime ~hh of nonthermal holes
and the phase relaxation time T2. The analysis of elec-
tronic anisotropic reAectivity contributions and the phase
of phonon-induced modulations would yield upper and
lower limits for these microscopic relaxation times.

VII. CONCLUSIONS

In this paper, the excitation and detection of coherent
phonons in germanium are described within an extended
density-matrix model, going beyond the possibilities of a
Fermi golden rule treatment. The usual semiconductor
Bloch equations are completed by additional terms due to
electron-phonon coupling and by equations of motion for
phononic quantities.

The selection rules for the generation and detection of
the optical-phonon oscillations are explained as the joint
effect of two dipole matrix elements and the deformation
potential of the phonon. The driving force of the oscilla-
tion is related to the formation of anisotropic hole distri-
butions during the excitation process, exhibiting the sym-
metry of the interb and dipole-matrix elements. The
detection involves anisotropic band-gap modulations by
the optical phonon displacement.

The initial phase of the coherent optical phonon is de-
rived as a sine with respect to the maxima of the aniso-
tropic contributions to the reAectivity, as confirmed by
experimental results.
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