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Nonuniversal spectral properties of the Luttinger model
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The one-electron spectral functions for the Luttinger model are discussed for large but finite
systems. The methods presented allow a simple interpretation of the results. For finite-range inter-
actions, interesting nonuniversal spectral features emerge for momenta that differ from the Fermi
points by the order of the inverse interaction range or more. For a simplified model with interactions
only within the branches of right- and left-moving electrons, analytical expressions for the spectral
function are presented that allow us to perform the thermodynamic limit. As in the general spinless
model and the model including spin for which we present mainly numerical results, the spectral
functions do not approach the noninteracting limit for large momenta. The implication of our re-
sults for recent high-resolution photoemission measurements on quasi-one-dimensional conductors
are discussed.

I. INTRODUCTION

The experimental study of quasi-one-dimensional con-
ductors can provide a test of the peculiarities of corre-
lated electrons in one dimension. i's In particular, high-
resolution valence photoemission is a very useful tool,
as the measured spectra are directly related to the one-
particle Green's function of the system. Recent experi-
ments of this type give a strong indication that the inter-
pretation of spectra requires the inclusion of many-body
effects. As theoretical approaches usually concentrate on
the universal behavior of the spectral functions in the
extreme low-energy regime, these experiments provide
a stimulus to examine also the nonuniversal behavior of
the spectral functions for one-dimensional (1D) corre-
lated electrons.

As first discussed by Tomonaga, s the problem of 1D
electrons with a long-range interaction simplifies consid-
erably because it is a good approximation to linearize
the energy dispersion around the two Fermi points +k~.
In the Luttinger models an exactly linear dispersion is
assumed. An exact solution for the Luttinger model
was presented by Mattis and Lieb. 7 The original Tomon-
aga model and the Luttinger model were compared by
Gutfreund and Schick, who showed that the low-energy
physics in both models is the same for long-range inter-
action with a rather weak restriction on the interaction
strength.

The Luttinger model is often studied with the simpli-
fication of a zero-range interaction. This is suKcient for
the discussion of the low-energy singularities of the spec-
tra. As the interacting ground state of the corresponding
model contains holes deep below the Fermi level, a direct
comparison with a system of nonrelativistic electrons is
doubtful, as the linearization of the energy dispersion is
no longer justified for all relevant energies. We therefore
study in this paper the spectral properties of the Lut-
tinger model for a Pnite-range interaction.

Even for the spinless case the simplified model with
interaction terms only urithin a branch (g4 interaction in
the "g-ology" classification2) the nonuniversal behavior

of the spectral function is very nontrivial for k values
which differ from +kg by the order of the inverse inter-
action range or more. As the spectral functions of this
simplified model can be calculated analytically, this is
probably the most simple nontrivial model of interact-
ing electrons for which a complete explicit calculation of
spectra can be performed. This solution is presented in
Sec. III in two diferent ways: In a direct approach to
calculate the many-electron eigenstates which enter the
Lehmann representation for the spectral functions and
using the bosonization of the field operators. In
both approaches we first calculate the spectra for systems
of finite length L and then perform the limit L ~ oo.

For the complete spinless Luttinger model including
the g2-interaction terms between the branches a recur-
sive numerical method is presented in Sec. IV to calculate
exact spectra for arbitrarily large systems. This proce-
dure gives more insight into the interesting nonuniversal
features of the k and cu dependence of the spectra than
the brute-force attempt to perform numerically the dou-

ble Fourier transform of the Green's functions G~ ' (2:, t)
which themselves have to be calculated involving a nu-
merical integration. For the k-integrated spectral func-
tion the direct integration procedure is compared with
the asymptotic results for very large but finite systems.
The approach used for the spinless model is generalized
to the model including spin in Sec. V. Our results and
the relevance for photoemission spectra are summarized
in Sec. VI. Spectral moments and the momentum distri-
bution are discussed in Appendixes.

The present paper with its discussion of spectral prop-
erties at arbitrary excitation energies is complementary
to our recent work in which results for the universal
low-energy part of the spectra are presented.

II. SPINLESS LUTTINGER MODEL

As discussed in the Introduction, it is necessary to con-
sider the Luttinger model with a finite-range interaction
if one wants the model to work as an approximation to
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describe nonrelativistic electrons not only in the asymp-
totic low-energy region. The original nonrelativistic elec-
trons are assumed to interact by a two-body potential
v(x), i.e. , the interaction part of the Hamiltonian for a
system of finite length L with periodic boundary condi-
tions reads

L L
V = — dx dx'v(x —x')p(x)p(x') —-v(x = 0)N

0 0 2

) pkp A,
,8(k) + N 6(k = 0) — Nv(—x = 0),

@+0

T = v~) o.kitk a&
——v~) IqIb~qbq+c(N ) .

A:,a

H = ) IqI8~(q)o. ~n,
q+0

(8)

where the n~ are new boson operators and

The additional term c(N ) involving the particle num-
ber operators is irrelevant in the following and will be
dropped. A simple unitary transformation brings the to-
tal Hamiltonian 0 = T + V into the form7

pk = pI,++ pA:, —, (2)

where the jI, ~ with a = + (—) are the Fourier compo-
nents of the operators for the densities of right- (left-)
moving particles. The Brst term on the right-hand side
(rhs) of Eq. (1) is generalized toz

where p(x) is the operator of the electron density pi,
with k = 2am/L, n E Z its Fourier components, and
N —= f p(x)dx the particle number operator. Here we
assume that the two-body potential v(x) and its Fourier
components 8(k) are finite at x = 0 and k = 0, respec-
tively.

The transition to the interaction term for the Luttinger
model occurs by writing pj, as

6~(q) = v~ [1+g4(q)/(2vrv~)] —[gz(q)/(2~vf)]

G. (x, t) —= ( jt(0, 0)j (x, ~)),
iG~(x, t) —= (@ (x, t)@t(0,0)) .

(io)
(ii)

These functions can be calculated exactly, e.g. , by
bosonizing the field operators g~(x, t).4 ic For finite sys-
tems one obtains

In Eq. (8) a constant and terms involving particle num-
ber operators have been dropped in accordance with the
discussion of the particle number terms in Eq. (1).

The parts of the one-particle Green's function which
lead to the photoemission and inverse photoemission
spectra are

xG~ ' (x, t)e'"'

with the original model corresponding to gz (k):—g4(k) =
8(k). The other two terms in Eq. (1) are usually ne-
glected. This is justified for the calculation of the spec-
tral functions if all frequencies are measured with respect
to the chemical potential p. For the explicit calculation
of p these terms are of importance. One comment on the
term involving the interaction g4(k) should be made, as
it is often dropped. This is only justified for a strictly
zero-range interaction, for which the decomposition used
in Eq. (1) is not allowed.

In the spinless model the p~ ~ are given by

= —e exp g —j e(-) e (+)inkF z ~ r + io,qx iv) t
L

+2s'(q)[cos(qx) e&+&
' "
(12)

where ~q—:IqI8~(q) and s (q)—:sinh (Oq) with O~ the
phase in the unitary transformation a;~ = cosh (Oq)b
sinh (O~)bt From (12) o. ne calculates the relevant spec-
tral function as

p~, ~ —7 .~k, ~~k+q, ~ ~

k

where a&~ is the creation operator for a particle of type
n and momentum k. With a proper normalization

dx e '"*e'"'iG~(x, t),

F 2z. l pq~ for q) 01/z

p~ for q(0,
the density operators obey Bose commutation
relations

[b, bt, ] =bqq, [b, b, ] =0.
The key to the exact solution of the model lies in the fact
that the kinetic energy can also be expressed in terms of
the Bose operators7

~. (k ~) =—(4c" l4,.b[~ —(~ —&0 ")14,.1&a )

] OO OO

dte' '
—OO —OO

dxe '"*e'"'iG~(x, t) .

The low-energy singularities of the spectral functions
have been known for a long time. They are obtained

by taking the limit L + oo, in which the G~ ' (x, t) can
be calculated analytically in the large x and t limit. The
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double Fourier transform yields expressions for the criti-
cal exponents of the threshold singularities of the spectra.

The aim of our paper is to present results also for the

nonuniversal frequency range in p' ' (k, cu). In principle
this can be done by direct numerical integrations after
performing the limit L ~ oo. As for a finite-range po-
tential the frequencies w~ have a nontrivial q dependence,

the G' ' (2:, t) have to be calculated involving a numeri-
cal integration which has to be followed by a double nu-
merical Fourier integration. It is numerically difficult to
obtain the sharp spectral features by this procedure. It
also gives little insight into the interpretation of the cal-
culated spectra. We therefore take a different approach
and calculate the spectra for finite systems in such a way
that the double Fourier integral can be performed ana-
lytically. For the simplified model with the g4 interaction
only the limit L ~ oo can be directly read ofF the results
for finite L. As this model already shows very interest-
ing nonuniversal behavior of the spectra we start with a
detailed discussion of this g4 model.

III. SPECTRAL FUNCTIONS
FOR THE SPINLESS g4 MODEL

As the Hamiltonian for this special model is a sum
of Hamiltonians for right- and left-moving electrons it is
sufficient to consider, e.g. , the right-moving ones only. In
the fermion representation the Harniltonian reads (a„=

A A

ak„,+~ pn —= pq„,+)

H~ —— vp ) na„a„+ ) g4(q„)p„p „
n "-~0

while the boson representation, apart from an additional
term c+(N+), is given by (b„—:bq„)

tion of the field operators. The spectral weights
of the b peaks, e.g. , in p~+ (k„,w), are given by

I ((m ),N+ 1
I
at

I E+(N) ) I
and can be calculated us-

ing a„I F+(N) ) = at a„+i I F+(N + 1) ), where n~ =
Lk~(N)/(27r), and

/ 1 ) 1/2 .G~+~Gm

for n ) 1. For n = ns + 1 and n = ns + 2 the
states at

I F+(N) ) are eigenstates: a +iI F+(N) )

I
F+(N + 1) ), a„+2I F+(N) ) = bi I F+(N + 1) ). For

n = nF + 1+ n with n & 1 the state at IF+(N) )
a~~~i+„-a„~+iI +~(N + 1) ) has overlap to the states

b.' II"+(N-+ 1)), b', bt, I~+(N+ 1)), b~tV„, IZ+(N+
1) ) (1/2') (bi) b„- 2I F+(N + 1)) etc. , i.e. , to states
I (mj) N+ 1) with g»jmj = n. For large n these
eigenstates are rather complicated linear combinations of
electron-hole pair excited states, but the expansion coef-
ficient of the component a~ +i+„-a„+iI

I"+(N + 1) ) is
simple. The square of the overlap is given by

I &(mj&, N+1I a.' +,+.- IF+(N) ) I'

/ 1) m~
= A((m )) . (19);.-. m, ! q j)

The factor 1/mj! is due to the corresponding factor in Eq.
(17) while the factor (1/j)~' comes from the prefactor on
the rhs of Eq. (18). This yields for the spectral function

p (kns+i+ri ~)

H+ —— vF ) nb~b~
n&0

= ) 6p, „-A((m, ))b u) —) m, u)j, (20)

+ ) ng4(q„)(bt b„+b„bt )'" -)0
(16)

oo ( 1 ) 1/2

I (mj) N) = I, I (b,') 'I++(N))
j=i j' (17)

These are linear combinations of electron-hole pair ex-
cited states which yield the same value of the kinetic
energy. It is instructive to write out the states with low
excitation energy to see the high degeneracy of states with
the same kinetic energy.

The spectral functions for the simplified model can
be calculated directly without using the bosoniza-

In this representation it is obvious that one can read off
the exact energy eigenvalues ivithout a canonical transfor-
mation. The eigenstates are identical to the eigenstates
of the noninteracting system, Especially the interacting
ground state is given by the Fermi sea

I
I"+(N) ), which

has the form of a Slater determinant. The general eigen-
states have the form

where cuj = (2vr/L) [vs + g4(qj)/(2m)j. Alternatively this
result can be obtained using Eq. (12) for s2 (q):—0 by for-
mally expanding the exponential function and perform-
ing the double Fourier integral in Eq. (14) analytically.
We will discuss this procedure in more detail later.

The calculation of p~ (k„,u) is therefore reduced to the
combinational problem to find all decompositions

my+ 2m'+ 3m3+ + nm„- = n (21)

g4(k) = g48(k, —k ), (22)

where r, = 1/k, is the effective range of the interaction,
we will therefore also use a different technique. The A:-

dependent Fermi velocity vz(k) takes only two difFerent
values with this assumption

with mj E No. The solution can be easily produced on a
computer, but for large n the number of decompositions
increases exponentially. For the special q dependence of
g4 used in the following:
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6F = vF [1 + g4/ (2vrvF)] for 0 & k & k,
(VF fork) k, .

3 4-

k= 1/2 kc

z(k) =1
(b)

4-

k=3/2 kc

z(k) =0.594...

For a finite system this means that g4(k~) = g4 for 1 &
n & n, where n, = Lk, /(2vr) and g4(k„) = 0 for n ) n, .

From Eq. (20) it follows that p~(k„, cu) is triviat for
0 & k„—kF & k„as m~ can only be different from
zero for j & n and all corresponding cd& are given by
(2vr/L)6F . This yields (k = k —kF )

p (kF + k, ~) = b(~ —6Fk) for 0 & k & k„

I

1.5 2.5

k=5/2 k,

z(k) =0.1 32...

2-

~.5 8.5
6

(d)

1.5
I

2.5

k=20 kc

i.e. , Fermi-liquid-like behavior. This is due to the spe-
cial choice (22) for g4(k). For k ) k, the spectral func-
tions are nontrivial. One has to distinguish the intervals
mk, & k & (m + 1)k, . We discuss in the following small
values of m and the limit m ~ oo. For m = 1 it is still
very simple to argue in terms of the decompositions in
Eq. (21). For n,, & n & 2n, one can have at most one
nonzero mi (mi = 1) for n & l & n. The remaining "mo-
mentum" n —t can be decomposed into momenta j which
are smaller than n, . Therefore the energy for all these
decompositions is given by (2+/L) [tvF + (n —l)8F]
(2vr/L) [nvF + (n —l) (8F —vF)]. The corresponding
weight is 1/t. The remaining weight lies in a b peak
at (2vr/L)n8F, which corresponds to the decompositions
of n with nonzero m~ only for j & n, . The limit I —+ oo
can easily be read off and one obtains

p~(kF + k, (u)

3 4-

Q

4-

2-

8.s
I

1.5 2.5
~/(v, j,)

3.5 19
0 I

20 21

~/(vFk, )
22

with respect to p and momenta with respect to k~ we
have iG~(x, t) = exp [F(x, t)]/L, where for g4(k) given
by Eq. (22)

FIG. 1. Spectral function p (k, ~) of the spinless g4 model
as a function of ur/(vFk, ) for 8F = 1.2vF and difFerent mo-
menta as indicated in the figures. The arrows represent 6
peaks with weight z(k).

O(v —vFk)O[vFk+ (6F —vF)(k —k, ) —cu]

vy k —cd

+[1 —ln (k/k, )]b(~ —8 Fk) . (25)

1 (.27rF(x, t) = ) —exp
~

i n[z —vFt]
~

l1 (.2') —exp
I

i n[z —VFt]
I

, n r
(27)

The weight z(k) of the 6 peak decreases continuously
from 1 to 1—ln 2 —0.307 when k increases from k, to 2k, .
The shape of the spectral weight is shown in Fig. 1(b).
If one further increases k the calculation of the spectrum
using Eq. (20) becomes more and more tedious. We will
therefore analyze the spectra by another method.

In the limit k ~ oo one might expect that the spectral
function p~ (kF + k, u) reduces to a 6 function as for
noninteracting electrons. That this is not the case can be
seen quite generally by calculating the first and second
moment of p~(kF + k, w). As shown in Appendix A, the
result for 4„- = pz (kF+k) —[pi (kF+k)] for the special
model of Eq. (22) for k ) 2k, is given in the limit L ~ oo
by

= —k (vF —VF) = —[pi (kF + k) —vF k]
2=12- 2 1 ) 2 (26)

i.e. , the effective width of the spectrum is independent of
k as soon as k is larger than 2k, .

We now present a method to calculate the spectra us-
ing Eq. (12). As in the following we measure energies

as s (q) = 0 for gq(k) =—0. The second sum on the rhs
of Eq. (27) is not convergent as it stands. There are two
obvious methods to overcome this difficulty. One can
add a factor exp (—On) or restrict the sum to n & M,
where M(2+/L) is much larger than the momenta one
is interested in. Both procedures give the same results
for the spectra. Using the first method we can write Eq.
(27) as

/ . 2~
F(x, t) = —ln 1 —exp

~

i [z —VFt+i0]
~

r

(.2~+ ) —exp
)

i n [x —8Ft]
~

r;n qL

l&.2vr—exp
~

i n [x —VFt]
~

. (2S)
q L

Unfortunately the Gnite sums cannot be summed in
closed form. We therefore write
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iG (x, t) = 1/L
1 —exp (i z [2: —v~t + i0]) ), exp

(
i ml [z —8Ft]

~

.(1/m)' f2'vr.

l!
x ) expli mj[z —v

.(—I/m)~

m=l j=1

X 0 L
= —).am ) exp

I
i m[x —v~t] I ).bi" exp I

i l[2: —8Ft] l~

. („.) / 2~.
r), , ' (29)

where the a" ) and bt" can be determined iteratively
for m & 1, / C NO, and i = 0, . . . , m —1,

l
( +i) ~. (—1/m)' ( )
tm+i r ~ .

i m(E —j)+i
j=0

( +i) ~. (1/m)~ ( )
im+i ) t m(l —j)+i '

j=0

The starting values are b = 1/m! and(l)

Using Eq. (23) the double Fourier transform can be triv-
ially performed (kp = 0)

(32)

Compared to Eq. (20) this representation avoids the com-
binatorial problem of Eq. (21) and can be used numeri-

I

cally for much larger values of n, than Eq. (20). Some
important information about the am and bm can be
obtained analytically. For the case of the a, it is useful
to go back to Eq. (27), where one can directly read off
ao" ——1, a,

" = 0 for i = 1, . . . , n„a,." = 1/i for

i = n, +1, . . . , 2n, +1, etc. The limit m —+ oo of a"
for fixed n, follows from Eqs. (30) and (31)

~c (Il 1/n
( -)

„-:;~ r
(33)

In the large-n, limit one therefore obtains a" —+

e +/n, —0.56/n, where ( is Euler's constant. The
behavior of the b

" for m values of the order of n, fol-
lows from Eq. (27) if one writes the first term on the rhs
as a difFerence of a logarithm similar to the erst term on
the rhs of Eq. (28) and the sum running from n, + 1 to
infinity. This yields b, = 1, for i = 1, . . . , n~,(-)=

+ +" + —.
~

1 1 1

(n, +1 n, +2 ir
for n, +1 &i (2n„etc.

In this approach it is very simple to obtain the exact
analytical result for the spectrum in the large momentum
timit A: && k,

p)(k„,~) ~ 27'
[nvt; + l (8~ —vg)] )

We discuss this for the special case n, = 1 and n, —+ oo only. For n, = 1 we have bi ——1/l. and the spectrum(1) i

is a Poisson distribution with a unit strength parameter. In the thermodynamic limit L —+ oo, n, ~ oo with
k, = n(2+/L) = const, the spectrum is given by (6vF = 8F —v~)

e—c 1 for 0 (~ —vFk & bvFk,
~'k ~' =

1 —lo ( r„"v ) for 6vv6, & tv —vvtr & 26vv tr, ,
(36)

etc. This behavior is shown in Fig. 1(d). Figure 1 sum-
marizes our results for the g4 model for 8F ——1.2vF, i.e. ,
a repulsive interaction. In Fig. 1(a) all spectral weight
lies in a b peak at cu = 8~k (z = 1). For k ) k, there
continues to be a b peak at cu = 6Fk, but its weight
decreases rapidly with increasing momentum as shown
in Figs. 1(b) and 1(c). The additional weight lies in
the continuous part of the spectrum as discussed analyt-
ically in Eqs. (25) and (36). In the limit k && k, one

I

does not recover the limit of noninteracting electrons.
The shape of the spectrum becomes independent of the
interaction strength as a function of the scaled variable
(u —v~k~)/(k, 6vp). A calculation of the spectrum using
perturbation theory for the self-energy to low order (e.g. ,

second order) completely fails to give the correct shape
of the spectrum.

Another quantity of interest is the total spectral den-
sity per unit length
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c'(~) = dk )p~ (k, cu)

IV. SPECTRAL FUNCTIONS
FOR THE GENERAL SPINLESS MODEL

dtG~(O, t) .

For the special g4 interaction (22) the function p~(k, cu)
has been given analytically in Eqs. (24) and (25). The k
integration can be simply performed and yields

'1

p~(~) = x( 1+in1
27tvF 1+ ln

for0&u(VFk,
for VFk, & ~ ( vFk,

for VFk, & e & 2vFk, ,

(38)

etc. Alternatively the function F(0, t) in Eq. (27) can be
calculated numerically in the limit L ~ oo and G (0, t)
is Fourier transformed numerically. The results in both
approaches agree and are shown in Fig. 2. The latter
method can be performed for arbitrary interactions g4(k).
Results for g4(k) = g4exp( —Ik]/k, ) are also shown in
Fig. 2 for a positive and a negative value of g4. For the
case of a repulsive interaction there is a depletion of the
total spectral weight at low frequencies. Due to a sum
rule discussed in Ref. 13 the missing weight has to show
up in another frequency range. For a model without an
upper cutofF in momentum space the missing weight is
pushed to infinity. If a cutoff is included the missing
weight appears at the upper end of the spectrum, as the
spectral weight in Fig. 1(d) has to be compared to a b

peak at v~k~a„ for noninteracting electrons.
In this section the simple g4 model has been discussed

quite at length, as the generalization to the complete
model including gz terms has to be performed mainly
numerically.

The method to calculate G~ (z, t) presented in Eq. (29)
is generalized to the full spinless model introduced in Sec.
II. We specialize to interactions of the type described in
(22), i.e., we also assume gz(k) = gze(k, —k ). Then
using Eq. (12) the expression for F(z, t) in (27) is gen-
eralized to [sz = sz(q„) for 1 & n & n, ]

'. 1 z (.2vr
F(z, t) = ) — (1+ s ) exp

I
i n [z —v~t) I)q L

+s exp I
i n[z+vt t]

IL

(.2vr—2s —exp
I

i n[z —vFt]
I

&.2' i—ln 1 —exp
I

i n [z —vF t + io]
I

q I, r
(39)

Again iG~(z, t) = exp [F(z, t)]/L is written as a product
of power series

iG (z, t) = — ) a" exp I
i m[z —v~t] I

) 1 . („) (.2vr

x ) b,
' exp

I

i t [z —vFt]
I

(„.) r'. 2m

rL

x ) c(" ) exp
I

i r [z+ vent
( .2~

(x exp ~

—2s )
where the expansion coefficients are determined itera-
tively as in Sec. III. For m & 1, l e No, and
i = 0, . . . , m —1, one obtains

1.3

1.2- X

& 1.0-

l
(m+1) )tm+i

j=O
l

b(m+1) )lm+i
j=O

(m+1) )lm+i
j=O

(—1/m)~ ( )
m(l —j}+i&

( 1+s' /m)' ( )
m(l —j}+i~

(s'/m)' ( )
m(l —j}+i '

(41)

0.9-

0.8
0

I I I

1 2

~/(v~k, )

The starting values are b = (1 + s2)~/m!, c(
s2~/m!, and a~ is given by Eq. (31). Using Eq. (40)
the double Fourier transform can be simply performed
[A = exp (P„",1/n)]

FIG. 2. Total spectral density p~(u) of the spinless g4
model as a function of u/(vsk, ). The solid curve shows the
result for the step model with 8~ = 1.2m~, the dotted curve
the result for the exponential model with g4/(27rv~) = 0.2
(repulsive interaction), and the dashed curve the result for
the exponential model with g4/(2n'vy ) = —0.2 (attractive in-
teraction) .

oo n+r
p (k„, ) = A ' ) ) c(")a" b"

r=O j=O

xbl iv — [(n+ r —j) vs + (r+ j)vs]
L

(42)
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If we write (n + r —j )vF + (r +j )8~ = nvF +j (6F—
vs ) + r(8~ + v~), it is obvious that p&(k~, u)—:0 for
u ( k v~ is guaranteed only for v~ —v~ ) 0, i.e. , for
repulsive interactions if g4 = g2.

The coefBcients a " are the same as in Sec. III. The
behavior of the b~~" and c~~" ) for m & n, follow from
the identity

3

(a) 'k=1/2 k, (b) k=3/2 k

(m
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m=1 j=1

(
x exp (

—p ) —z"
= .+i " )

1+ j

exp p ) —z" = (1 —z) exp —p ) —z"
n=l r ( n=n +i

(43)
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For 1 & m, & n, the expansion coefficients are therefore
given by the first factor on the rhs of Eq. (43), i.e. ,

0
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u/(vFk, )
6 19
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u/(vrk, )
25

b(n, )
m

m ( s i2
S2

~
1+ —. ~: const x m',j)

(44)

c" = 1+ . .-const x m'(~ ) ( s —1l nc&m&&1 s —1

This power-law behavior of the coefficients b" ) and c(„" )

is responsible for the low-energy power-law singularities
of the spectral functions and the power-law behavior of
the momentum distribution n(k) discussed in Appendix
B. To demonstrate this we consider momenta 1 &( n &&

n, and frequencies of the order 6~(2vrn/L) in Eq. (42).
As discussed before Eq. (33), a~ = b~,o for m & n, .
Therefore the spectral function simplifies in this regime
to

FIG. 3. Same as in Fig. 1, but for the full g2 ——g4 spinless
Luttinger model for vF = 2v~. The small oscillations in the
full curves are a finite-size eRect. The dotted curves show
the continuous part of the related spectral function for the
spinless g4 model with v~ ——2v~.

ior (w —vFk) ' . For arbitrary values of k„and u the
spectral function p&(k„,u) has to be calculated numer-
ically. Results for the same k values as used for the g4
model in Sec. III and g2(k) = g4(k) are shown in Figs.
3(a)—3(d). The figures show that the b peak at u = 6~k
is changed into a power-law behavior and one could an-
alytically show that the critical exponent for cu Q 6~k is
given by ss —1 as in Eq. (46). The shape of the con-
tinuous part of the spectra of the g4 model is modified
quite considerably for the parameters used (ss = 1/8 cor-
responding to 6~ = 2v~). In contrast to the g4 model

(45)

i.e., the spectrum consists of b peaks at w = 8~k„+
6~(4mr/L). For 1 && r + n && n, we can use the
asymptotic form of the coefficients in Eq. (44) at r =
(cu —8~k„)/(4m'8g/L) and n+ r = (cu+8pk„)/(4vr8g/L)
to obtain the weights of the peaks. In the limit L ~ oo
this yields

2 2

p (k„,(u) e((u —6s k)(~ —6pk)' '(~+6~k)'
(46)

2.0

3
~ 1.0

I(

I

I

i.e. , the well-known asymptotic behavior for k « k, and
4) —vy'k vy'kg.

In the opposite limit k && k, the coeKcients a„+„
in Eq. (42) can be replaced by the constant introduced
in Eq. (33). Near the threshold at cu = vzk„Eq. (44)
can be used again for the ~" and b" Performing.
the integrations in the limit I ~ oo the Gnite step at
threshold in Eq. (36) is replaced by a power-law behav-

0.0
0

I I I I I I I

1 2 3 4

~/(vF I&,)

FIG. 4. Same as in Fig. 2, but for the full gq = g4 spinless
Luttinger model. The solid curve shows the result for the
step model with vF ——2v~, the dotted curve the result for the
exponential model with g/(~vF) = 3 (repulsive interaction),
and the dashed curve the result for the exponential model
with g ( /rv7~) = —0.98 (attractive interaction).
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p)(k, w) g 0 for k ( 0 and small ~k~,
ii but the spectral

weight for negative k decreases rapidly for increasing ~k~.

In Fig. 4 we show the integrated spectral weight for
g4(k)—:gq(k) for the step model (22) as well as the expo-
nential model g4(k) = g2(k) = gexp( —~k~/k, ) used also
in Fig. 2. At low frequencies the power-law behavior

2sproportional to w ' leads to a suppression of spectral
weight. For the case of an attractive interaction this
leads to a peak in p) (u).

V. GENERALIZATIONS
FOR THE MODEL INCLUDING SPIN

In the following we restrict the discussion to the step
model (22). For the g4 model the spectral function has
the same form as (32)

&(k ) ) -(~ )P(n, )

I,=O

f 2vr
x6

~

cu — [nvF + l (8F —vF)] ~I
(52)

The coefficients PI" are obtained from the power series

with the coefficients b
"

(2g4) by taking the square root,

For the Luttinger model including spin the discussion
in Sec. II applies up to Eq. (4). If the density operators
pq ~ are decomposed into a sum of particle-hole operators
an additional spin summation occurs. It is then useful to
define charge and spin operators 5

l.e. )

P~~-~
+l L r ~ +I j I j (2P(n, )

) (53)

P

Pq, ~ = Pq, ~,T + Pq, ~, l~ +q, ~ = Pq, ~, T Pq, ~, l ( )

With a normalization which difFers by a factor of ~2, the
analogous definition to Eq. (5) reads

1j2

(~q~Lp pq for q & 0,

(48)

The coeKcients 6„& are obtained from a

oa„(2g4) by the same procedure. For the g4
model including spin the spectral density differs from
a simple 6 peak already for k & k, . For l & n, the
coefficients ai" and Pi" can be given explicitly as

a~ = 1 = b~ for rn & n, . For 1 && t && n, one
= Pi l ~ In the limit L oo thi

yieMs for 0&&&0, and8~=—8~,, ) v~

( ~
l~ aq+ forq)01/2

((q(L j o,— for q & 0 p (k, ~) = const x ([u) —vFk] [8Fk —u)])

x O(u —vF k) O(8 Fk —m), (54)

T =vF)
i iq(b tb, +bt, b, )+c(N). (49)

For the spin-independent interaction (1) the spin degrees
are not renormalized by including the interaction, i.e. ,

8F, (q) = vF. For the charge degrees of freedom the
problem to find the exact eigenstates is equivalent to the
spin-independent problem. The additional factor ~2 in
Eq. (48) modifies Eq. (9) to

These operators describe independent boson degrees of
freedom. Again the kinetic energy can be expressed in
terms of the boson operators and particle number oper-
ators

as discussed previously. ' 6 7 Note that this non-Fermi-
liquid-like behavior occurs, but one still has n(k) = 0 for
k ) kF = 0. The behavior of the spectral function is
shown in Fig. 5 (dotted curves). Even for k )) k~ there
remains a square-root singularity at threshold which is
"intermediate" between the 6 peak expected from the
first factor in Eq. (51) and the plateau from the second
factor.

For the general model including spin the spectral func-
tion follows from Eq. (51) using Eq. (40)

p (k io)=A') ) n" P"

8F,(q) = vF [1+g4(q)/(qrvF)] —[gq(q)/(xvf)]

(50)

r=O j=O

27rxb' (u — [(n+ r —j) vF
L

For the propagators the changes are more dramatic. If
one denotes the propagator for the spinless model by
G' ' (x, t; g2, g4), one obtains, using the bosonization of
the fermion field operators

iG ', ' (x, t; g2, g4)

= [iG' ' (x, t;0, 0)iG'" ( xt;2g , z24g)] ~ . (51)

For the g4 model the more intuitive approach to cal-
culate the spectral functions via the Lehmann represen-
tation described for the spinless model in Sec. III can
be generalized and leads to a combinatorical problem
slightly more complicated than in Eq. (21).

+(r+ j) 8F]

where the coefficients P." and p„" ) follow from the

coefficients b~ (2g2, 2g4) and ci (2g2, 2g4) defined in
Eq. (41) by the procedure (53) to take the square root
of a power series, while the 6,." follow from the a~

i a,"'
(2g&, 2g4) in the analogous way. In the low-

energy regime Eq. (55) leads to the power-law behavior
discussed in detail in Refs. 11 and 17. This and the spec-
tral behavior for larger values of k is shown in Fig. 5
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but neglecting the g4 interaction. As one can see from Eq.
(9) or (50) this leads to 6F(k —+ 0) ( v~, i.e., an increase
of spectral weight with decreasing ~cu~ until the power-
law factor u (n = 282 for the spinless model, n = ss
for the model including spin with spin-independent in-
teraction) leads to suppression and the peak emerges.
As discussed in Sec. II the physical model corresponds to

g4 = gq, i.e. , it is unphysical to neglect the g4 interaction
for finite-range interactions. Therefore the experimen-
tal peak below the Fermi level cannot be explained as a
Luttinger liquid feature for repulsive interactions. In or-
der to explain the experimental depletion near the Fermi
level a surprisingly large value of the exponent has to be
assumed. ~4

In this paper we have presented a detailed study of the
nonuniversal spectral properties of the Luttinger model
and have shown both analytically and numerically that
a suprisingly rich variety of spectral features can emerge.

0
2

ru/(vFk, )
6 19

0
20 21

~/(vrk, )
22

FIG. 5. Same as in Fig. 1, but for the model including
spin for v~ = 2v~. The dotted curves represent the results
for the g4 model including spin and the full curves the related
results for the full g2 ——g4 Luttinger model including spin.
The small oscillations are again a finite-size effect.
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(solid curves), where the results of the full model are
compared to the g4 model. For the value of s2 used the
nonuniversal features of the spectra are rather similar,
i.e. , they can be largely understood examining the much
simpler g4 model.

Results for the integrated spectral density p~(u) are
qualitatively the same as the corresponding curves for
the spinless case shown in Fig. 4.

VI. SUMMARY

In the preceding sections we have presented results for
the spectral functions p+~(k, cu) and p+(u) relevant for
inverse photoemission. The corresponding functions to
describe photoemission are given by the mirror images of
the curves presented as p+ (k~ + k, cu) = p+ (k~ —k, —v).
In the Luttinger model with its linear energy dispersion
the value of the Fermi momentum is irrelevant and has
been set to zero in Secs. III—V. If we want to describe
nonrelativistic electrons this is no longer the case as k~
is proportional to the electron density. In order to ap-
ply results using the Luttinger model one has to keep in
mind that the linearization procedure is only allowed for
sufficiently long range interaction-s, i.e. , k, (( k~.

In Ref. 3 angular-integrated high-resolution photo-
emission data of quasi-one-dimensional conductors are
presented which show a depletion near the Fermi energy
and a rather broad peak about 1 eV below the Fermi
level. As these spectra are related to p~ (cu) the peak be-
low the Fermi level reminds one of the peak in one of the
integrated spectral functions in Fig. 4. But this spec-
trum corresponds to an attractive interaction. Such a
peak was erst discussed by Suzumura, who obtained it
for the case gg & 0, g4 = 0, i.e. , a repul8iee g2 interaction

APPENDIX A

In this appendix we calculate the moments

p~(k) = ~"p~(k, ~)~

= 2"+1 ~f
d"G~ (x, t) )

dt" r, (A1)

G~(x, 0) = F(x, 0)G~(x, O),

G (x, 0) = [F(x,0) + F (x, O)]G (x, O) .
(A2)

The calculations are straightforward only for the g4
model. In the spinless case the function F(x, t) takes
the form

F(x, t,) = ) —exp
~

i n [x —6~(n)t]
~

.
r;n qL (A3)

Therefore F(x, 0) = ln(l —exp i & (x+ iO) ), i.e. ,
G~(x, 0) is identical to the noninteracting Green's func-
tion

iG+(x, O) = —) exp
~

i n [x+ i0]
~

. (A4))
r

The spatial Fourier transform in (Al) can easily be
performed using (A2)—(A4) and yields [6&(i) = v~ +
g4(k, ) /(2vr)]

p, ~(k„) = ) 6~(m),
=1

(A5)

of the spectral function p~(k, u) for n = 0, 1, and 2.
As iG~(x, t) = exp [F(x, t)]/L we have to calculate the
derivatives of F(x, t)
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&.' =—~. (k ) — ~i (k )
2 fL A

=IT, I-,): )
j=l i=n —j+1

For the step model (22) this leads for n ) 2n, to

2 2

In the limit L —+ oo this reduces to Eq. (26).
For the general spinless model already the zeroth mo-

ment po (k„) = 1 —n(k„) is nontrivial. It is discussed in
Appendix B. As the expressions for the first and second
moment are rather lengthy, we do not present them here.

For the model including spin we restrict ourselves
to the g4 model. If we again write i G~~ (2:, t)
exp [F(x, t)]/L, the function F(x, t) is given by

F(~, t) = —).— exp i i n [2: —v~(n)t] I

r2;n iL
+exp

I
i n[x —vFt]

I
. (A8)

F.2m

r
Therefore G~(z, 0) equals the expression on the rhs of
Eq. (Al) and the spatial Fourier transform can be per-

]

formed as in the spinless case. The first and the second
moment are given by

pi (k ) = ) [v~(m) + vp] /2, (A9)
m=1

&'=—~',.(k ) —ui,.(k )

=I
L I —,). ). [v~(i) —v (i)] /4

f2~& '
1

j+i

+I L I ).~[v~(y) —v~] /4. (A10)
(2~'t' "..

As now e~(i) = v~ + g4(k;)/7r, the first term on the
rhs of (A10) is identical to the result for the spinless
model. For the step model the additional term is the
only contribution to the width of the spectrum in the
interval 0 ( k & k, .

APPENDIX B

In this appendix we present a short discussion of the
momentum distribution in the ground state for finite sys-
tems and in the limit I —+ oo. For the special interac-
tion g2(k)—:g4(k) = ge(k, —k ) the Green's function
G~(x, 0) for the spinless model can be written as

1 exp(ik~ [N+ 1]x) ). 1

A ' exp(ik~ [N+ 1]2:) ) („) I( 2vr ) ) . („.) ( . 2vr

with the coefficients c "' given in Eq. (41) and

r Ao

A=expI ) — ~ e n~.n )&1

nn=l
(82)

) ) d(")c(")a - (83)
m=O l=O

where d~ = Qi OcI" . The asymptotic behavior of
d~(" can be obtained from a comparison of the power
series in (Bl) for z = 0

The momentum distribution n(k) follows from the spatial
Fourier transform of iG~(2:, 0)

(2vr
1 —n

I [nF + 1+n] IqL

(2m /L)(n~+1/2), it is sufficient to consider values n ) 0.
In order to obtain the power-law behavior of the mo-

mentum distribution for 1 « n « n, it is useful to
calculate the finite differences 6„- = n ( z [n~+ n))—
n ( z [n~ + 1 + n]). They are given by

g—zs' ~- (~.) (~.)
C) C)+-

l=0

The singular contribution can already be obtained by
restricting the summation in (85) to values n+ l & n, .
This simplifies the discussion as an analytical expression
for the ct" (44) is available. If one uses the asymptotic

2
form c(" m' i, Eq. (85) involves a summation over

(1/ [l (l + n)]) which in the thermodynamic limit for
282 & 1 contains a singular contribution proportional to

1—2(1/n) i z' . We therefore recover the well-known result7

~(~) m ooy (n)
l=O

(84) n(k) —1/'2 - sgn(k& —k) Ik —k&I" (86)

Using (84) the large momentum behavior
n ( & [n~+ 1+n)) ~ 0 for n —+ oo can be read off
Eq. (83). As 1/2 —n(k) is symmetric with respect to

If one wants to determine the exponent of Bn/Bk numer-
ically from Eq. (85) one has to go to very large values
of n, .
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