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Electrical response of heterogeneous systems of clustered inclusions
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An exact formalism to calculate the multipole moments, electric field, and the efFective dielectric
function of a heterogeneous system of clustered spherical particles is presented. The formalism is
derived from a boundary-value problem corresponding to the typical low-frequency experimental
configuration of a system placed between two parallel electrode plates. The formalism is then suited
to cluster distributions, neglecting Buctuations. When the correlations among cluster pairs are short
range and spherically symmetric, the results are remarkably simple: only the dipole moments of the
other clusters and the images contribute to the local field acting on each cluster, and the effective
dielectric function has the Clausius-Mossotti form, with cluster polarizabilities directly related to
the cluster configurations. We study as an illustrative example systems containing particle chains
along the direction of the applied field. We find that if the conductivity of the particles is much
larger than that of the host material, the multipole moments and the effective dielectric function are
greatly enhanced, whereas in the opposite case the eÃect of chaining is negligible.

I. INTRODUCTION

The electrical response of heterogeneous systems has
been a subject of constant interest since the pionering
works of Mossotti, ~ Clausius, Maxwell, Garnett, and
others. 5 Because of the complexity of the interactions
among the inclusions, most theories consider systems of
separate and dilute inclusions, although real systems of-
ten exhibit clustered inclusions. In fact, at high volume
fractions, clustering invariably results from strong cor-
relations among the particles. Since the particles in a
cluster are quite close to each other, the resulting local
Beld acting on each particle is very different from that
for separate and dilute inclusions, and higher multipole
moments may contribute considerably. Correspondingly,
the induced multipole moments are quite different from
those of separate dispersed particles. The effective dielec-
tric function is then expected to be strongly affected by
clustering. The unusually large far-infrared absorption of
some heterogeneous systems has indeed been attributed
to clustering effects.

An analytic approach to this problem must relate the
effective dielectric function of the system to the detailed
configuration of the clustered inclusions. In this paper
we present such a formalism, based upon a method that
we have recently developed, io which treated all particles
individually. As in that case, we consider the typical low-

frequency experimental configuration of a system placed
between two parallel electrode plates, and obtain the ex-
act multipole moments and effective dielectric function.
The idea here is to subdivide the particles in clusters.
Within each cluster, we still treat the particles individ-
ually. However, the outside particles can be treated as
clusters, reexpanding their potentials with respect to the
cluster centers. Then, the number of interactions are
greatly reduced. We obtain the exact multipole moments
of the clusters, as well as those of the individual parti-

cles in each cluster, the exact field inside the system, and
the effective dielectric function, all in terms of the posi-
tions and the configurations (structures and orientations)
of the clusters, and the applied field. The derivation of
these results is provided in Sec. II.

This formalism can be applied directly to crystals with
complex unit cells. For disordered systems, we have con-
sidered pair distributions of clusters, neglecting fluctu-
ations. We obtain the results for arbitrary pair distri-
butions, including the multipole moments of all orders.
We Bnd that the interactions among the cluster multi-
pole moments strongly depend on the pair distribution.
In particular, for spherically symmetric pair distribu-
tions, we find that the multipole moments higher than
dipoles, although nonvanishing in general, have no con-
tribution and the average local Geld acting on each cluster
is uniform. The efFective dielectric function satisfies the
Clausius-Mossotti s relation, with cluster polarizabilities
determined explicitly in terms of the configuration of the
clusters. These results are correct to all multipole or-
ders, and do not depend on either the concentration or
the specific form of the pair distribution, as long as it
is spherically symmetric. On the other hand, if the pair
distribution is not spherically symmetric, the contribu-
tion of higher multipole moments can be very significant.
These results are obtained in Sec. III.

We have applied these results to linear chains of iden-
tical particles aligned with the applied field, a configura-
tion which is often induced at high fields. Strong inter-
actions among the particles within each cluster (chain)
may occur, and their higher multipole moments may con-
tribute significantly. Correspondingly, the effective di-
electric function may largely deviate from the Maxwell-
Garnett result. That occurs particularly when the par-
ticle conductivity is much larger than that of the host
material: as the length of the chains increases, the ab-
sorption peak greatly increases over that of a system of

0163-1829/93/47(24)/16194(11)/$06. 00 47 16 194 1993 The American Physical Society



ELECTRICAL RESPONSE OF HETEROGENEOUS SYSTEMS OF. . . 16 195

separate particles at the same concentration. The ab-
sorption peak is also redshifted. On the other hand, if
the particle conductivity is smaller than that of the host
material, chaining has always a negligible effect. We re-
port these results in Sec. IV.

II. FOB,MALISM

Consider a heterogeneous system containing clustered
spherical particles, dispersed in a host medium with a

complex dielectric function e . The ith particle of the
nth cluster, referred to as the nith particle, has a radius
a„, and a complex dielectric function en, . We consider
the typical low-frequency experimental configuration in
which the system is placed between two parallel electrode
plates at a distance d, subject to an alternating potential
difference Voe ~~'. We assume A )) d ) a„,, and hence
ignore magnetic excitations.

Collecting particles in clusters, the potential inside any
given nith particle is [cf. Eqs. (10) and (ll) of Ref. 10]

U;„(r) = Vo/2 —Eo r+4vr) zi &
lr —r„,l'Yl m(r —r„,) +4vr ) (1 —6,' )

+4 ) (1 g pno) ( 1)(l+m~l}A, Qn'i 'lm l,m ( n'i'k)
(2l+ 1) lr —rn, lgl'+' ' lr —r„,l

& a„, (1a)

and in the host medium it is

(r) V (2 E r + 4~ ) Qnilm l,m( ni) + 4 ) (1 ~') Qni'lm l, m( ni')

,
- (2E+1) lr —r„,l'+', ,

- ' (2l+1) lr —r„, l'+'

+4~ ) (1 —e"'ao)( —1)&'+ +'}"~"'*' ' (' '""'")
l

—r 'l for ail n' i'
(2l+1) lr —rn'll'+' ' (1b)

where

r„,A,
. = (x„;,y„,, kd+ (—1)"z„,),

where q„',.
&

are the multipole moments of the nith par-
ticle with respect to R„. As shown in Eq. (A7) of the
Appendix, the two sets of multipole moments are con-
nected as

k =0, +1,+2, . . . . (1c)

Throughout this paper, the summations over i' only in-
clude particles within one cluster. In Eq. (la), the four
contributions are the applied potential, the potential pro-
duced by the nith particle itself, the potentials produced
by all other particles of the nth cluster, and the poten-
tials produced by all other clusters and all the images:
the factors (1 —b,' ) and (1 —Inn 6'ko) are conveniently in-
troduced to avoid double counting. Crossing the surface
of the neth particle, only the potential produced by the
nith particle itself changes form.

For each cluster n, we select a point R„ to be regarded
as the cluster center. Then, we reexpand the potentials
of the particles of the nth cluster with respect to R„.
For any point r outside a minimum sphere of radius b„o,
centered at R„and enclosing all the particles of the nth
cluster, we have

). q„,i Yl (r —r„,)
,

- (2l+ 1) lr —r„,l'+'

q„',.i Yl (r —R )4~)
(2&+1) Ir R li+l Ir Rnl ) &no (2)

lm

i'L'm'
l

= ).T(n) l 9 'l'
l'm'

by the transformation matrix

I I

T(n)', l' ——b", t'l ' (r„, —R„), (Sb)

I

where &I m (r„, —R,„) is given in Eq. (A6) of the Ap-
pendix. The transformation matrix is block diagonal,
each square block corresponding to a given particle. Fur-
thermore, T(n),'l' ——0 for lm —rn'l ) l —l', and

T(n),'I™= 6", : hence, a given multipole moment de-
pends only on those of equal or lower order when the
expansion point is changed, and the lowest nonvanishing
moments are independent of the expansion point.

We now assume that clusters do not overlap: specif-
ically, the minimum sphere of each cluster excludes all
the particles belonging to other clusters. We reexpand in
Eqs. (la) and (1b) the potentials produced by the par-
ticles of all the clusters other than the nth cluster, and
by all the images, with respect to their corresponding
cluster centers. Using Eq. (A5) of the Appendix, with
r' = r~~, lg and r" = R k, we obtain
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(i+m+l) A, Vn ' lm &l m(r —r„;a)—1
(2l + 1) ~r —r„, i, ~'+'

where we have used

I
1)(l'+m'+l)g qn, l m Yl', m (r —Rn g)

(2l'+ 1) )r —Rn g~'+'

1)(l+m+l'+m') A:

t', m'
xt, ' (r„, —R„).

Substituting Eq. (4a) into Eqs. (la) and (lb), the po-
tential inside the nith particle becomes

U,„(r) = VP/2 —EP r + 4vr ) "'
2l q lr —r„,l'Yi m(r —rn, ) + 4vr ) (1 —b,' )

~n'bp)( 1)(l+m+y)A; Qn'lm l, m(r 'nA,')
(2l + 1) ~r —Rn A,

. ~'+' '

while in the host medium, outside the minimum spheres
of other clusters, it is

(r) V /2 E r + 4~ ) '7nilm l,m( ni) 4 ) (1 ~ ') Qni'lm l,m (r rni')

,
- (2l + 1) ~r —r„,~'+' - ' (2l + 1) ~r —r„, ~'+'

4 ) (1 bn bp)( 1)(i+m+1)k Qn'lm l, m( n'A')

(2l+1) ~r —R„i,~l+~ '
n'i'tmk

an, &~r —rn,
~

for alii' andb p & ~r —R,
~

for alln'Pn. (5b)

Here, Q„l = p, q„', l
are the rnultipole moments of the nth cluster with respect to its center.

Inside the minimum sphere of the nth cluster but outside the minimum spheres of the neighboring clusters, the
potentials produced by all other clusters and all the images can be expanded around R.„using Eq. (A2): we obtain

U;„(r) = (Vp/2 —Ep R,„)—Ep (r —R,„)++4vr ) "'
2l ~ ~r —rn, ~'Yl m(r —r„,)

,
- (2l+1)a'„',+'

+471. j. —b,',') q« lm Yi,m(r —rn' )
(2l + 1) ~r —r„, ~'+~

+4~ ) ) ( t
' (R,„—R„)Q„l ~r —R„~'Yi (r —R,„), ~r —r„,

~

& a„,
tm nl t/ml

(6a)

and

2l+ 1
il tm

+4&). ) . &I ' (Rn —Rn)Qnl m Ir —Rnl'Yl, m(r —R )
tm n'L'm'

Here we de6ne

a, &~r —r,
~

foralli', ~r —R„~ &b„p, andb„p& ~r —R
~

f r oil agnn (6b)

( I
' (Rn~ —R„)= ) (—1) '+ + "(1—b„" 6i, )AI

' (Rnli, —R„),
k

(6c)

which is similar to Eq. (14) of Ref. 10, but refers to clusters. In the region of the nith particle, outside all the other
particles of the nth cluster, we can further use Eq. (A2) to expand the terms in the second summation of Eqs. (6a)
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and (6b), and Eq. (All) to expand the terms in the third summation, around r„, .We obtain

K~(r) = (1o/2 —Eo r~') —Eo (r —r~')+4~) "'
2t, ~r —r~*~'Yi, m(r —r ')

,
- (2l+1)a'„',+'

+4+ ) ) (1 —6", )AI m™(r„,' —r«)q„,ll m ~r —r„,~'Yi, m(r —r„,) +
lm i/l/m/

l'
+4m) ) tt,', „(r„,—R„)' ) ]c]„' „(R„—R„)Q„v ]I ]r —r, ]'Yi (r —r, ),

lm l//m// n/l/m/

aIld

~r —r„,
~

& a„, (7a)

Uo„,(r) = (V()/2 —Eo . r„;)—Eo (r —r„;)+ 4~ ) 2l+1 r —r„, '+'
tm

+4~) ) (1 —S )A', '(r„,' —r„,)q„,'). ~ ~r —r„,~'Y) (r —r„;)
lm i' l'm'

l'+4~). ) ~]', -(~ *
—Ro]') I&i-', -(R ~ —R ]Q v I) I~ —~ I'&i(~ —

,
~ ],

lm l//m// n'l'm'

a„; & (r —r„,'~ for all i', )r —R,„( & b„o, and b„o & )r —R„[for all n' P n. (7b)

Substituting Eqs. (7a) and (7b) into the boundary condition on the surface of the nith particle

BU;„OUoue
&ni &m

we obtain

q„,) = p„,g
Eob'iibo —(2l + 1)p„;i ) AI

' (r„,' —r„,)(l —6,' )q„,'(
i' l/m/

—) Q~ ] m ). t&- m-(r~' —R~)'|"I.'m-(R~ —R~),
n'l'm' l// m//

)

where

(e„, —e )la„',+'
le„, + (l+ l)e (9b)

We now define the cluster configuration matrices

g(n)', t
——6", hI 6 + (1 —6,' )(2l + 1)P,tAI

' (r„, —r„,),
and rewrite Eq. (9a) as

) g(n)', Il™q„,'t ~ = p„,g Eo6) 6 —(2l + 1)p„,] ) Q„) ) tI,', „(r„,—R.„)*t I„' „(R,„—R.„).
i/l'm' .l l// m//

Solving for q„,~m in Eq. (11), we obtain

gn'lm =

where

3 l//m// l/ /

E'o —3 ) A„,) ) Ct„'™„(R.„—R,„)Q„(
l"m// n'l'm'

(12a)
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—1 '10=) [g(n) ']li"p 'i, (12b)

and
~ / / / L'

A„',im = s ) (2l'+ 1)[g(n) ]'im P„i i ti„' „(r„,' —R„)'.
i'l'm'

(12c)

Multiplying Eq. (12a) by the transformation matrix T(n) and summing over i, we obtain

Qnim =

where

lf II„, E, -3 ) ) Ai„",-"CI„"„(R„,-R„) Q„,
nl l Iml ll I ml I

(i3)

L' —1 '10
i = ). T(n)', I' p i'i ~ = ) . &I

' (r ' —R ) [g(n) ']',i" P 'i, (14)

and

ii'L'm'

'L'
A„'",„"= ) T(n)*,,

'

ii'l'm'

ii/ LI m/

=s ). L'). ( ""+"-)«' (r *
—R )[g(n) ']li' ~ p 'i-&,'-' ~ (r.; —R )*.

iill Iml l IIImill

Both r„lm and A„L are completely determined by the
configuration of the nth cluster. From Eq. (13), we
notice that +3/4~1'„i is the (lm)-multipole moment
induced on the nth cluster by a uniform field of unit
strength; in particular,

We now define the system configuration matrix

G„",'™= 6„"6,' 6 +3 ) A„'I™GI„' „(R„—R„).
l//m//

(19)
I' ~ =) [g(n) ']:"P-' (16) Then, Eq (13).can be written as

is the polarizability of the nth cluster. To find the phys-
ical meaning of A~ &m, we formally take

) - C,',™„(R„.—R„)Q„., = — ~iL„~M„(i7).
127r

3 rz, . (20)

Solving for Q in Eq. (20), we obtain the cluster multipole
moments

Rn( +LM (r R ) ~ (18)

Correspondingly, the last term in Eq. (13) reduces to
+3/4vrALiM . Hence, /3/4aAL& is the (lm)-multipole
moment induced on the nth cluster by the single compo-
nent potential given in Eq. (18). When I = 1,M = 0,
the potential in Eq. (18) becomes that of a uniform
field of unit strength, and indeed we can verify that

nlm rnlm Sirn1larly, pnilm and ~nilm
corresponding multipole moments induced on the nith
particle with respect to the particle center. We also have
y10

nilm pnilm

Then, the last summation in Eq. (6a), which represents
the potentials produced by the other clusters and all the
images, reduces to a single component

3
Q = G I'Ep. —

4vr
(21)

Notice that Eqs. (19)—(21) are quite similar to the
corresponding equations in Ref. 10, where the particles
are treated individually. The only difference is that
the clusters have internal structures and their electri-
cal properties are characterized by I'„i and A'„&

whereas spherical particles have no internal structures
and their properties are characterized simply by P„,i.
In fact, if each cluster contains only one particle, tak-
ing R„= r„,, both T(n) and g(n) matrices reduce
to unit matrices, and we have I'„i = P„i6&ibP and
A„'&™ = (1/3)(2t + 1)P„i/i& bmm . Then, all these equa-
tions indeed reduce to those obtained in Ref. 10.

Substituting Eq. (21) into Eq. (12a), we obtain ex-
plicitly the multipole moments of the individual particles
with respect to their centers:

Qnilm = L'—3 ) A'„,I ) Ci„', „,(R„—R„) ) (G i)„',i, , I'„ i ~ Ep.
l Ill mll/ n/Llm/ nil l II m/I

(22)
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The tensor components of the effective dielectric function of the system are given by

&ezz 47r 4x ~ qn;ip 4vr 4m ~.Q„ip 4x ~.
(

ni n nn'l'm'
(23a)

&exz

&m

4z 2~ )- Qni-i —Qnii
V 3 - Ep ). [(G ')."' —(G ')". ' ]rV nntm

(23b)

&eyz 4& 2& ) ~ Qnii + Qni —i
~m V 3 i&0

(23c)

All the other tensor components have formally the same
expressions, having rotated appropriately the system,
i.e. , the G matrix. Therefore, by reexpanding about the
cluster centers we have reduced the work necessary to in-
vert an extremely large matrix, involving all the particle
multipole moments, to the simpler task of inverting the
g(n) and G matrices. For systems containing only one
or a few species of identical clusters, the calculations are
then tremendously simpliBed.

III. APPLICATION TO CLUSTER
DISTRIBUTIONS

Equations (21), (22), and (23) are generally applicable
to systems in which the positions of the clusters and their
particles are known: for example, unit cells containing
several particles in a crystal lattice. For disordered sys-
tems, ensemble averages should be taken. Each cluster
in the system can be specified by its position (the cluster
center R„), structure, and orientation. The orientation
of the nth cluster can be determined by a set of Euler
angles (gn, 8„, Pn). i We assume that the orientation
distribution about the azimuthal angle @„is completely
random. We divide the clusters into groups such that
the clusters in the s group have the same structure, the
same 8„= 8, and P„= P„but arbitrary @„and po-
sition Rn. We first replace in Eq. (20) the multipole
moments of clusters by the average multipole moments
Q, ~.m = (Qn. i. .)„e, in the corresponding group. This
amounts to neglect of the fluctuations of cluster positions
and azimuthal angles of orientation. Since the azimuthal
angles of the cluster orientations are completely random,
Q, ~ m = 0, for m' g 0. Hence, a typical equation cor-
responding to a multipole moment of an s-group cluster,
Q, tp, becomes

Q, tp+3) ) A'„p ) C,'„'p(R„—R,,) Q, t p

s'L' ' l" n'gs'

3 r„,Z„(24)4'
)/I 0 t"0where A, ip

= (A ip)nps Isip = (rntp)ne„and we have
I,
' 0used A', tpm = 0 for m" P 0. Since C&„'p(Rn —Rn)

depends only on the positions of two clusters, the pair

distribution is sufBcient to carry out the summation over
n' c s' in Eq. (24). The cluster pair distributions can
generally be written as

¹ (R —R, ) =6; b(R —R,)+F; (R —R,). (25)

N; (R —R, )C,'„'p(R —R.)d R

Fs'r' +
~ ~

Ns'Plgi'
~ ~

Ns'Plgl'
sl + (q t 1 (3 l i) (26)

where the last step has been carried out in Ref. 10 [cf.
Eq. (29) and Appendix A therein], and

F; (R —R, )Aip (R —R,)d R.
R.l&R

(27)

In the last line of Eq. (26), the first term corresponds to
the field produced by the clusters within the correlation
range, the second term corresponds to the field produced
by the clusters outside the correlation range, and the
third term corresponds to the Beld produced by all the
images. The factor bt bz in the second and third term
indicates that the higher multipoles of the clusters out-
side the correlation range, and of all the images, do not
contribute to the local Beld acting on the central clus-
ter, while their dipoles contribute a uniform field. We
also see that only the higher multipoles of the clusters
within the correlation range may contribute, and their

Here the function F; (H, —H,,) describes the probability
of finding a cluster of s group at R, given the presence
of a cluster of s group at R, . We assume that all corre-
lations have a short range Rp (( d. Then, F; (R —R,,)
satisfy the following conditions: firstly, they vanish inside
the minimum sphere of the s' group center cluster, and
become N', the average number density of the s' group,
outside Rp, secondly, the integration of each F,' (R—R, )
over a sphere of radius Rp yields (4vr/3)¹ Rap, because
of conservation of the total number of clusters for each
group; thirdly, F,' (R —Rs) have azimuthal symmetry.
Using the cluster pair distribution (25), we obtain

) Ci'„'
p (R„—R, )

n'gs'
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contributions are exactly determined by their distribu-
tions, through F,/

. These conclusions parallel those for
spherical particles.

Substituting Eq. (26) into Eq. (24), we obtain
Qsi/0 = Psi/0 @0

(35)

and using Eq. (31), we also obtain the average multipole
moments for the individual particles

I/I) +sl Qs'l'0
s'/'

3
4 r./o&o, (28a)

where

0/ —6 6/ r./0N bl +3 A//OOF// 28b
/

II

is the reduced system configuration matrix (we have used

A, loo
——I', lo). The cluster multipole moments are given

by

The average potentials can be obtained by applying
the ensemble averaging procedure to the corresponding
equations, and using the results (33) and (35). The field
produced by the particles within a cluster is complicated
in general, due to the complex structure of the cluster.
We omit these detailed expressions, and write only the
average local field acting on any cluster

—';) m' r, „
Qslp

4m ) (G ');,'r, pep. (29) Elocal = Eo
s'

Fo

Now, the off-diagonal elements of the effective dielectric
function vanish due to the azimuthal symmetry, and Eq.
(23a) becomes

4ir .m'Q, ip= 1+ 4'
0

= 1+4' ) ¹(G ) i rsilIO,
ss'/'

a'" = s''8' —
~ ~

r m" 8'.
sl s l

~ 3 ~
sip i.

Hence, the clusters within the correlation range give no
contribution. Now, Eq. (28a) becomes

4~1 I

Q.lo —
~

r.lo ).m' Q" io =
3 )

3 r s/OEO ~4' (32)

In particular, the solution for t = 1 is

slo—
3

4~ t'
1 ——) m" I s'io

Substituting Eq. (33) into Eq. (32), we then obtain all
the cluster multipole moments

s/0 = r./o&o3

1-—';) m" r. ..
~

s'

(34)

Applying the same averaging procedure to Eq. (12a),

where we may omit the zz label from now on. When the
cluster pair distributions are known, one can compute the
coefBcients F,/, and then obtain the multipole moments
and efFective dielectric function from Eqs. (29) and (30).

A particular but important situation occurs when all
F; (H —K,) are spherically symmetric. Then, all F;l'
vanish because of orthogonality of spherical harmonics,
and Eq. (28b) reduces to

~

1 ——';) m" I, „
s'

~4;) m' r, ,„
s'

&m

1+ —', ) m r„.
(37)

This has the Clausius-Mossotti's form, with the average
cluster polarizabilities I', io determined from Eq (16) fo.r
any given cluster structure and orientation. These results
show that for spherically symmetric pair distributions,
even though clusters generally have all higher multipole
moments, these do not contribute to the local field and
to the effective dielectric function.

We may further average Eqs. (34)—(37) over the re-
maining Euler angles of orientation (8„$,). The av-
eraged equations retain their form, but the groups are
extended to clusters of the same structure and various
orientations, and r, /o become the averages of each species
over space and orientations.

We notice that Eqs. (34), (36), and (37) are again
quite similar to the corresponding results for spherical
particles, except that P, i is replaced by I', ip. In fact, if
each cluster consists of only one particle, and R., is taken
as r„, both g(n) and T(n) reduce to unit matrices, and
I', lp = n, a, 6l, where as = (e, —e )/(e, + 2e ). Then,
Eqs. (34), (36), and (37) reduce to

s ) m"I', ip
s'

» the right-hand side of Eq. (36), we have three contri
butions, from the applied field, the field produced by the
other clusters, and the field produced by all the images.
This result proves that for short-range spherically sym-
metric cluster correlations all other clusters and all the
images simply provide a uniform field acting on any given
cluster. Finally, substituting Eq. (33) into Eq. (30), we
obtain the effective dielectric function
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sa's +3

S'

(38)
to the Maxwell-Garnett result.

We have calculated numerically e, (s) for metallic par-
ticles in an insulating host, varying the chain length while
keeping constant the particle total volume fraction at
v = 0.1. We have assumed

) V &81
s'

Elocal = E0 2
/ ~

Efo

1 —) V Asi
S'

) v o!8&

and

&m

s'

1 —) v o'8

S

1+2) v'o, ,
S

1 —) v'a,

Ep, (39)

where v' is the volume fraction of the s-group particles.
These results coincide with those obtained directly in
Ref. 10 [cf. Eqs. (B8), (B10), and (Bll)]. We empha-
size that Eqs. (34)—(37) hold for any short-range spheri-
cally symmetric pair correlations between clusters, with
no approximation other than having ignored fIuctuations
(and assumed azimuthal symmetry).

IV'. CHAININC EFFECTS

As an example of clustering, we consider particle chains
along the applied field. This has practical importance for
systems with a liquid or a gas host, since particles tend
to align with the applied electric field to minimize the
energy. For the purpose of illustration, let us assume
that all the particles are identical, with a radius a and
a complex dielectric function s„, and all the chains have
the same length. Then, from Eq. (16), we obtain the
cluster polarizability for a chain containing s particles

S

I', i = na ) [g(s) '],',ion,

3.2-

10

E~ = 1 j$47I0'i/4), i = p, Bl.

For typical values o'„= 9 x 10 s sec i (metallic parti-
cles) and o~ = 0 (insulating host), we have included the
contribution of multipole moments up to l = 20. We find
that contributions from higher multipoles are consider-
able, while it turns out that all results are independent
of the particle radius. The real and imaginary parts of
the effective dielectric function are plotted in Figs. 1 and
2, respectively. Saturation occurs for longer chains. Fig-
ure 2 shows that the absorption peak greatly increases,
while being redshifted, as the length of the chains in-
creases. We have also computed the opposite case of in-
sulating particle chains in a metallic host. We find that
the effective dielectric function decreases as the length
of chains increases, but by very little. These results are
easily understood as follows. In the first case, as the
length increases, the multipole moments of the particles
in a chain cooperatively enhance each other, since the
field produced by the particles is in the same direction
as the applied field. However, the particles beyond a cer-
tain range eventually cease to interact with each other
due to their rapidly decaying mutipole fields, hence the
chaining effect saturates for longer chains. In the second
case, the fields produced by the particles in a chain are
opposite to the applied field and tend to reduce the mul-
tipole moments, which does not induce any cooperative
efI'ect.

This study can also be analyzed in an alternative way.
Rather than considering a chain as a cluster, we may con-
sider it as a group of particles resulting from an extremely
nonspherical two-particle distribution. Then, Eq. (42)
represents a correction to the Maxwell-Garnett result, of
first order in the volume fraction, due to the nonspher-
ical two-particle distribution. This shows unequivocally

where n = (e„e)/(e—„+2& ), and g,'I (s) is the cluster
configuration matrix of a chain containing 8 particles,
oriented along the applied field. Assuming that these
chains are uniformly distributed in space, we can use Eq.
(37) and obtain

1 + 2vo.K(s)
1 —vaK(s) ' (42)

S

K(s) = (1/s) ) [g(s) '],',' (43)

where v is the total volume fraction occupied by the par-
ticles, and

K0 28-
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gives a measure of the degree of chaining: nonchaining
corresponds to s = 1 and K(1) = 1, and Eq. (42) reduces

FIG. l. Effective dielectric function (real part) at v = O. l
vs the logarithm (base 10) of the frequency. The curves are
labeled by s = 1, . . . , 10, the number of particles in each chain.
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FIG. 2. Effective dielectric function (imaginary part) at
v = 0.1.

that the effective dielectric function depends crucially on
the two-particle distribution, greatly varying at the same
volume fraction. The conclusions of Ref. 10 are thus con-
firmed.

We must point out that this numerical example is only
illustrative. In fact, we recall that our results hold ex-
actly only as long as the minimum sphere circumscrib-
ing each cluster does not contain particles of any other
cluster. Furthermore, in this numerical example we have
assumed that the chains have a spherically symmetrical
distribution. These conditions set an upper limit to the
volume fractions, the second one being more stringent.
To estimate this for linear chains of s identical spheres, we
let the minimum spheres circumscribing the chains get as
close as possible without intersecting. Then v, = 0.74/s
is the corresponding volume fraction. Therefore, the re-
sults shown in Figs. l and 2 should be virtually exact up
to s = 3, while they may only be qualitatively correct
for larger s. Nonetheless, the example clearly illustrates
that the clustering has a significant effect. Nonspherical
cluster pair distributions are clearly favored at relatively
high concentrations, particularly for systems of aligned
linear chains. In such cases, the effective dielectric func-
tion should be computed from Eq. (30), for any given
nonspherical cluster pair distribution.

Nonspherical two-particle distributions for systems of
spherical particles have been proposed, for example,
in ferrofluids, i~ and also applied to electrorheological
fluids. s Systems of clusters and the interactions involv-
ing multipole moments higher than dipoles have not been
considered in these fluids so far.

tive dielectric function of a heterogeneous system con-
taining clustered spherical particles. By introducing
the quantities A„'&, which are completely determined
by the configuration of the clusters and characterize
their electrical properties, we have obtained e~act results
which parallel those for spherical particles. We have then
obtained corresponding results for disordered systems in
terms of cluster pair distributions, neglecting fluctua-
tions. These results can be applied directly for any given
pair distribution. As in the case of separate spheres, we
have found that the pair distributions play a crucial role
in determining the multipolar effects. In particular, for
spherically symmetric pair distributions, the higher mul-
tipole moments of the clusters have no effect, although
they are generally nonvanishing. The local field acting on
each cluster remains uniform, and the effective dielectric
function satisfies the Clausius-Mossotti s relation, with
the cluster polarizabilities directly related to the clus-
ter configurations. This relation holds exactly, whatever
the radial dependence of the pair distributions (as long
as the concentrations are not so high that the spherical
symmetry of the pair distributions is broken). We have
provided an illustrative example of particle chains. For
metallic particles in an insulating host, we find large cor-
rections to the Maxwell-Garnett result due to chaining,
whereas only small corrections are induced in the oppo-
site case of insulating particles in a conducting host.

APPENDIX

In this appendix we derive the formulas required in the
text to express the multipole moments of the same charge
distribution with respect to different expansion points.
We consider a localized charge distribution, and expand
the corresponding potential with respect to two different
points ri and r2. Outside two spheres of radii rip and
T2p, centered at ri and r2, respectively, each enclosing
the entire charge distribution, we have

) . qt, m, Yt', m (r —r&)
1

, (2l'+ I) ir —reit'+I

ir —rii ) rip, ~r —r2i ) r2p, (Al)

V. CONCLUSIONS

We have developed an analytical approach to obtain
the induced multipole moments, electric field, and effec-

where qt and qt are the multipole moments with re-
spect to r& and r2, respectively. We have already ob-
tained in Appendix A of Ref. 10 the expansion formula

(A2)
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where

Y,+,, m m, (r' —r")
l,m ( )

~&r ra~i+i'+1

1)
l'+m' 4vr(l + l' + m —m')! (l + l' —m, + m')!

(2l + 1)(2l'+ 1)(2l + 2l'+ 1)(l + m)!(l —m)!(l'+ m')!(l' —m')!

Now

Yi,m (r —r')
(2l' + 1)~r —r'~l'+~

Yi,m (r' —r)
(2l'+ 1)~r' —r~'+'

= (—1)' ) &'
, (r —r") lr' —r" I'Yi,m(r' —r"),

fmf & l, fm'[ & l'. (A3)

Renaming the summation indices l as l —l' and m as m' —m, we obtain with some manipulations

Yi', m' (r r') ~ l', m' / ll Yi,m(r r")
+1)~ — ~l'+ =)-tl (' '

)(2l+1)~ — ~l+
lm

where

(A5)

4~(2l+1) (l+m)! (l —m)!
(2l' g 1)(2l —2l'+ 1)(l —l'+ m —m')! (l —l' —m+ m')! (l'+ rn')! (l' —m')! (A6)

Subst&tu&ng Eq. (A5) into Eq. (A].), and comparing corresponding terms on each side, we obtain the relation between
the two sets of multipole moments

l', m'
ql = tl (r 1 r2) gl

lm

We now derive a second expansion formula. We write

ir —r'i' Yi,m (r —r') = ) B,'„' „(r' —r")ir —r" i' Yi,m (r —r").
l"m"

First, apply B™/Bz' (B/Bx+ jB/By) to Eq. (A8) and use the identities

B'™(B Bb
[r' Yi, (r) jBz™(Bx By)

( 7)

(A8)

(2l' + 1)(l' + m')! (l' —m')!
(2li —2l + 1)(l' —l + m' + m)!(l' —l ~ m' —m)!

- 1/2

(A9)

Then, take r —+ r". The only surviving term in the right-hand side has l" = l, m" = —m for the upper sign, and
l" = l, m" = m, for the lower sign; we find

Hence, we have

~r —r'~' Yi. m (r —r') = ) ti, ', (r" —r')'~r —r"~' Yi- m (r —r").
ill mli

(A10)
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