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Ab initio calculations of residual resistivities for dilute Ni alloys
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We report residual resistivity calculations for dilute Ni alloys which are based on density-functional
theory and the Korringa-Kohn-Rostoker Green's-function method. The transport is described qua-
siclassically by means of the Boltzmann equation using a two-current model for the ferromagnetic
host. In particular we consider 3d, 4d, 4sp, and 58@ impurities in Ni and include in addition to the
impurity potential one shell of perturbed host potentials in the calculation. For the residual resis-
tivity, satisfactory agreement with the experiments is obtained in practically all cases. We clarify
the role of both subbands for the transport properties and compare the calculated ratios of subband
resistivities with experimentally determined values.

I. INTRODUCTION

Following Mott's idea, i several transport properties of
ferromagnetic alloys can be explained by assuming con-
duction in parallel by electrons in the majority bands
(spin-up electrons) and by electrons in the minority
bands (spin-down electrons) . The physical basis of this
two-current model is the dominance of spin-conserving
potential scattering and the weakness of spin-Hip colli-
sions in a ferromagnetic alloy at low temperatures. This
model has been used by many authors~ s for studies
on Ni-based alloys. It seems that the model provides
a good basis for the discussion of a wide range. of al-
loy properties. io Owing to the developments of density-
functional theory and sophisticated numerical techniques
we are now able to perform realistic ab initio calcula-
tions and we are in a position to check the reliability
of such model studies mentioned above. Recent the-
oretical studies of dilute Ni alloys by Bliigel and co-
workers, ii by Stefanou and co-workers, and by Zelleris
presented a detailed analysis of the range of charge and
magnetization perturbations around impurities in Ni,
performed within the Korringa-Kohn-Rostoker (KKR)
Green's-function method. This work is an extension of
the same formalism to transport properties of dilute Ni
alloys. For this purpose the microscopic transition prob-
ability for an impurity atom with perturbed neighboring
potentials around the impurity is calculated and feeded
into the Boltzmann equations for the spin-up and spin-
down electrons. The transport equation was then solved
by iteration as proposed by Coleridgei4 and van Ek and
Lodderis for nonmagnetic materials. Within this scheme
a detailed analysis of the spin-up and spin-down contribu-
tions to the residual resistivity becomes feasible without
introducing any free parameters.

The outline of the paper is as follows. In Sec. II the
microscopic scattering probability is derived within the

Green's-function method. Sec. III gives a description of
the solution of the transport equation. In Sec. IV me-
thodical aspects are presented and in Sec. V the results
are discussed.

II. MICROSCOPIC TRANSITION PROBABILITY

The transition from a state k into a state k', where k is
a shorthand notation for the wave vector k and the band
index v, is given by

where c is the atomic concentration of impurities. Within
the powerful KKR Green's-function formalismis is the
transition matrix elements TA, k for the scattering of
Bloch electrons by an impurity cluster embedded in an
ideal host crystal are given by

L denotes a pair of angular momentum indices, i.e. ,
L = (l, m) and n characterizes the sites of the perturbed
potentials in the cluster. CLn(k) and Q7(k) are general-
ized wave-function coefficients for the host and the alloy,
respectively. The latter are connected by the relation

Q7, (k) = ) Tpr" Cr" (k)
L'n'

Neglecting lattice distortion effects the T-matrix coeK-
cients Tlni, contain the structural Green's-function ma-

trix elements |Lnni, (Refs. 17—19) of the perturbed system

TTln —1)i Qtn (1 + Qnn Qtn )
—'tt)

Here g& are the scattering phase shifts of the unperturbed
potentials, and Atni represents the differences between
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the single-site t matrices of the perturbed potentials and
the unperturbed ones. The structural Green's-function
matrix G7~1, contains all the information about multiple
scattering between the perturbed muffin tins and can be
related to its counterpart for the host crystal by an alge-
braic Dyson equation. ~2 ~s Substitution of Eqs. (2), (3),
and (4) in Eq. (1) results in

I' r' 't
Pi, g = cl 6(sI —sI.)

I 2m) EF

) g",*(k)q",', (k)C,"(k')C,",' (k').
LL!nnl

(5)

III. TWO-CURRENT MODEL

Two-current (or two-band) models have often been
used to describe the electrical conduction in metals. One
assumes that two groups of electrons carry current inde-
pendently and in parallel to each other. ~

In ferromagnetic alloys we consider two subgroups of
charge carriers, i.e. , the spin-up and the spin-down elec-
trons, characterized by the quantum numbers k = (k, v)
and spin index cr. Both spin directions contribute sepa-
rately to the resistivity. In the dilute limit c &( 1 the
residual resistivity of impurities can be obtained from the
solution of the linearized Boltzmann equation

I

AI; =&k
l vs+). ) PII'At

k'

for the vector mean free path AI, . Here vI, is the Fermi
velocity and rI, is the electron lifetime due to impurity
scattering

I) ) P~~i = 2c lmT~~

With respect to the dependence on the spin-quantum
number the scattering probability in Eq. (6) consists
of four parts

I

PIcA;

IV. aV )
(10)

two spin-conserving scattering processes PI,J, and P&~I~,

and two spin-flip contributions P&~&, and Pk~&~, . From this
point of view the spin-flip processes lead to a momentum
transfer between the currents.

There are several mechanisms of spin mixing such as
scattering with spin waveszo and collisions between spin-
up and spin-down electrons, ~ both of which vanish at
zero temperature. But there are also residual spin-mixing
terms. Firstly, there is a spin-flip scattering by the im-
purities due to spin-orbit coupling which has an about
100 times smaller cross section than spin-conserving po-
tential scattering. Finally, spin mixing at T = 0 can
result from the combined action of the internal magnetic
induction and the spin-orbit coupling. Since in the pres-
ence of spin-orbit coupling the spin is no longer a good
quantum number the probability for a Bloch electron k
to be in a spin-up or spin-down state coherently oscillates
between both directions. The resulting spin-flip term is
independent of the impurities and so is very important
in alloys with small residual resistivities below about 1
pAcm at. %.2s

In this paper we assume that for the Ni alloys this
residual spin mixing can be neglected. We will discuss
in Sec. V the consequences and limits of this approxima-
tion. Without spin mixing Eq. (6) decouples for both
spin directions, and with the spin-conserving transition
probability Pf&, of Eq. (10) the Boltzmann equations can
be rewritten as

Comparing with j = (p ) E, two resistivity contribu-
tions

(p ),,
' = e2) 6(si, —sy) vA, , Ak,

are derived, pt for the majority electrons and p~ for the
minority ones.

Due to the parallel addition of the two currents the
total resistivity for cubic systems becomes

pT+ pl
p't pl

using

The second equality in (7) expresses the optical theo-
rem connecting diagonal elements of the transition ma-
trix TI,g [Eq. (2)] to a sum over all transition probability
rates for scattering out of state (k, o).

Obviously, Eq. (5) represents a system of coupled in-
tegral equations for the vector mean free path AI, of all
states (k, o).

Finally, we obtain two currents with the density

j = e') .~(~~ —~~) vA: (At E).
A:

Aq ——rq vA, + Pc ) QL, (k)QI. , (k)=-L,7.,
LLInn I

with Fermi surface integrals

= ) 6(si, —sg )Cl" (k')Cl", (k')Af, .
k'

(12)

oo cr o&I

or the Ziman approximation

Generally, the integrals (12) can be solved exactly be-
cause of the degenerate integral kernel. Instead of the
integral equation an algebraic set of rank B = (L x L' x
n x n')2 would have to be solved, which is, for example,
for angular momenta up to t = 3 and 13 perturbed atoms
in the cluster: R = (16 x 16 x 13 x 13)~ 2 x 10s, clearly
too large for a numerical treatment.

Consequently, we solved Eq. (11) by iteration as it was
proposed by Coleridge and van Ek and Lodder for
nonmagnetic systems. As a starting value we tried sev-
eral expressions such as the relaxation-time approxima-
tion
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(14)

or the degenerate kernel solution for the single-site case.
In all cases convergence was achieved without signifi-
cantly different convergence rates. The mean free paths
utilized were assumed to be converged if for all points
on the Fermi surface the largest relative change in A&
between two subsequent iterations, i and i + 1, was less
than 10

Ii&1.(i + 1) —&1.(i)ll 10 s
Il&K(i) II

This criterion was met for all systems with p
1 pA cm/at. % within 10 iterations.
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IV. METHOD

This section specifies the numerical details in the cal-
culation. A basic ingredient is the self-consistent poten-
tial for pure Ni which is taken from Moruzzi, 3anak, and
Williams. The KKR method with an angular momen-
tum truncation at l~~„= 4 was used.

The imaginary part of the structural Green's func-
tion was generated within the same KKR method by
means of a Brillouin-zone integration using the tetrahe-
dron method. ' 3 The real part of the Green's function
was calculated by a Hilbert transformation 3 with a trun-
cation energy of 2.0 Ry.

The self-consistent impurity calculations are performed
within the frame of density-functional theory27zs us-
ing the local spin-density approximation as proposed by
von Barth and Hedin with parameters as chosen by
Moruzzi, Janak, and Williams. s To obtain the Green's
function of the perturbed system the algebraic Dyson
equation is solved. The dimension of this equation is
made Gnite by truncating the angular momentum ex-
pansion at I, = 3 and by assuming potential perturba-
tions only at the impurity site and at the erst-shell atoms
around the impurity.

The necessary Fermi surface integrations were per-
formed with a modi6ed tetrahedron method.

V. RESULTS AND DISCUSSION

The Fermi surface of Ni consist of Eve sheets of the
electronlike majority Fermi surface es [Fig. 1(a)] and
four sheets of the minority Fermi surface, two holelike
ones hs, h4 [Figs. 1(b)and 1(c)],and two electroniike ones
e&~, es~ [Figs. 1(d)and 1(e)].

The band projection of the partial densities of states
at the Fermi energy (see Table I) are a measure for the
character of the electronic states. Prom Table I it be-
comes obvious that the majority band includes a mix-
ture of a smaller contribution of sp states and a larger
one of d states whereas the minority bands are strongly
dominated by the d states.

The results for the residual resistivities of sd and 4'
impurities are shown in comparison with the experimen-
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FIG. 1. Ni Fermi surface (Ref. 40). Majority sheet: (a)
e~s. Minority sheets: (b) hs~, (c) h4~, (d) es, (e) ss~ .

tal results in Fig. 2(a). The subband resistivities pt and
p are presented in Fig. 2(b), while Fig. 2(c) gives the
relative contributions of different Fermi surface sheets to
the conductivity.

The corresponding data for impurities of the 4d and
Ssp series are given in Fig, 3.

The data are also listed in Tables II, III, and IV. Con-
trary to the more accurate values p~,h, &&,

which include
the perturbed potentials of the nearest-neighbor host
atoms, the resistivities p„.„„„.t, include the effect of the
impurity potential alone.

A. Sd ixnpurities

According to the calculation of Zeller, ~s the local den-
sity of states (LDOS) of the majority electrons is practi-
cally unchanged for Co and Fe impurities. This is espe-
cially true for the LDOS at E~. Since also the neighbor-
ing potentials are unchanged, the spin-up resistivity
pT is extremely small. For Mn impurities a sharp virtual
bound state (VBS) separates from the majority d band.
However, only a small tail of this state becomes unoccu-
pied so that the resistivity p~ increases moderately. For
Cr impurities the majority VBS is located slightly above
E~, leading to a strong resonance scattering for the ma-
jority electrons. In the sequence V, Ti, Sc the majority
VBS moves to higher energies, so that the majority re-
sistivity p1 decreases. From Table II it can be seen that
for the majority band the single-site approximation gives
reliable resistivities. This is a consequence of the fact
that the spin perturbations ANT of the neighboring host
atoms are rather small (see Table II of Ref. 12). In cor-
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TABLE I. Fermi surface characteristics. The angular brackets denote a Fermi surface average

() = g& 6(sl —eF) . N&(Es ) is the band projected partial density of states at the Fermi energy.
All parameters are given in a.u. In the last column the number of k points at the Fermi surface in
the irreducible part of the Brillouin zone is given. These k points contribute to the necessary Fermi
surface integrations.

e6T

Fig. 1 Area (v„')

5.6

N, (EF)
1.237x 1Q

N~(EF)

2.559x 1Q

Na(EF)

1.176x 10

A: points

460

h3

h41

e5
e6

(b)
(c)
(d)
(e)

2.0
22.9
25.7
11.4

0.5
4.4
9 9
4.3

1.006 x 10
1.443 x 10
1.221 x 10
4.769x 10

1.573x 10
2.362x 10
6.706x 10
7.171x10 3

4.124x 10
9.789x 10
1.146x 100

2.109x 10

43
69
809
360

respondence to the character of states as well as d-d, s-s,
and s-d scattering occurs and influences the resistivity.

Compared to the majority band, the scattering in the
minority band is generally much stronger, so that with
exception of Cr, V, and Ti one has for the subband resis-
tivities p~ ) p~. This is in line with the strong changes of
the minority population upon alloying, as, e.g. , discussed
in Ref. 12. Already for Co impurities the minority VBS
is above Ez and moves further away for Fe and Mn. Due
to the missing states at the upper edge of the Ni minor-
ity band, i.e. , at Ez, we have a strong scattering at the
"hole states" of the missing Ni atom, which is about the
same for all 3d impurities from Fe to Sc. The small dip of
pi at Cr is connected with the flip of the local moment,
which brings the minority VBS back to the Fermi energy.
Prom Table II it can be seen that an important contri-
bution to pi comes from the perturbed neighboring host
potentials being in line with the large changes for bN&
for the nearest neighbors as found in Ref. 12. Inside the
minority band the main contribution stems from es [see
Fig. 2(c)].

Due to the parallel addition of the two subband cur-
rents, the total resistivity p is dominated by the majority
resistivity pt, as is clearly demonstrated in Figs. 2(a) and
2(b). All trends of p are determined by pi, since for all
3d impurities except Cr, V, and Ti p~ & p~. Therefore
also the perturbations of the neighboring atoms, while
strongly affecting pi, are of minor importance for the to-
tal resistivity. The calculated p values agree reasonably
well with the experimental data, except that there seems
to be a systematic underestimation of the resistivity for
Fe, Co, Cu, and Zn impurities. At least partially this is
due to the neglect of spin-flip scattering. Here the finite
experimental values are strongly influenced by the spin-
orbit interaction being neglected in the calculation. Via
spin-orbit coupling in the host band the strong scattering
in the minority bands also leads to an appreciable scat-
tering in the majority bands which then determines the
total resistivity. A fully relativistic ab initio treatment
would therefore be very desirable.

hybridization with the Ni d band and due to the weaker
tendency for magnetism, i.e. , the smaller exchange inte-
grals. The electronic structure of these impurities in Ni
has been calculated by Zeller~s and the present results
can essentially be understood from the LDOS presented
there. The characteristic feature of the LDOS for the 4d
impurities is a two-peak structure for both bands, with
one peak at the lower edge of the 3d band and one at
the upper end. This splitting is directly caused by the
strong 4d-3d hybridization being much larger than the
3d-3d hybridization in pure Ni.

For Pd the LDOS at Ez is only weakly distorted and
one obtains a very small resistivity in both bands. In
the sequence Rh, Ru, to Tc the upper d peak of the ma-
jority band moves to the Fermi energy which explains
the strong resonance scattering of the majority electrons
for Tc impurities for which the peak is directly at E~.
By further proceeding to Mo, Nb, Zr, and Y impurities
the peak shifts above E~ and the majority resistivity de-
creases again. As in the 3d series, the resistivity in the
minority band is essentially determined by the missing d
states at E~ and the resistivity is more or less constant
from Y to Tc. As a consequence of the strong 4d-3d hy-
bridization the contributions to the resistivity from the
neighboring potentials is more important than in the 3d
series and the resistivities are in general somewhat larger.
The biggest difference, however, is the very strong reso-
nance scattering in the majority band for Tc, which to-
gether with the large minority scattering, leads to the
large total resisitivity of 7.16pQcm/at. Fo predicted for
Tc impurities.

Concerning the band contributions to the conductiv-
ity [Fig. 3(c)] the situation is similar to the 3d impurities.
Except Ag (and Cd) where the majority band is overesti-
rnated because of the nonrelativistic treatment, the con-
tributions of est and esi are well balanced for the whole

series, and the contributions of h4T and esi are increased
in comparison to the 3d transition-metal impurities.

The calculated values for the other impurities are in
good agreement with experiment.

B. 4d impurities C. sp impurities

Prom the electronic-structure point of view, 4d impu-
rities differ from the 3d counterparts due to the stronger

The total resistivity of the 4sp and 5sp impurities [see
Figs. 2(a) and 3(a) and Table IV] show a quadratic de-
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FIG. 2. (a) Calculated residual resistivities for 3d and
4' impurities in Ni in comparison to experimental data in
pA cm/at. %. a, see Ref. 3. b, see Ref. 7. c, see Ref. 8. d, see
Ref. 36. e, see Ref. 37. f, see Ref. 4. g, see Ref. 2. h, see Ref.
38. i, see Ref. 33. j, see Ref. 35. k, see Ref. 39. t, see Ref.
34. m, see Ref. 5. (b) Subband resistivities p (full line) and
pi (broken line) in yAcm/at. %. (c) Relative contributions of
the difFerent sheets of the Fermi surface to the conductivity
in percent.

FIG. 3. (a) Calculated residual resistivities for 4d and

5' impurities in Ni in comparison to experimental data in
yA cm/at. %. a, see Ref. 3. b, see Ref. 7. c, see Ref. 8. d, see
Ref. 36. e, see Ref. 37. f, see Ref. 4. g, see Ref. 2. h, see Ref.
38. i, see Ref. 33. j, see Ref. 35. k, see Ref. 39. 3, see Ref.
34. m, see Ref. 5. (b) Subband resistivities p (full line) and
pi (broken line) in pAcm/at. %. (c) Relative contributions of
the difFerent sheets of the Fermi surface to the conductivity
in percent.
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TABLE II. Residual resistivities p for 3d transition-metal impurities in Ni in pAcm/at. %.
Given also are the spin-up and spin-down resistivities, once by including the potential perturbations
of the neighboring atoms (p, p ) and once by including only the impurity potential (single-site
perturbation: p„,p„).

P
PT

pl
pss

T
Pss

pss

3.67
7.45
7.25
3.71
8.41
6.65

4.08
8.86
7.57
3.77
9.77
6.14

5.23
15.05
8.02
4.09
14.92
5.63

4.35
18.98
5.65
3.55
18.74
4.38

3.13
2.91
7.05
1.84
2.50
7.03

0.0000
0.0000
6.50
0.012
0.012
6.46

0.040
0.041
3.79
0.011
0.011
3.90

pendence on the valence difFerence AZ, which is known as
Linde's rule for sp impurities in the noble metals. From
the decomposition into spin-up and spin-down contribu-
tions as shown in Figs. 2(b) and 3(b) it is obvious that
this arises from the relatively weak scattering in the ma-
jority band. In the minority band the scattering is much
stronger and, quite analogous to the situation for the
early sp impurities, is essentially determined by missing
d states at E~, which are absent at the impurity site.
Therefore the minority band is essentially blocked, and
the current is mainly carried by the majority band. The
observation of Linde's rule is therefore a direct conse-
quence of the noble metal-like Fermi surface of the ma-
jority band and the similar behavior of the spin-up LDOS
at E~ for the Sp impurities in Ni.

By comparing the total resistivities of Table IV as cal-
culated in the single-site approximation with the more
accurate values for the perturbed cluster, we see that the
single-site values for Zn, Ge, and Cd are larger than the
cluster values. This is a paradoxical result, since naively
one would expect that the inclusion of additional scatter-
ing centers, i.e. , the perturbed nearest-neighbor poten-
tials, should increase the resistivity. This idea, however,
basically means that the scattering strength of the differ-
ent scattering centers should add incoherently, which is
not the case. Rather, the interference between the scat-
tering at different sites is important, and this can be con-
structive as well as destructive. Thus it is the destructive
interference between the scattering at the impurity and
the perturbed nearest-neighbor potentials which leads to
a reduced resistivity.

D. Subband ratios n = p&/p~

Valuable information about the ratio n = pi/pt of
the subband resistivities can be obtained from resistivity
measurements in ternary ferromagnetic alloys. Within
the two-band model one obtains for the deviations of the
alloy resistivity from Matthiessen's rule

& P = P» —(P&+ Pa)
(nx —na) p&pa

(1 + nA) napA + (1 + na) nAPa
(15)

where A and B indicate the two kinds of impurities and
p~, pa, p~a the total resistivities of the A and B alloys
and the ternary AB alloy. Moreover, o.& and o.~ are the
corresponding subband ratios, i.e., n~ = pz/p&, na =T

Pa/Pa.
In deriving Eq. (15) one assumes that Matthiessen's

rule is well satisfied for the subband resistivities, so that
p&a ——p&+ pa. This is indeed a good approximation,
as we will show in a forthcoming publication. Equation
(15) remains invariant, if we simultaneously replace n~
and na by their reciprocal values 1/n~ and 1/na. This
is due to the fact that from a macroscopic measurement
like the resistivity it is impossible to say which subband
carries most of the current, whether the spin-up subband
(n ) 1) or the spin-down subband (n ( 1). However,
if the ratio a~ is known for a reference B alloy, then
the resistivity measurements for the ternary AB alloys
allow according to Eq. (15) a unique determination of
the ration o,~ for the A alloy and especially a decision

TABLE III. Residual resistivities p for 4d transition-metal impurities in Ni in pAcm/at. %.
Given also are the spin-up and spin-down resistivities PT and p~, once by including the potential
perturbations of the neighboring atoms (p, p ) and once by including only the impurity potential
(single-site perturbation: p„,p„).

P
PT

pl
pss

T
Pss

pss

Ni(Y)

4.87
12.91
7.81
4.49
15.30
6.35

Ni(Zr)

5.14
13.15
8.45
4.16
14.50
5.85

Ni(Nb)

6.05
17.10
9.36
4.21
17.60
5.53

Ni(Mo)

7.37
30.56
9.71
4.51
29.20
5.34

Ni(Tc)

7.16
69.30
7.99
4.67
61.80
5.05

6.27
29.19
5.02
4.01
28.40
4.67

2.23
3.10
2.39
2.41
4.05
2.63

Ni(Ru) Ni(Rh) Ni(Pd)

0.03
0.19
0.036
0.045
0.43
0.051



16 184 I. MERTIG, R. ZEI LER, AND P. H. DEDERICHS

TABLE IV. Residual resistivities p for 4' and 58@ transition-metal impurities in Ni in
pAcm/at. '%%uo. Given also are the spin-up and spin-down resistivities p~ and p~, once by includ-
ing the potential perturbations of the neighboring atoms (p, p ) and once by including only the
impurity potential (single-site perturbation: p„,p»).

P
pT

pl

Pss
T

Pss
l

Pss

Ni(Cu)

0.021
0.021
5.22
0.021
0.022
6.03

Ni(Zn)

0.28
0.28
6.79
0.92
1.06
6.96

Ni(Ge)

2.99
4.63
8.41
3.25
6.90
6.16

Ni(As)

5.37
13.53
9.66
4.69
17.30
6.44

Ni(Ag)

0.17
0.18
4.35
0.17
0.18
4.60

Ni(Cd)

0.39
0.43
6.56
0.50
0.55
6.22

Ni(In)

4.41
13.01
6.67
4.52
14.30
6.61

Ni(Sn)

4.27
21.96
5.30
4.33
23.90
5.29

whether nz ) 1 (transport mostly in the majority band)
or n~ ( 1 (transport mostly in minority band).

Our calculated ratios n are listed in Table V together
with the experimentally determined ratios. Note that in
most cases we obtain in agreement with the experiment
n ( 1, i.e. , the minority band carries most of the cur-
rent. The extremely large values obtained for Fe, Co as
well as Cu, Zn, and Ag, Cd reflect the correct tendency,
but should not be taken too seriously, since they are ex-
pected to be strongly reduced by spin-orbit coupling. For
comparison with the experiments we list in Table V in

addition to the calculated value noh, » also the reciprocal
value I/noh„, . The only differences we obtain are for Zr,
In, and Sn; there our calculated values are smaller than
1. The experiments deliver n ) 1.

VI. SUMMARY

The investigation of the residual resistivity in dilute Ni
alloys by an ab initio calculation shows clearly that the
current is carried mostly by the electrons of the majority
band, which consist of an admixture of sp and d states.

TABLE V. Values of n = p~/p~ for dilute impurities in Ni.
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From the minority electrons only the e5 band contributes
noticeably.

The two-current model without spin-flip scattering
works well for all systems with a residual resistivity larger
than 1 pA cm at. Fo. For Fe, Co, Cu, and Ag, Cd impu-
rities in Ni, we obtain too small resistivities since the
majority band is essentially unperturbed. Here spin-flip
scattering being not included in our calculation has to be
taken into account.

The general trend along the transition-metal series is
determined by the positions of the virtual bound states.

For the sp impurities we find a behavior as in the noble
metals (Linde's rule), since the current is determined by
the majority electrons. In total a consistent picture of
the transport properties of I%i alloys is obtained.
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