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Equilibrium lattice constants and bulk moduli of the heavy alkali metals K, Rb, and Cs were
calculated using the Troullier-Martins pseudopotentials and plane-wave basis functions. The treat-
ment of the outermost p-shell electrons as Bloch states yielded lattice constants 2—-3 % larger than
those obtained within the frozen-core approximation (including the partial core correction of Louie,
Froyen, and Cohen [Phys. Rev. B 26, 1738 (1982)]), which narrows a long-standing discrepancy
between local-density-functional theory and experiment. Predicted bulk moduli are 30-50 % larger
than measured values, within either treatment. The band dispersion of the semicore states (with
bandwidths 0.067, 0.14, and 0.25 eV for K, Rb, and Cs) is attributed primarily to core-electron—
conduction-electron hybridization rather than direct core-core overlap. The semicore density of
states has a flat line shape, rather than the peaked shape expected for an idealized tight-binding

band.

I. INTRODUCTION

Local-density-functional theory! (LDFT) has yielded
accurate cohesive-property predictions for a wide variety
of materials. Calculated lattice constants and bulk mod-
uli are often within 1 — 2% and 5 — 10 %, respectively,
of the measured quantities, although predicted cohesive
energies are typically somewhat less satisfactory. An ex-
ception to this pattern is the alkali metals, particularly
K, Rb, and Cs, for which calculated lattice constants in
the bece structure are underestimated by as much as 6% or
7%.2 Recent work by Sigalas et al.3 has reconfirmed this
trend, which had been noted in earlier results of Moruzzi,
Janak, and Williams* and many others.? This behavior is
insensitive to the particular form of the (local) exchange-
correlation potential adopted, or whether all-electron or
pseudopotential methodologies® are employed.” The ap-
parent failure of LDFT to properly describe the alkali
metals is disturbing, both for its possible implications re-
garding the validity of the general approach, and because
of the importance of the heavy alkali metals to materials
of current interest, such as the alkali-metal-intercalated
fullerenes and graphites, to which LDFT is widely ap-
plied. Errors of the order of several percent in the bond
length bode ill for the ability of LDFT to predict subtle
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structural and vibrational properties in complex materi-
als.

It is tempting to attribute the discrepancy between
LDFT predictions and experiment for the alkali met-
als primarily to the local-density approximation for the
exchange-correlation energy.? Gradient corrections® 11
provide a computationally tractable way to go beyond
the local-density approximation, and in some instances
have been found to considerably reduce this discrepancy.
Thus, although the efficacy of the presently employed
forms of the gradient correction remains unclear,'?13 it
appears that nonlocal corrections to LDFT may be ap-
preciable for the heavy alkali metals, perhaps a few per-
cent in the lattice constant.!4

We intend to show in this paper that, for the heavy
alkali metals, corrections to the frozen-core approxima-
tion associated with core banding are of the same order
of magnitude. Before we consider the issue of core bands,
we discuss briefly the possible influence of relaxation
and polarization for localized core states. von Barth
and Gelatt'5 discussed the validity of the frozen-core ap-
proximation in pseudopotential-based total-energy cal-
culations within LDFT. They demonstrated that, owing
to the stationarity of the total-energy functional, the er-
ror incurred in the frozen-core approximation vanishes to
first order in the relaxation of the core charge density in
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the solid relative to a reference atomic core charge den-
sity. Therefore, although core polarization may nonethe-
less have a pronounced effect in systems of reduced sym-
metry, such as overlayers,'® such effects are expected
to be small in cubic systems.!” The question may also
be raised as to whether screened van der Waals core-
polarization interactions,'® which are correlation effects
that may be poorly described by LDFT, are significant
for the alkali metals. This seems unlikely, and in any
case such interactions are attractive and cannot explain
the underestimation of lattice constants by LDFT.

The ionic radius provides one measure of the expected
prominence of core effects. Plotted in Fig. 1 is the ratio
of the ionic diameter to the nearest-neighbor spacing for
several simple and noble metals. This ratio is larger for
the heavy alkali metals than for Zn, whose 3d-band width
is about 1 eV. The relatively shallow outermost-core shell
binding energies for the heavy alkali metals (about 1 Ry)
also suggest that the frozen-core approximation may be
unreliable for these systems.

In the present work, equilibrium lattice constants
and bulk moduli are calculated for bcec K, Rb, and
Cs, with the outermost filled p-shell (“semicore”) elec-
trons treated as Bloch states, so that seven band elec-
trons are considered per atom. Relatively few calcu-
lations exist on the heavy alkali metals that include
the band character of semicore electrons. FLMTO
(full-potential linear-muffin-tin-orbital) calculations were
done by Klepeis,!® and FLAPW (full-potential linear
augmented-plane-wave) calculations for Cs monolayers
by Wimmer.1® A Z = 9 calculation for Cs dimers was
performed by Moullet, Andreoni, and Gianozzi.2® We
note also a (non-LDFT) consideration of excited core-
hole bandwidths in Li and Na.?! Semicore bands have
been more widely studied in materials other than al-
kali metals, for example, the p bands in early transi-
tion metals,??23 and the 3d electrons in semiconducting
compounds.?4:25

Our calculations employ norm-conserving pseudo-
potentials.?6 The use of pseudopotentials (as compared,
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FIG. 1. Ratio of ionic radius to half the nearest-neighbor

spacing for several simple and noble metals. The alkali metals
are denoted by triangles.
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for example, with the FLAPW method) introduces ad-
ditional uncertainties associated with the sensitivity to
the precise form adopted. Nevertheless, the pseudopo-
tential methodology has become increasingly prominent
in the past few years because of its convenience for large-
cell calculations.?”:?® The present authors are perform-
ing calculations?® for alkali-intercalated graphites, which
provided motivation for this study.

II. METHOD OF CALCULATION

Norm-conserving soft-core pseudopotentials were gen-
erated with the codes of Troullier and Martins.?6 Most
of the present work was based on Z = 7, but results
are also presented for Z = 1 and Z = 9. Some stud-
ies involving semicore pseudopotentials have appeared
previously,20:30732 but such pseudopotentials have been
applied relatively infrequently. The partial core correc-
tion of Louie, Froyen, and Cohen3® was applied in the
case of Z = 1. The exchange-correlation potential of
Ceperley and Alder3* was employed throughout. The
atomic configurations and core radii employed in gener-
ating the pseudopotentials are listed in Table I. A non-
relativistic pseudopotential was employed for K, whereas
semirelativistic pseudopotentials were used for Rb and
Cs. The pseudopotentials were cast in the Kleinman-
Bylander fully separable form, convenient for use in
conjunction with the conjugate-gradient optimization of
Teter, Payne, and Allan.?® Angular momenta up to [ = 2
were treated, with the local potential taken to coincide
with the s wave (I = 0).

One may have some concern about transferability, and
in particular the accuracy of the p-wave potential in
the valence region, for the semicore pseudopotentials.
Such concerns motivated Teter and Allan3° to employ ex-
tended norm conservation. The present pseudopotentials
were tested by comparing an atomic calculation of the
valence p electron energies (above the semicore p level)
with an all-electron calculation. The results agreed to
about 1 meV, which indicates that both the semicore
and valence states are described correctly for an isolated
atom; atomic s and (excited) d state valence-electron en-
ergies also showed agreement between pseudopotential
and all-electron calculations. Whether application of the
Kleinman-Bylander construction to semicore pseudopo-

TABLE I. Core radii (a.u.) employed in pseudopotential
generation.
Z Configuration Ts Tp T4

K 1 4st 4p° 3d° 3.51 3.76 3.60
K 7 3p° 4st 3d° 3.51 1.06 3.60
K 9 352 3p% 3d° 1.03 1.13 3.68
Rb 1 5s 5p° 4d° 3.82 3.82 3.72
Rb 7 4p® 5st 4d° 3.72 1.33 3.72
Rb 9 452 4p® 4d° 1.30 1.36 3.90
Cs 1 6s! 6p° 5d° 3.73 4.23 4.23
Cs 7 5p° 65 5d° 3.74 1.53 4.23
Cs 9 5s2 5p° 5d° 1.45 1.65 4.25
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tentials in calculations for solids introduces additional
inaccuracy deserves further study.

The plane-wave basis-set energy cutoffs were E. of 60
Ry for K, and 65 Ry for Rb and Cs in the Z = 7 cal-
culations (for Z = 1, a cutoff of 12 Ry yields a highly
converged result). The calculated total binding energies
corresponding to these values of E,. differ by a few mRy
from values obtained at 10—15 Ry higher cutoff energies.
At these higher values of E,, greater precision is achieved
in the description of the semicore orbitals—however, the
equilibrium lattice constant and bulk moduli are essen-
tially unchanged.

The calculations for Z = 7 require considerably more
computational effort than those for Z = 1, because of the
larger plane-wave basis set and the larger number of elec-
trons in the unit cell. In pseudopotential calculations for
compounds including alkali-metal elements, however, the
cutoff energy will typically be dictated by one of the non-
alkali-metal components. In calculations for the doped
fullerenes, for example, the cutoff appropriate to the car-
bon pseudopotential of Troullier and Martins is of the
order 60 Ry. In those circumstances, the additional com-
putational overhead associated with Z = 7, as compared
with Z = 1, is much smaller than in the pure alkali met-
als.

Energy integrations were performed using the Gaus-
sian broadening method,3® and Brillouin-zone sampling
with k points determined by the special-point method.
A set with 68 k points reproduces the overall structure
of the density-of-states curve; larger sets do not alter sig-
nificantly the properties addressed in this work. Most
of the results presented correspond to either 68 or 140 k
points. In the former case, a Gaussian broadening pa-
rameter of 0.008 Ry was employed and in the latter case
0.005 Ry. Larger k-point sets are normally employed in
studies of the high-pressure phase diagram, but are not
required in the present context.

III. RESULTS

Although the semicore energy spectra calculated
within local-density-functional theory have no formal
physical interpretation, their qualitative features provide
insights into the role played by such states. The calcu-
lated positions |{€(k)caic)| of the semicore bands (relative
to the Fermi energy), which represent averages over 140
sampled k points, are listed in Table II. In addition to

TABLE II. Properties of semicore bands of heavy alkali
metals. (e(k)¢n) is the mean semicore band energy, in eV,
below Er. Experimental values taken from photoemission
measurements (Ref. 36). The variance and bandwidth of the
calculated semicore bands €(k)in are given in the last two
columns. The spatial-variation exponents p (A) [cf. Eq. (1)]
for variance and bandwidth are included in parentheses.

Element Level (e(k)th) €exp Variance = Bandwidth .
K 3p 1577 18.3 0.018(11.0) 0.067(3.2)
Rb d4p 1304 158 0.040(13.6) 0.14(3.9)
Cs 5p 10.62 13.0 0.073(8.7) 0.25(2.5)

16 103

the calculations for semicore p bands, based on Z = 7
pseudopotentials, which are listed in the table, some cal-
culations with coarser k-point sampling for Z = 9 pseu-
dopotentials, which include both the semicore s and p
bands, will be mentioned below. Values of semicore lev-
els determined from photoemission measurements3® are
also listed in the table. The agreement between theory
and experiment is reasonably close, particularly in view
of the neglect of corrections such as the relaxation of the
core hole in the calculations. The last two columns in
Table II give the variance and the bandwidth (the dif-
ference between maximum and minimum eigenvalues) of
the semicore bands. The values listed were calculated
at the respective equilibrium lattice constants of the el-
ements. The dependence of the semicore bandwidth (or
the variance) on the lattice constant can be represented
as an exponential

Aexp[(rnn - Rnn)/p]y (1)

where 7,, is the nearest-neighbor spacing, the equilib-
rium value of which is Ry, and A and p are parameters.
Results for the exponential decay length p obtained by
fitting our calculated values to this form are given in
parentheses.

The ratio of the bandwidth to the variance, which
we denote as S, provides a measure of the density-of-
states line shape. For reference we consider two lim-
iting cases: a rectangular density of states, for which
Srec = 21/3 = 3.464, and an ideal s-wave tight-binding
band in a body-centered-cubic crystal, for which (see the
Appendix) Sy, = 5.28. The value for a p-wave tight-
binding band would be somewhat smaller. Using the
bandwidths and variances listed in the table, we find S
of approximately 3.5, close to Srec.

The calculated semicore bandwidths for the heavy al-
kali metals shown in Table II are of the order of one-
tenth or two-tenths of an eV. This is at the borderline
of applicability of the frozen-core approximation.!® For
comparison, these values are somewhat smaller than the
calculated width of the 3d bands in Zn (greater than an
eV), which lie about 8 eV below the Fermi energy,* but
still within the valence band, and have essentially a rect-
angular density of states. The semicore p-band widths
for Rb and Cs are smaller than the measured relativistic
multiplet splitting3® between p; 2 and p3/2. (The pseu-
dopotentials used in the present calculations are obtained
by a weighted average over the atomic pseudopotentials
corresponding to these levels, the standard procedure for
generating semirelativistic pseudopotentials.) Some cal-
culations were also performed for semicore s bands with
Z = 9 pseudopotentials. These levels lie at 25-35 eV
below the Fermi energy and have bandwidths of several
millivolts. The banding of the semicore s states is thus
much less than for the p states, and our further discussion
will refer exclusively to the Z = 7 pseudopotentials.

In principle, the banding of the alkali-metal semicore
states may originate from either of two mechanisms: core
overlap on neighboring atomic sites, or core-electron—
conduction-electron hybridization. One may distinguish
between these two possibilities by examining the mag-
nitudes of the line-shape parameter S, the length scale
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p, and the preexponential A. Core-electron—conduction-
electron hybridization appears to be the relevant mech-
anism for semicore band broadening. Nearest-neighbor
core overlap would give rise to tight-binding bands with
peaked densities of states and larger values of S than
those obtained in the present calculations, which show a
more rectangular density of states. Note from Table II
that the value of the decay length p corresponding to the
variance is larger than that for the bandwidth, indicat-
ing that the line-shape parameter S increases at smaller
nearest-neighbor separations, as core overlap and the
tight-binding character start to become more significant.
Furthermore, the value of p appropriate to Born-Mayer
core overlap potentials for Rb* is about 0.26 A,37 much
smaller than the value given in Table II. Therefore, if
core overlap were the source of banding, the dependence
of bandwidth on 74, would be a great deal stronger than
we find in our calculations. Finally, the preexponential in
the Born-Mayer interaction Agy multiplied by the coor-
dination number would be comparable to the bandwidth
for tight-binding bands. In the case of Rb, for example,
Apy is less than a meV,37 too small to account for the
bandwidth in Table II. All of these considerations indi-
cate that banding of the semicore states results primarily
from hybridization of conduction and core electrons.

In addition to introducing semicore bands, which have
been the subject of the preceding discussion, the calcu-
lations for Z = 7 also alter the valence bands, relative
to those corresponding to Z = 1. For example, the band
gaps at the NV point of 0.94 and 1.53 eV are somewhat
larger than literature values (based on Z = 1) of 0.41 and
0.9 eV for K (Ref. 4) and Cs,38 respectively. Correspond-
ingly, the Z = 7 Fermi surfaces show greater anisotropy
(and for Cs even exhibits a small neck at the zone faces)
than those obtained for Z = 1. The Fermi surfaces in
alkali metals calculated within local-density-functional
theory are known3%40 to have greater anisotropy than
the true quasiparticle Fermi surfaces. The disparity be-
tween the LDFT Fermi surface and the quasiparticle one
is therefore greater for Z = 7 than for Z = 1. The errors
incurred by the neglect of semicore banding and the ne-
glect of nonlocality in the mass operator3? may partially
compensate each other in the Z = 1 LDFT calculations,
thus yielding a result in closer agreement with the quasi-
particle Fermi surface than might have been expected at
that level of approximation.

‘We turn now to the effect of semicore bands on bulk co-
hesive properties, the primary focus of the present work.
Calculated equilibrium lattice constants for the heavy al-
kali metals in the becc structure are listed in Table III.

TABLE IIIL
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TABLE IV. Calculated and measured bulk moduli
(Mbar) of the heavy alkali metals. Gradient-corrected (GC)
results are based on the Langreth-Mehl form (Ref. 9). Mea-
sured value for Cs from G. Simmons and H. Wang, Single
Crystal Elastic Constants (MIT, Cambridge, MA, 1971), and
for K and Rb from H. Ledbetter, in Dynamic Elastic Modulus
Measurements in Materials, edited by A. Wolfenden (ASTM,
New York, 1990), p. 145.

LDFT (Z=1) LDFT (Z=7) GC(Z=7) Expt.

K 0.040 0.043 0.040 0.033
Rb 0.036 0.036 0.034 0.026
Cs 0.023 0.025 0.023 0.017

Results are given both for Z = 7 and Z = 1. The re-
sults for Rb and Cs with Z = 1 correspond closely to
previous LDFT calculations such as those of Sigalas et
al.,® although our lattice constant for K is 2% larger
(a similar result for K was obtained by Troullier and
Martins?!). Comparing the results for Z =7 and Z =1,
we find the lattice constants are increased by 2-3 % when
the semicore electrons are treated as Bloch states. Not
surprisingly the influence of the semicore bands on the
lattice constant increases with atomic number, as does
the relative atomic radius, cf. Fig. 1, and the semicore
band position, Table II. The column of Table III la-
beled “GC” refers to results including the Langreth-Mehl
gradient correction.? The gradient correction appears to
have a relatively small effect on the heavy-alkali-metal
lattice constants. The last column in Table III gives low-
temperature experimental values of the K, Rb, and Cs
lattice constants for the bcc structure. The values cal-
culated in the present work for Z = 1 are all lower than
experiment, in agreement with previous work.® The re-
sults for Rb and Cs with Z = 7 show improved agreement
with experiment as compared with those for Z = 1. On
the other hand, calculated lattice constants of K for both
Z =1 and Z = 7 are both within about 1% of exper-
iment. Calculated and measured bulk moduli for the
heavy alkali metals are listed in Table IV. Results for
Z =1 and Z = 7 are both about 30-50 % higher than
experimental values.

IV. DISCUSSION AND CONCLUSIONS

The treatment of semicore p states in K, Rb, and Cs as
valence electrons gives rise to core bandwidths of the or-

Calculated and measured lattice constants (a.u.) of the heavy alkali metals. Gra-

dient-corrected results are based on the Langreth-Mehl form (Ref. 9). Measured values from N. W.
Ashcroft and N. D. Mermin, Solid State Physics (Holt, New York, 1976).

LDFT (Z = 1) LDFT (Z=7) GC (Z=7) Expt.
K 9.77 10.00 10.05 9.88 (5 K)
Rb 10.15 10.35 10.45 10.56 (5 K)
Cs 10.80 11.10 11.15 11.43 (78 K)
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der of a tenth of an eV. Evidence was presented that this
banding results from core-electron—conduction-electron
hybridization. We find a 2-3 % increase in equilibrium
lattice constant for the heavy alkali metals when semi-
core banding is included, relative to results based on the
frozen-core approximation.

The influence of semicore bands on cohesive properties
has previously been studied for transition metals??23 and
stoichiometric semiconducting compounds.?42% A recent
precise calculation for fcc and bee La (Ref. 23) shows in-
creases in the lattice constants due to 5p semicore band-
ing in both cases. Hybridization of the semicore 3d bands
with the upper valence bands in II-IV and III-V semicon-
ducting compounds is found to increase the calculated
lattice constant in most cases.?42%> The present work, in
which hybridization of semicore p bands with valence s
bands increases the lattice constant, is therefore consis-
tent with previous results.

The precise mechanism responsible for the lattice-
constant increase is somewhat elusive. Discussions of the
mechanism by which unfreezing the semicore orbitals af-
fects cohesive properties were given by Wei and Zunger,2*
and by Fiorentini, Methfessel, and Scheffler.?> In con-
sidering Zn, Cd, and Hg tellurides, Wei and Zunger?!
suggest that the antibonding d character in the up-
per valence bands is responsible for lattice-constant ex-
pansion and cohesive energy reduction. On the other
hand, Fiorentini, Methfessel, and Scheffler?® attribute
such shifts in the case of GaN and ZnS to d-p core-overlap
repulsion, which is neglected in frozen-core treatments.

Let us consider the similarities and differences between
the heavy alkali metals and the semiconducting com-
pounds with regard to semicore-band effects. Since our
present results indicate that core overlap is small in the
heavy alkali metals, the mechanism proposed by Fioren-
tini, Methfessel, and Schefller does not appear opera-
tive in these systems, and we therefore turn our atten-
tion to the effect of hybridization. A simple perturba-
tion analysis?* shows that, to lowest order, hybridiza-
tion shifts the semicore bands to lower energies and the
valence bands to higher energies. We note two differ-
ences between the alkali metals and semiconducting com-
pounds in this regard. First, although cation d and an-
ion p states couple at the zone center in compounds with
zinc-blende structure, no coupling occurs in the (body-
centered-cubic) alkali metals between p and s states at
the zone center. This would suggest that the overall
effect of p-s hybridization in the alkali metals may be
smaller than that of d-p hybridization in the zinc-blende
compounds, and indeed the calculated d-band widths in
the latter are of the order of a few tenths of an eV,?425
larger than the alkali-metal p-band widths listed in Ta-
ble II. Further, whereas the sum of the orbital energies
is, to lowest order, unchanged by d-p hybridization in the
semiconducting compounds, the sum of occupied orbital
energies in the alkali metals decreases as a result of p-s
hybridization, because not all of the (upwardly shifted)
conduction-band states are occupied. Thus, to lowest
order, hybridization is expected to produce an attrac-
tive effective interaction in the alkali metals, contrary to
our calculated results, which show expanded lattice con-
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stants. As mentioned above, Wei and Zunger?* empha-
size the destabilizing effect of the hybridization-induced
antibonding character in the upper valence-band orbitals.
In the alkali metals, this “higher-order” effect would com-
pete with the eigenvalue-sum shift, which to lowest order
is attractive.

In summary, the precise origin of the observed
hybridization-induced change in the calculated heavy-
alkali-metal lattice constants (cf. Table III) is not
entirely clear at this time, although the mechanism
(hybridization-induced antibonding character in upper
valence bands) identified by Wei and Zunger may be rel-
evant. All-electron calculations, e.g., with the FLAPW
method, would be more suitable than pseudopotential
treatments for further investigation of this question.

The observed 2-3 % increase (cf. Table III) in cal-
culated equilibrium lattice constants narrows the long-
standing discrepancy between LDFT calculations of the
lattice constants of heavy alkali metals in the bcc struc-
ture and experiment. The discrepancy is not, of course,
eliminated entirely. For example, although core effects
are relatively negligible for Li and Na, the LDFT pre-
dicted lattice constants for Li and Na are still consider-
ably smaller than observed values. A great deal of recent
work has focused on the effect of gradient corrections
on cohesive properties. The present results indicate that
any such future study on the alkali metals should not ne-
glect the effect of the semicore banding, which is of the
same order of magnitude. The influence of the semicore
bands on properties of compounds such as the alkali-
metal-intercalated fullerenes and graphites is expected
to be greater than in the pure alkali metals because in
many such systems the semicore states lie within the va-
lence band of the host. Although the treatment of semi-
core states as valence electrons of course greatly increases
the computational effort in calculations on the pure al-
kali metals, the additional overhead in calculations for
compounds is much smaller. Therefore doing the more
“correct” procedure of treating the semicore electrons as
Bloch states (rather than invoking the frozen-core ap-
proximation) should be computationally feasible in many
instances.
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APPENDIX: TIGHT-BINDING LINE SHAPE

The normalized density of states for a tight-binding s
band in the bee structure is2

4 PKWI= x2)dx
Jo—a P
where K is the complete elliptic integral of the first kind;

note the energy unit is one-half the bandwidth.
Then the mean-squared energy is found from?3

(A1)
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4 1 T 62
2y _ v/ —_—
(e)—;r-g/o dz K(v/1— z2) _a:de\/mz—_62

= /1 dz E(z)/m* = (3 + G)/n? ~ 0.14347, (A2)
0

where G is Catalan’s constant and F is the complete
elliptic integral of the second kind. The line-shape pa-
rameter Sip, is then given by the ratio of bandwidth to
variance:

Sep = 2/1/(€2) ~ 5.28. (A3)
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