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Effects of band structure and spin in quantum dots
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Band structure and spin can modify the simple two-mode far-infrared spectra of quantum dots.
In our investigation of these efFects we start from a k p Hamiltonian for the conduction, valence, and
spin-orbit split-ofF bands, with potentials for subband formation and harmonic lateral confinement.
Taking into account the nonparabolicity of the conduction band and spin-orbit coupling due to the
confining potentials, we calculate the dipole excitation spectra of quantum dots on InSb with one and
two electrons. Spin-orbit coupling leads to a level anticrossing in the u mode and nonparabolicity
modifies the u+ mode demonstrating violation of Kohn's theorem.

Quantum dots are semiconductor nanostructures that
confine electrons in all three spatial directions on the
lengthseale of the de Broglie wavelength. They are real-
ized by imposing a periodic lateral structure onto the oth-
erwise two-dimensional electron systems of metal-oxide-
semiconductor (MOS) devices or heterostructures. 2 s

The observed magneto-dependent far-infrared (FIR)
spectra are dominated by only two resonance positions
independent of the number of electrons per dot. This can
be explained by the assumption of a parabolic potential
for the lateral confinement. A generalization of Kohn's
theorem4 then states that the many-particle system ex-
hibits the dipole transitions of a one-particle system, as
the dipole operator couples only to the center-of-mass
motion. Nonparabolicity in the confining potential
or in the energy-momentum relation prohibits separa-
tion into relative and center-of-mass motion and leads
to more complex FIR spectra. We investigate the influ-

ence of the nonparabolicity of the conduction band and
spin-orbit interaction on the dipole excitation spectra of
quantum dots with one and two electrons ("quantum dot
helium" ii ). It is known that for dots on InSb the non-
parabolicity leads to a lowering of the ~+ mode,
whereas for dots on GaAs it is negligible. The effects
of spin-orbit interaction have not been investigated be-
fore.

To describe an electron in an external potential V(r)
within the envelope-function approximation, we start
from the Schrodinger equation Hs„siII =E@for the mul-
ticomponent spinor @ = (gi, @2, ..., Qs) of the envelope
functions for the I's conduction band (Qi and Q2), the
I's valence band with heavy (@s and gs) and light holes
(Q4 and Qs), and the I'7 spin-orbit split-off band (Q7 and
gs). The k p Hamiltonian Hs„s is determined by the
symmetry of the s-like conduction and the p-like valence
band'4»
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The band structure near the I' point is characterized by the fundamental gap E~, the spin-orbit splitting Lp, and
Kane s matrix element P. A magnetic field B= V x A can be included by defining k= i V + e/5 A, k~ = k + ik-„
with commutator relations k x k= i e/5 B. By eliminating th—e components Qs to @s from the Schrodinger equation
for the spinor 4 we obtain
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This Hamiltonian for the conduction band consists of a
kinetic-energy term, the external potential V(r), the Zee-
manterm o B, the spin-orbit term o (V'Vxp), and
the Darwin term VV p. The form of this Hamiltonian
is known from the Pauli equation in relativistic quantum
mechanics. This similarity 7 arises from the fact that the
Pauli equation is derived from the 4 x 4 Hamiltonian of
the Dirac equation in a similar way to the derivation of
(2) from Hsxs.

We describe the confinement of electrons in quantum
dots by a separable potential of the form

V(r) = v „(g) + v, (z) = 2m'~p g + v, (z),

where v» is the parabolic confinement in the 2:y plane
and v, the potential in the z direction that leads to sub-
band formation. We assume that the subband separa-
tion is much bigger than the level separation due to v &
and that only the lowest z subband is occupied. Then
E —V(r) is equal to (E),), + E —v „(g) and we approxi-
mate it by (EI,), in all terms of (2) but the kinetic energy.
(Ek), stands for the expectation value of the kinetic en-
ergy for the lowest subband and E is now the eigenenergy
for the problem in the 2;y plane. By introducing the ef-
fective mass for the bottom of the lowest subband

with an additional Zeeman splitting of g"p~Bm, . Here
u, = eB/m' stands for the cyclotron frequency and

(u, /2) + woz. The eigenstates ~n, m, m, ) are char-
acterized by the radial quantum number n =0, 1, 2, ..., an-
gular momentum m =0, kl, +2, ..., and spin m, = kl/2.
The system exhibits two dipole transitions from the
groundstate ~0, 0, +1/2) into ~0, +I, +1/2) which fulfill
the selection rule Am = +1. The transition energies
and oscillator strengths are

&E~ = h(~ + (u, /2) = ~~, (dg
f+ =

2(d

For zero magnetic field this gives her~ = hcuo and f~ = 1/2.

I

For a parabolic potential in the xy plane the Darwin term
is equal to a small and constant energy shift and can be
neglected, but we consider its contribution due to v, .

After this approximate separation we get a Schrodin-
ger equation for the xy plane that, without H~ and Hso,
can be solved analytically. The eigenenergies are

~cE(n, m) = (2n+ ~m~ + I)M+ m

(4)
1 P2
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we get from (2) a correction H~(g) to the kinetic energy
in effective-mass approximation. It is an axially symmet-
ric function and depends on the eigenenergy E,

For a magnetic field B = (O, O, B) the Zeeman term
is g*p~Ba, with —Bohr's magneton )u~ = eh/(2m, ) andis 2g P~
the effective g factor for the lowest subband
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In the spin-orbit term we replace v,'(z) and p, by their
expectation values (v,') and (p, ) = 0 for the lowest sub-
band. In the symmetric gauge A = B/2( —y, x, O) and
with the angular momentum l, =xp& —yp~ this leads to
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FIG. 1. (a) One-particle dipole transition energies for
quan uuantum dots on InSb in comparison edith the results from
eff'ective-mass approximation (dotted lines), (b) correspond-
ing oscillator strengths.



16 022 T. DARNHOFER AND U. ROSSLER 47

With increasing field u+ approaches u, and f+ tends to
one, while u and f go to zero.

To include H~ and Hso we diagonalize the corre-
sponding matrix. H~ is diagonal in m and m, and thus
couples only states that are separated by an energy of
at least 2~. It does not induce a remarkable mixing of
states with new dipole transitions, but it lowers all lev-
els by amounts that are bigger for higher energies and
therefore shifts the co+ mode to lower frequencies. The
spin-orbit term (6) consists of a small first part cr, that
can be considered analytically and a second part (v', )
that leads to a coupling of states with same total angular
momentum m~ =m+ m, and the new selection rule for
dipole transitions 6 m~ = +1.

We determined the expectation values of the lowest
subband (EA;), = 20 meV and (v,') = —10 s eV/A. by the
variational method for a Stern-Howard trial function. is
For the MOS structurei the potential v, arises from the
interface between InSb and Si02. As the electronic prop-
erties of the oxide are not known, there is an uncertainty
in the estimation of (v,').

Figure 1 shows the calculated energies and oscillator
strengths of the one-particle dipole transitions for quan-
tum dots on InSb with hcuo = 7.5 meV. i In compari-
son with he~ given by (8), the lowering of the u+ mode
due to the nonparabolicity of the conduction band and a
splitting of the u mode at a magnetic field of B —1.7
T can be seen. This splitting results from a spin-orbit-
induced level anticrossing of the states ~0, 0, —1/2) and
~0, —1, +1/2) which is the final state of the w transition.
Because of the uncertainty in the determination of (v,')
the size of this splitting cannot be given with absolute
accuracy.

Finite-temperature efI'ects have been considered by in-
cluding dipole transitions from higher states with oscil-
lator strengths multiplied by Boltzmann factors. For
zero magnetic field the ground state is degenerate in m,
and we find four transitions with oscillator strength 0.25.
With increasing Beld the Zeeman term lifts the degener-
acy and the oscillator strengths for the transitions from
the higher state [0, 0, —1/2) decrease rapidly due to the
Boltzmann factors, while those for the transitions from
the ground state ~0, 0, +1/2) approach f+ and f given
by (8). This behavior can be seen in Fig. 1(b), where
we used a temperature of 1 K. Furthermore f is modi-
fied by the anticrossing in the cu mode. In Fig. 1 only
transitions with an oscillator strength exceeding 0.03 are
drawn.

In the e6'ective-mass-approximation the corresponding
problem for two electrons can be separated into two-
dimensional center-ofmass [R,= 2(gi+ gz)~ P =pi+ pg
M = 2m'] and relative coordinates [r = gi —gz, p =
2(pi —pz), p = 2m*]. The center-of-mass Hamiltonian
is that of a single particle with eigenvalues E(n„m, ) as
given in (7). Without Coulomb interaction the relative
motion also leads to eigenenergies E(n„,m„). To include
the interaction we diagonalize the Coulomb matrix whose
elements can be calculated analytically. o It is diagonal in
m„with elements depending only on ~m„~. The Coulomb
interaction raises all eigenenergies by an amount that is
larger for small [m„~ and the ground state changes its

quantum number m„ from 0 to —1,—2, ... with increasing
magnetic Geld. 1 Features of the relative motion can-
not be seen in the dipole spectrum, as the dipole operator
couples only to the center-of-mass motion and thus in-
duces transitions which conserve the state of the relative
motion. 5 7

The spin state of the two-electron system can be an
antisymmetric singlet with S=O, Mp =0 or a symmetric
triplet with 8=1, Ms = —1, 0, 1. As the symmetry of the
orbital wave functions is given by m„, states with odd
m„are spin triplets and states with even m„are spin
singlets. For small magnetic fields the ground state is
~n, m 'n, m ) ~~, Ms) = ~0, 0;0, 0) 43 ~0, 0) which is
not afFected by the Zeeman term g*p~BMg and spin-
orbit coupling, but states with odd m„are lowered by
the Zeeman term and for B ) 1 T (InSb parameters) the
ground state is ~0, 0; 0, —1) 43 ~1, 1).

Spin-orbit coupling for the two-electron system can be
treated in analogy to IS coupling by writing

Z. ) V'V(r;) x [p;+ eA(r, )],
i=1,2

where Z are the 3x3 spin matrices for the triplet. In
analogy to (6) this gives a term consisting of a small first
part diagonal in Ms which can be considered analytically
and a second part that couples spin to the center-of-mass-
motion for states with same Mg+ m, .

The correction to the kinetic energy HR (gi) + H~(g2)
can approximately be written in center-of-mass and rel-
ative coordinates as

(a)

30
O
0)
E

20
P
0)

Q)

10

0 I I ~ I

- (b)
0.75 .

M
0.5

o 025
O

0
0

magnetic field (Tesla)

FIG. 2. (a) Dipole transition energies for quantum dot he-
lium with InSb parameters in comparison with the results
From efFective-mass approximation (dotted lines), (b) corre-
sponding oscillator strengths.
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The last term (as the whole expression) is exact if H~
is just a fourth-order term in the momentum. It couples
relative and center-of-mass motion for states with Am, =
—Lm„= +2, but same total orbital angular momentum
m, +m„. Important for dipole transitions is the coupling
between the otherwise degenerate states ~0, 1;0,—1)
~1, 1) and ~0, —1;0, 1) C3 ~1, 1). The io+ mode is split for
magnetic fields where ~0, 0;0, —1) ~l, 1) is the ground
state.

Figure 2 shows the calculated dipole transitions and
the corresponding oscillator strengths for quantum dot
helium with the same InSb parameters as used for the
one-particle system. For B & 1 T the spectrum is nearly
identical with the results from (8). For B ) 1 T the
ground state is ~0, 0;0, —1) CR ~1, 1) and the splitting of
the io+ mode due to the correction of the kinetic energy
can be seen in addition to the lowering of this mode. A
level anticrossing between the states ~0, —1;0, —1) ~1, 1)
and ~0, 0;0, —1)43~1,0) dueto spin-orbit coupling becomes
visible in the u mode.

In summary we have calculated the deviations from the
dipole spectrum of quantum dots in the effective-mass ap-

proximation due to band structure and spin. For InSb the
nonparabolicity of the conduction band leads to a lower-
ing of the u+ mode in good agreement with experimental
data. For quantum dot helium coupling of relative and
center-of-mass motion leads to an additional splitting of
the io~ mode. Nonparabolicity in the confinement po-
tential couples in a similar way and induces a compara-
ble modification of the dipole spectrum. s However, the
magnetic-field dependence is different: corrections to the
kinetic energy grow with increasing field, while the in-
fluence of the potential decreases. o With spin-orbit cou-
pling included, the selection rules for dipole transitions
have to be formulated for the total angular momentum
and we predict an anticrossing in the u mode that is ba-
sically similar for the one- and two-electron system. We
repeated our computations with the band parameters of
GaAs. In this case all deviations from the effective-mass
approximation are negligible.
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