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Magnetic and cohesive properties of bcc, fcc, and ideal hcp Mn are calculated by use of the general-
ized gradient approximation proposed by Perdew and Wang [Phys. Rev. B 33, 8800 (1986)] and Perdew
[Phys. Rev. B 33, 8822 (1986)]. Calculated results predict correctly an antiferromagnetic ground state
for the fcc structure with lattice constant and magnetic moment in good agreement with experimental
values. An investigation of the contribution to the free energy from lattice vibration by use of the
quasiharmonic approximation removes apparent difhculties involving an hcp ground state in the calcu-
lated total energies of three structures.

The generalized gradient approximation (GGA) pro-
posed by Perdew and Wang' for the exchange energy and
by Perdew for the correlation energy has been tested by
an increasing number of workers. It was shown that the
new functional improved considerably the total energies
of atoms' and molecules ' and the cohesive properties
of solids formed by 3d and lighter elements. ' ' ' It is
now well accepted that this functional correctly predicts
the bcc ferromagnetic (FM) phase for the ground state of
Fe. ' In our recent paper, cited as I hereafter, we have
substantiated the success with Fe by demonstrating that
most of the fundamental cohesive properties of Fe could
be reproduced satisfactorily by use of the GGA. Howev-
er it is also well known that for 4d and 5d metals ' the
results obtained by use of GGA are worse than those of
the local-density approximation (LDA) in density-
functional theory. It was recently reported" that the
GGA pseudopotential calculation of Al, Si, Ge, and oth-
er atoms gave no consistent improvement over results by
LDA especially for lattice constants and bulk moduli.
Therefore, the reputation of GGA seems somehow con-
troversial at the present stage. In this work we extend
the investigation carried out in I to Mn and give a further
assessment of GGA. We calculate the total energy and
magnetic moment for simple fundamental lattice struc-
tures and give comparisons with experimental results by
taking the finite-temperature effects of the lattice vibra-
tion into account. Preliminary reports of the present
work have been submitted elsewhere. ' '

As in I, we limited lattices to bcc, fcc, and ideal hcp
and magnetic phases to nonmagnetic (NM), ferromagnet-
ic (FM), and antiferromagnetic (AF) phases. For the AF
phase we assumed a spin ordering reported for fcc AF
Mn, ' where the magnetic moments in a (001) plane are
parallel to each other but antiparallel to those in alter-
nate sheets. No modulations in the lattice structure
cauesd by magnetic ordering were taken into account.
We employed the linear muffin-tin orbital (LMTO)
method' in the atomic-sphere approximation (ASA) with
the so-called combined correction. Relativistic effects
were taken into account by the scalar form' for both

core and valence states. The basis consisted of spdf
LMTO's. We used the linear tetrahedron method' for
sampling k points and each eigenstate was weighted by
the Fermi distribution function with a broadening factor
of 1 mRy. For the NM or FM phase of bcc (fcc) struc-
ture, we employed a unit cell which contained two atoms,
i.e., simple cubic (sc) [body-centered tetragonal (bct)] unit
cell, the one for the AF phase, in order to avoid possible
errors of some mRy introduced in handling different unit
cells for different magnetic phases. The numbers of irre-
ducible k points were 165 for sc and 140 for bct and hcp
structures. The Ceperley-Alder exchange-correlation
functional' was employed for LDA.

Mn occurs in four allotropic forms, i.e., a, P, y, and 5
phases, with increasing temperature and at atmospheric
pressure. ' The first two phases, a and P, have complex
structures with 29 and 20 atoms per unit cell, respective-
ly. The a phase exists up to —1073 K. The y (6) phase
is simple fcc (bcc) and occurs between —1373 (1407) and
1407 ( —1518) K. The y phase can be quenched to room
temperature and it is known that the magnetic structure
is AF with magnetic moment p equal to 2.30@~, the
Wigner-Seitz radius rws equal to 2.752 a.u. (at room tem-
perature), and that the Neel temperature T~=540 K
(Ref. 20) and rws=2. 853 a.u. at 1373 K. ' For the bcc
structure rws is 2.867 a.u. at 1413 K (Ref. 19) and its
magnetic structure has not been manifested yet.

Figure l shows the LDA results of total energy Et
and p as functions of r~s. The result for each of the bcc
and fcc structures is essentially the same as the corre-
sponding one reported earlier. ' At r~s —2. 59 a.u.
around which all phases have their minimum energies, we
obtained only one magnetic branch of bcc FM which is
almost degenerate to the NM one. The lowest-energy
phase among these three structures is hcp NM with 6.5-
mRy difference to the next lowest bcc. The difference be-
tween the bcc and fcc minima is 0.5 mRy. Compared
with experimental results, LDA gives too small lattice
constants and cannot predict an AF phase for the ground
state of the fcc structure. LDA would predict the hcp
NM phase, rather than that of fcc or bcc, for the high-
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temperature phase if we estimated the most stable state
by taking the effect of lattice vibration into account by
the way we will show later.

In Fig. 2 we show a GGA counterpart of Fig. 1. Com-
pared with Fig. 1, we perceive that the magnetic energy
gain brings about sizable effects on the total energies of
the magnetic branches. Findings on the results of Fig. 2
are as follows.

(l) For the hcp structure, the ground state is AF with
res=2. 654 a.u. and p=0. 20p~, whose total energy is
marginally lower than that of the NM phase. FM solu-
tions are found for res's greater than -2.85 a.u.

(2) For the fcc structure, the ground state is AF with

r~s =2.718 a.u. and p=2. 13pz. We will show that their
theoretical values at room temperature given later agree
well with corresponding experimental values. The total-
energy difference with that of the next-lowest NM is 3.4
mRy, which definitely supports the experimental finding
of AF for the ground state of this structure.

(3) For the bcc structure, the ground state is FM with

r~s =2.669 a.u. and @=0.99pz. The NM minimum with

r~s =2.658 a.u. is located 1.4 mRy above the FM
minimum and the AF minimum lies 3.5 mRy further
above the NM one with I'ws =2.797 a.u. and @=2.73pz.

(4) The most stable phase among those investigated is
hcp AF. The total-energy difference between hcp AF and
the next-lowest fcc AF is 3.0 mRy. Our concerns here
are whether the crystal structure and magnetic phase pre-
dicted to appear at high temperature agree with the ex-
perimental fact, since the hcp structure is not observed in
any temperature region for pure Mn, and the prediction
of res's of fcc and bcc AF phases for which we have ex-
perimental results.

To explore how the branches of Fig. 2 evolve with tem-
perature, we investigate the effect of the lattice vibration
by using the quasiharmonic approximation. %'e limit
the investigation within a certain low-temperature range
sufficiently below the magnetic transition temperature,
since the electronic structures we are based on for mag-
netic branches are those for completely ordered states.
Leaving a study of the contribution by the spin Auctua-
tion to the free energy as a future task, here we point out
specifically a possibility that the lattice vibration plays an
important role in the phase stability at finite tempera-
tures. Sy the quasiharmonic approximation, the free en-
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FIG. 1. Total energy E„, and magnetic moment p of Mn as
functions of r~&, calculated with Ceperley-Alder LDA function-
al. The zero-point energy is not included. The solid curve cor-
responds to the bcc structure, the dotted to the fcc, and the
dashed to the hcp. The circles indicate NM, the triangles FM,
and the squares AF.
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FIG. 2. Total energy E„, and magnetic moment p of Mn as
functions of r~s, calculated by GGA. For explanations, see Fig.
1.
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ergy F as a function of res and temperature T can be ex-
pressed as follows:

&(rws T)=Etot(rws)

k&
—T I D (eD /T) 3 l—n(1 —e ) ]

+—k~ea,

TABLE I. Quantities derived from total-energy curves of
Fig. 2. The total-energy minimum (E„,);„is in Ry, measured
from —2318 Ry, bulk modulus Bo in Mbar, Wigner-Seitz radius
( rws )o in a.u. , and magnetic moment p in p~. y means the
Gruneisen constant. The subscript 0 stresses that these quanti-
ties are of equilibrium in accordance with the definition in the
text.

(Et,t);, Bo (rws)o
where eD is the Debye temperature and D (x) is the De-
bye function. In Eq. (1) an electronic contribution in en-

tropy and internal energy change at finite temperature is
neglected since it would be much sma11er compared with
the one from the phonon part except at very low temper-
ature. The last term of Eq. (1) represents the zero-point
energy. (BD )o, the Debye temperature for an equilibrium
Wigner-Seitz sphere radius (rws )o, is expressed by
c[(rws)oBo/M]'~ where Bo is the bulk modulus 8 for
(rws)o and M is the atomic mass. For the coefficient c,
Morruzi, Janak, and Schwarz used 41.63 by specifying
res in a.u. , 8 in kbar, and M in proton mass. Since there
exist no experimental values available for judging the
adequacy of the value for the structures investigated here,
we employ their value in this paper. In Eq. (1), the rws
dependence of the phonon part enters by way of eD as-
suming that it varies with (rws), where y, the
Gruneisen constant, is given by use of the pressure
derivative of 8 at an equilibrium rws, Bo, as Bo/2 —d.
The constant d is chosen to be —,

' at low temperature and
at sufficiently high temperature where all vibrational

modes are excited. We give the value of d for a specified
temperature by linearly interpolating d between —,

' (0 K)
and —,

' (1518 K). The quantities Bo, Bo, and (rws)o, for T,
are obtained by least-mean-squares fitting F(rws, T) to
the Murnaghan equation of states, which means that
these quantities are to be self-consistently determined
since F(rws, T) itself is expressed by use of these quanti-
ties.

The free energy (lattice constant) lowers (increases)
more rapidly with increasing temperature for the phase
which has a smaller bulk modulus (positive larger
Griineisen constant) in Fig. 2. Quantities at T=O K such
as the minimum value of total energy, (E„,);„,Bo, y,
( pws )p and p, obtained for relevant branches of Fig. 2 are
listed in Table I. We notice that phases which become
important at high temperature are those of bcc AF and
fcc AF. For the bcc AF phase the Griineisen constant is
negative, which inevitably predicts a singular negative
thermal expansion coefficient. This negative value of the
Griineisen constant comes from the abnormally flat
total-energy curve in the smaller rws (higher pressure) re-
gion. In Fig. 3 we show the change of the free energy F
for the four branches listed in Table I. We limit the tem-
perature range below 500 K by the reason stated above.
In the figure we observe first that the hcp AF phase is re-
placed by the fcc AF phase as the lowest free-energy
phase at rather low temperature -300 K. Since there
must surely exist the more stable a phase at low tempera-
ture, the hcp structure will never be realized, if not stabi-
lized by, e.g., alloying or with some structure-forcing
technique like molecular-beam epitaxy. This situation
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FIG. 3. Free energy of bcc AF, bcc FM, fcc, and hcp AF

phases as a function of temperature calculated by quasiharmon-
ic approximation.

meets the experimental facts. Next we observe that the
AF phase is the most stable one for the bcc structure for
temperatures higher than —300 K. The calculated
values of res and p at 300 K for the fcc AF phase are
2.775 a.u. and 2.37@~, respectively, and they agree well
with the corresponding experimental one of 2.752 a.u.
and 2.30p~. For the bcc structure no such comparisons
are possible since the bcc phase exists only near the melt-
ing point. A straightforward evaluation of the free ener-
gy by the present scheme at temperatures high up to the
melting point suggests that the lattice vibration might
play an important role for the experimental occurrence of
the fcc-bcc conversion. We await the investigation of the
high-temperature behaviors of these magnetic phases
which takes the effects of both lattice vibration and spin
fluctuation into account.

Here we briefly mention the consequence of magneti-
cally induced distortion which has been discarded in the
present work. Experimentally it was observed for the fcc
AF phase that below T&, the fcc lattice showed a
tetragonal distortion of about a 6% contraction along the
I001] axis, which was considerably larger than the case of
fcc Fe. The energy lowering by this distortion was cal-
culated to be —1 mRy by the LMTO-ASA method,
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which may give a rough estimation of its consequence. A
similar but probably smaller energy gain may also be as-
sociated with the hcp AF and bcc AF phases. Since these
energy gains are of the same order as the total-energy
difference between four participating phases in Fig. 2, the
inclusion of the distortion might affect to some extent the
relative location of these ground-state energies and thus
the predicted temperatures of hcp-fcc and fcc-bcc cross-
overs. However, we will be safe in the present conclusion
on the replacement of the hcp phase by the fcc AF at
rather low temperature, since the difference in the values
of Bp for two phases determined the occurrence almost
decisively.

We have performed the total-energy calculation as a
function of lattice spacing for Mn by use of both LDA
and GGA for the fundamental crystal and magnetic

structures. The AF phase has been found to be the
ground state of the fcc structure with the lattice spacing
and magnetic moment in good agreement with the exper-
iment. The investigation of finite temperature behaviors
by the quasiharmonic approximation has found that an
apparent diSculty which involves the hcp ground state
mould cause no trouble at high temperature in compar-
ison with the experimental fact. We believe that the
present results confirm the success of GGA on Fe shown
by I.
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J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
2J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
X. J. Kong, C. T. Chan, K. M. Ho, and Y. Y. Ye, Phys. Rev. B

44, 2923 (1991).
4F. W. Kutzler and G. S. Painter, Phys. Rev. Lett. 59, 1285

(1987);Phys. Rev. B 37, 2850 (1988).
5K. Kobayashi, N. Kurita, H. Kumahora, and K. Tago, Phys.

Rev. A 43, 5810 (1991).
P. Bagno, O. Jepsen, and O. Gunnarsson, Phys. Rev. B 40,

1997 (1989); D. J. Singh, W. E. Pickett, and H. Krakauer,
ibid. 43, 11628 (1991);T. C. Leung, C. T. Chan, and B. N.
Harmon, ibid. 44, 2923 (1991); J. Haglund, ibid. 47, 566
(1993).

7B. Barbiellini, E. G. Moroni, and T. Jarlborg, J. Phys. Con-
dens. Matter 2, 7597 (1990).

T. Asada and K. Terakura, Phys. Rev. B 46, 13 599 (1992).
P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864 {1964);W.

Kohn and L. J. Sham, ibid. 140, A1133 (1965).
M. Korling and J. Haglund, Phys. Rev. B 45, 13 293 (1992).

IA. Garcia, C. Elsasser, J. Zhu, S. G. Louie, and M. L. Cohen,
Phys. Rev. B 46, 9829 (1992).

~2T. Asada and K. Terakura, in Computer Aided Innovation of
New Materials II, edited by M. Doyama, J. Kihara, M. Tana-
ka, and R. Yamamoto (Elsevier, Amsterdam, 1993),p. 169.
T. Asada, in Interatomic Potential and Structural Stability,
edited by K. Terakura and H. Akai (Springer-Verlag, New
York, in press).

'4D. Meneghetti and S. S. Sidhu, Phys. Rev. 105, 130 (1957).
O. K. Andersen, Phys. Rev. B 12, 3060 (1975); H. L. Skriver,
The LMTO Method (Springer, Berlin, 1984).

D. D. Koelling and B.N. Harmon, J. Phys. C 10, 3107 (1977).
O. Jepsen and O. K. Andersen, Solid State Commun. 9, 1763
(1971); J. Rath and A. J. Freeman, Phys. Rev. B 11, 2109
(1975).

'

D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980); J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048

(1981).
' R. W. G. Wyckoff, Crystal Structure (Wiley, New York, 1963),

Vol. 1, p. 50.
Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn. 30, 1614 (1971).
J. L. Fry, Y. Z. Zhao, N. E. Brener, G. Fuster, and J. Calla-
way, Phys. Rev. B 36, 868 (1987); V. L. Moruzzi, P. M.
Marcus, and P. C. Pattnaik, ibid. 37, 8003 {1988);S. Fujii, S.
Ishida, and S. Asano, J. Phys. Soc. Jpn. 60, 1193 (1991); G.
Fuster, N. E. Brener, J. Callaway, J. L. Fry, Y. Z. Zhao, and
D. A. Papaconstantopoulos, Phys. Rev. B 38, 423 (1988); V.
L. Moruzzi, P. M. Marcus, and J. Kubler, ibid. 39, 6957
(1989); M. Podgorny and J. Goniakowski, ibid. 42, 6683
(1990).
V. L. Moruzzi, J. F. Janak, and K. Schwarz, Phys. Rev. B 37,
790 (1988).
In Ref. 22 Morruzi, Janak, and Schwarz obtained the value of
41.63 on the basis of linearities between B and 1ongitudinal
and shear moduli found experimentally on some selected ma-
terials. For 3d metals, the values of 0& estimated by use of
the value and experimental r~& and B dier considerably
from those derived experimentally. For example, the ratios of
theoretical to experimental are 0.65 (Cr), 0.79 (bcc Fe), 0.84
(Ni), and 0.93 (Cu). Therefore, we checked the calculations of
temperature dependence as shown in the text with three
different values, 0.8X41.63, 41.63, and 1.2X41.63. We
found no significant differences in these three calculations as
to require essential changes in the conclusions stated in the
text.
F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 3, 244 (1944).
The consequence of self-consistency was found to be small for
the present cases.

We have carried out far more than enough iterations especial-
ly for this branch.
Y. Tsunoda and N. Kunitomi, J. Phys. F 18, 1405 (1988).

2 T. Oguchi and A. J. Freeman, J. Magn. Magn. Mater. 46, L1
(1984).


