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In our previous paper [Phys. Rev. 8 46, 10423 (1992)], we studied the contribution of electronic
structure to elastic anomalies in metallic superlattices, and focused on the sum of energy eigenvalues

term in the Kohn-Sham formulation of the total energy. In this paper, we consider the efFects of
other terms in the total energy. These terms give contributions to the singularities in the elastic
behavior of lower order than those due to the sum of energy eigenvalues obtained previously. This
supports our earlier conclusion that, although electronic eBects lead to singularities in the variation
of elastic constants with modulation wavelength, the features are small and we expect them normally

to make no significant contribution to the elastic properties of real materials.

I. INTRODUCTION

E„[n]=) e, —— n(r)n(r') „„,
/r —r'/

where n(r) is the electron density, E„, is the exchange-
correlation energy functional, and ei are the Kohn-Sham
single-particle energies. We see that the total energy can
be separated into three parts: the sum of energy eigen-
values, the corrections due to double counting of the
electron-electron interaction in the sum of eigenvalues,
and a similar exchange-correlation correction. The latter
two corrections depend explicitly on the electron density,
thus any singularities there may be in the electron den-
sity could induce singularities in these terms, and hence
in the total energy.

In our previous study of the sum of eigenvalues con-
tribution, the perturbing potential acting on the elec-

Singularities in the total energy resulting from the in-
teraction of the Fermi surface with the Brillouin-zone
boundaries introduced by composition modulation are
generally recognized as a possible explanation for elastic
anomalies observed in metallic superlattices. Recently,
we have studied the form of these singularities and their
effect on the elastic moduli. We found that although
the Fermi-surface —Brillouin-zone interaction does lead to
singularities in the total energy and hence in the elastic
constants, these singularities are weak and are unlikely
to give observable effects in real systems. However, only
the sum of energy eigenvalues term in the total energy
was considered as this was thought to be the source of
the most important singularities. In this paper, we will
study the effects of other terms in the total energy.

According to the Kohn-Sham method of density-
functional theory, the total electronic energy of the sys-
tem can be written as

trons due to the composition modulation was character-
ized by a Fourier component Vg, which we assumed to be
a constant. This leads to a singular term in the energy
of the form of (g —g, )s~28(g —g, ) for a system with a
quadratic Fermi surface near the Brillouin-zone Fermi-
surface contact point at g = g„where g = 2vr/A, A

being the modulation wavelength, and 8(x) is the step
function. However, there may be additional singular-
ities because the perturbing potential will give rise to
a small change in the electron density, which in turn,
through self-consistency, will modify the efFective single-
particle potential that generates the sum of eigenvalues,
thus introducing a change in the sum of eigenvalues and
hence the total energy. Therefore, if singular terms in
the density arise, with the same origin as those in the
sum of eigenvalues, then there will be additional singu-
larities in the total energy, over and above those we have
already treated. These will appear in correction terms
to the energy which will be of three types: the electro-
static energy correction, the exchange-correlation energy
correction, and the correction to the sum of eigenvalues
due to the change in the efFective potential. We note
that Williams and Weaires in their study of the effect on
the energy of Brillouin-zone Fermi-surface contact using
the model we have adapted, reported that the correction
terms described above introduced new singularities giv-
ing an infinite discontinuity in the second derivative of
the energy at the contact point. Such a singularity, al-
though it carried little weight, would be one order more
severe than the one we found in the sum of eigenvalues
and could acct our conclusions on the elastic anomalies.
We will calculate the electron density first, then evaluate
its eKects on the singularities in the total energy.

II. NEARLY-FREE-ELECTRON CASE

A. Electron density

As in our previous study, we consider the nearly-free-
electron case first. The electron density is given in terms
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of the Kohn-Sham orbitals

~@~(r)]'dk,
(k}(EF

(2)

on the singularities in the total energy.
The calculation is straightforward, and we obtain

n(r) = no(6Ep) + bn(r), (8)

where the integration is over all occupied states in k
space, and 0 is the crystal volume.

Near the Brillouin-zone boundary at g/2 the wave
functions can be approximated by two plane waves as
follows:

@k(r) = &i,e'"'+ |-"k se""-'l',
where t k and t g s are found from the secular equation
to be

&k-g = +&k = 1 I
~A Ql+ Fz (4)

2
ng(r) = 4 ( Fdk+

( s ~ 2dk
~
cos(gz),2~ '

q 1+F2

where the integrations are performed only over the re-
gions near the Brillouin-zone boundary.

We consider the A point at which the lower band first
contacts the zone boundaries. In our model, F is

and F = [E(k) —zik2]/V~.
As for the calculation of the sum of eigenvalues, we can

separate the electron density into a contribution, n~(r),
from the region near the Brillouin-zone boundary, which
contains all the singular features of the density, and the
remainder which we expect to be analytic near the con-
tact points. We will concentrate on nb(r). Using wave
functions given by Eq. (3), the electron density is

where

6n(r) = [rl ( 6E—F)s~z + 0( 6Ep—) ] cos{gz)8( 6E—p)

and the coefficient q is independent of 6E& and 6Vg,
which is the additional contribution to Vg due to the
electron redistribution. Obviously, the leading singular-
ity in n(r) is still of the order of ( 6E~)—s~2. Calcula-
tions proceed in a similar fashion at the B point at which
the Fermi surface first breaks through the Brillouin-zone
boundary, and we obtain the same results as those in Eq.
(8), except that the results for 6E~ ( 0 and 6E~ ) 0 are
interchanged. The leading singularity is at bE~ ——0, of
the order of (6E~) ~ . These are significant results be-
cause it is straightforward to show that bEF oc (g —g, )
and consequently the singularity in the electron density
has the form 6n(r) oc (g —g, )s~z8(g —g, ), which is a more
severe singularity, by one order, than that we found in
the sum of eigenvalues contribution to the energy.

B. Influence of electron density on the total energy

In this section we regard bn as a small correction to
the analytic part of n(r), and use perturbation theory
to estimate the effects of the singular part bn on the
various contributions to the total energy in the Kohn-
Sham formulation.

For a small change 6n(r), the change in the Kohn-
Sham effective potential is

2

g

6e,g[n;r] = bn(r')
, dr+

[r —r'/

6z E„,[n]

bn(r) 6n(r')

The integrand in Eq. (5) may be expanded for k close
to g/2 and the integral performed to yield the following
form for the electron density when 6E~ is small: @;(r)6u,~g;(r)dr = ~@;(r)~26',irdr, (10)

We now use first-order perturbation theory to obtain the
effect of 6v,s on the Kohn-Sham eigenvalue

n(r) = no(6Ep)+ [p (—6') + &( 6') ]-
x cos(gz)8( —6E~), (7)

where' = —
s

~ . In Eq. (7), no(6E~) is an analytic
function of 6E~ = E~ —E~, where E~ is the Fermi
energy and E~ is the top of the lower band.

We note that the superlattice modulation leads to a
contribution to the electron density which is nonanalytic
in 6E~ and which is oscillatory with the superlattiee pe-
riod. This explicit nonanalytic contribution to the elec-
tron density will affect the self-consistent Kohn-Sham po-
tential and in particular the Fourier component Vg which
also enters the electron density. Such an effect should be
incorporated in the calculations of the total energy. Now
n is a function of V~ and bE~, while Vg is a function of n.
We want to know the total dependence of n on bE~ so
that we can determine the effect of the electron density

so the corresponding correction to the sum of eigenvalues

1S

N

&i= & r &eg

n(r) bn(r') „
/r —r'(

n(r)6n(r')dr dr' .
6zE„,[n]

6n r 6n r'

We now consider the change in the electrostatic self-

energy and exchange-correlation energy due to the non-

analytic term in the electron density. According to Eq.
(1), the change due to b'n in these two contributions is
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6E„,[n]
( )„

bn

6E„,[n]

, n(r)6n(r')dr dr'62E„,[n]
bnr bnr'

62E n
, n(r)6n(r')dr dr' . (12)bnr bnr'

N

bE„[n]=) 6e, — n(r) 6n(r')
dr dr'

/r —r'f

62E n
, n(r)6n(r')drdr' = 0.

bnr bnr'

The total change in the energy to order b'n obtained
from Eqs. (11), (12), and (1) is, therefore,

constant, and f 6n(r)dr = 0, we obtain

1
E„[n]= E„[np] ——

2

+ ~ ~ ~

6n(r) 6n(r'') dr dr'62E„[n]
bnr bnr'

'A Q

(17)

Thus the change in E [n] is second order in bn.
We now partition the ground-state density n for the

superlattice so that np is analytic in bEF and all the
nonanalytic terms are contained in 6n .[In the case
of nearly-free-electron electrons we would take bn

( 6E~—) ~ cos(gz)8( 6EF—).] Then from Eq. (17) the
correction to the energy E„[np, which we assume is an-
alytic in 6E~, due to the nonanalytic part of the den-
sity bn, is second order in bn, and the leading singu-
larities in the total energy due to bn are of the order
[( 6E~) ~—

] 8( 6E~). —This is the same conclusion as
we reached in Sec. II B.

C. The minimum properties of the ground-state
energy

We can obtain results similar to those in Sec. II B more
generally by using the minimum properties of the ground-
state energy functional. Suppose we have a ground state
with density n(r) and energy E„[n]. Consider a density
no close to the ground-state density of the system so that
n = np + b'n, where 6n is small, and the number of par-
ticles is conserved so that f bn(r)dr = 0. We have

E„[n]= E„[np] + 6' [n]
( )„

bn
AG

1+
2

6n(r) 6n(r') dr dr' +62E„[n]
bnr bnr'

'AQ

(14)

Thus, to first order in 6n, the energy is unchanged and
the leading correction will be of order (6n)2. When we

choose, as in Eq. (8), b'n oc rl ( 6E~) ~—8( 6E~) a—s
the perturbation correcting the other parts of the elec-
tron density which are analytic in 6E~, we find that
the nonanalytic corrections to the density lead to a sin-
gularity in the total energy which is of the order of
[( 6EF )"']—'8( 6E~). —

D Drscusscon

The effect of the modulation of the superlattice on
the singularities in the total energy can be considered
as follows: (1) The modulation introduces a perturbing
potential, which affects the sum of energy eigenvalues,
and leads to a singularity of the order of ( 6E~)a~2 —in
the total energy as discussed in our previous paper. (2)
This potential leads to a perturbation in the electron den-
sity, part of which is nonanalytic in 6', of the order of
( 6E~)s~ a—s discussed in See. II A. According to the re-
sults in Secs. II 8 and II C, the singularity in the electron
density leads to a singularity in the total energy which
is of the order of [(—6E~)s~2]28(—6E~). Thus the sin-
gularity in the total energy due to the singularity in the
electron density is of lower order than that in the sum of
energy eigenvalues due to the perturbing potential alone,
which we obtained in our previous paper. This justifies
our attention on the sum of energy eigenvalues as the Erst
step in our calculation. Obviously correction terms of the
form [( bEF) ~

] 8( 6—E~) in the to—tal energy will give
less significant singular behavior in the elastic constants.
The dominant singularities in the elastic constants are as
we described in our previous paper.

III. OTHER KINDS OF FERMI SURFACE

we have

6'E„[n]
bn

62E„[n]
bn(r)6n(r') „

E„[n]= E„[np] +

1

2

Noting that

6E„[n] 6E„[n] +

bn(r)bn(r')dr dr'+

In the ease of the other kinds of Fermi surface dis-
cussed in our previous paper, we can also use the two-
band model to approximate the wave functions near the
zone boundary, and we can calculate the electron density
in the same way as we did in Sec. II D. The calculation is
straightforward, and we find that the leading singularity
in n(r) is the same as that in the number of electrons
per atom, and because corrections to the energy are of
the order (6n), these will give lower-order singularities
in the total energy and may be disregarded.

IV. CONCLUSION

Since &"„"j~„= p, the chemical potential which is a
We can conclude that there are singularities in the

electron density which are, in turn, refIected in the per-
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turbing potential. These singularities contribute to the
singularities in the total energy through the sum of eigen-
values, electrostatic self-energy, and exchange-correlation
energy, but their contributions are of lower order than
those in the sum of energy eigenvalues as discussed in
our previous paper. We can concentrate on the sum of
energy eigenvalues when we study the singular behav-
ior in the total energy and in the elastic properties. The
correction terms to the total energy do not affect the con-
clusion in our previous paper on the elastic constants; in
particular, we find that electronic effects lead to singular-
ities in the variation of elastic constants with modulation
wavelength, but these are weak, and we expect them nor-
mally to make no significant contributions to the elastic
properties of real metallic superlattices.

Our results, that the sum of the eigenvalues term gives
the dominant contribution to the singularity in the total
energy, are quite general. But the form of the singulari-
ties will depend on the specific form of the band structure
near the new Brillouin-zone boundary, and although our

results for the sum of eigenvalues, and the density, for
different shapes of Fermi surface should be widely appli-
cable, new features may appear in cases in which there is
band overlap near the zone boundary and the two-band
model may not be adequate.

As we pointed out earlier, Williams and Weaire also
treated correction terms to the sum of eigenvalues contri-
bution to the energy and found that the second derivative
of the total-energy correction had infinite discontinuities
at the contact points, with which we disagree. Their cal-
culation only achieved approximate self-consistency, and
imprecise cancellation of the various corrections to first
order in 6'n would lead to a spurious residual correction
of order 6'n rather than (bn)z which would account for
their results.
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