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Hall resistance of a two-dimensional electron gas in the presence
of magnetic-Aux tubes
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We compute the Hall and diagonal resistivities of a two-dimensional electron gas in the presence
of randomly placed magnetic-flux tubes. It is found that there is a suppression of the Hall con-
ductance below its expected value for the corresponding uniform magnetic-field case at low electron
densities, in agreement with recent experiments. At densities somewhat lower than achieved thus
far experimentally, we find resonances in the transport coefFicients due to Landau-level structure in
the flux tubes. A classical calculation of the Hall resistance reproduces the broad features of the
Hall conductance for integral or half-integral numbers of flux quanta in each flux tube.

In recent years, there has been increasing interest in
the behavior of the two-dimensional electron gas (2DEG)
in inhomogeneous magnetic fields. Such systems are of
interest because they off'er a new and unusual way of in-
troducing an external potential in the electron gas, which
does not necessarily involve adding random impurities to
the system. Much work has focused on the case of a pe-
riodic field modulation, and its efFects on the energy
spectrum and transport properties of the system. The
efI'ect of the electrostatic analog of this is known to lead
to interesting effects, including the Hofstadter butterfiy
spectrum and quantization of the Hall conductance.

In practice, such inhomogeneous magnetic fields are
made possible by depositing a thin superconducting film
above the 2DEG, so that the field is broken up into vor-
tex lines just above the electron gas. If the ratio of
the superconducting flux quantum hc/2e to the magnetic
field B is large compared to the area of a typical vortex
line, then to a first approximation one may think of the
magnetic field as being confined only to small regions of
the electron gas. For low enough magnetic fields, the
positions of the vortices will be random, due to inhomo-
geneities in the superconducting film. Thus, one is led
to consider a system of randomly distributed scatterers,
with the scattering potential being due to a strong mag-
netic field confined to small regions of space. This model
has been studied theoretically, with particular attention
to the efFects of weak localization.

In this work, we will investigate the Hall efFect in this
system using a Boltzmann equation approach. Recent
experiments have investigated this quantity, and have
found that at high electron densities, the Hall resistivity
is essentially the same as in a uniform magnetic field,
while at lower densities, it becomes suppressed below
this value. Past theoretical work anticipated the for-
mer result, although the latter is largely unexplained.
Below, we will show explicitly that there is indeed a
suppression of the Hall resistivity in a simple model of
flux tubes randomly distributed through an electron gas,
when k~B & 1, where k~ is the Fermi wavelength and B
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FIG. 1. Hall factor I"H as a function of k~R for flux tubes
containing o. = 0.5 (solid line) and o, = 2.5 (dashed line) fiux
quanta hc/e. Inset: F~ as calculated classically.

the radius of a fiux tube. This suppression is largely a re-
sult of the inefFectiveness of the flux tube as a scatterer if
it is too narrow, and can be understood in a purely clas-
sical model. We also find that there can be resonances in

the Hall resistivity due to the Landau-level structure in
the flux tubes, and that there are interesting oscillations
in both the Hall resistance and the diagonal resistance
as a function of the flux in each vortex, which is a con-
sequence of the Aharanov-Bohm efFect.

A typical result is illustrated in Fig. 1, where we plot
the Hall factor, defined as FH (kF R) = p „n,ec/B, where

pzy is the Hall resistivity, n, the sheet density, and B is
the spatially averaged magnetic field. The flux parame-
ter n, which is the number of flux quanta contained in a
single flux tube, is taken to be 0.5, as is expected for the
experiment of Ref. 7. We note also that, throughout this
paper, we assume for simplicity that the magnetic field
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2 R2 if r&R
if r) B.

With this gauge the Hamiltonian describing the electron
interacting with a vortex is

h' & a'
2m* ( BT

. a e—i———A„r
rOr r~ 88 ch '

)
(2)

In this equation m* is the effective mass of the host semi-
conductor. We have neglected the interaction of the elec-
tron spin with the magnetic field. This interaction can
be relevant for the case of free electrons, but in the
actual samples the electrons are moving in GaAs where
the Zeeman energy is much smaller than the cyclotron

is uniform inside the flux tube. One can see a shoulder
in the Hall factor near k~B = 2, which may be traced
back to a scattering resonance through the first Landau
level in the region of the magnetic field. (Such resonances
can be quite pronounced for larger values of n, leading
to nonmonotonic behavior in FH, this is also illustrated
in Fig. 1.) For comparison, the experimental points, as
taken from Ref. 7, are plotted as well, with their as-
sumption that R = 1000 A.. One can see good qualitative
agreement here. We note that the choice of B is some-
what arbitrary, as the field profile inside the flux tube is
not really uniform; we find that the agreement between
experiment and theory can be made quantitative if we
use an effective radius of R = 650 A. .i2

In Fig. 2, we illustrate (for o. =
2 and ~) the quan-

tity m*/hnL, ~(k~R), where m* is the effective mass, nl.
is the number of vortices per unit area, and w(k~R) is
the elastic mean lifetime for scattering off the vortices.
This quantity is proportional to the diagonal resistivity
p, and so is easily measured experimentally. It is inter-
esting to see that there is a peak in the resistivity near
k~B = 2, which once again we interpret as a scattering
resonance. Not surprisingly, similar plots for larger val-
ues of o. reveal a number of such resonances. It is also
interesting to look at this quantity for fixed k~B = 2 as
a function of n. One Ends oscillations of period 1, which
are a manifestation of the Aharanov-Bohm effect. Sim-
ilar oscillations are present in the Hall factor, although
they are not as pronounced.

We now discuss the derivation of our results. The mag-
netic field is applied in the z direction. In the symmetric
gauge, and in polar coordinates (r, 8), the vector poten-
tial describing a vortex is A = (0, A„), with
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FIG. 2. Unitless measure of the inverse scattering time
due to the flux quanta, as given in Eq. (14), for n = 0.5
(solid line) and n = 2.5 (dashed line).

(4)

In these expressions q is related to the electron energy,
s, by the relation s = h, q2/2m*, J and Y are respec-
tively the usual Bessel and Neumann functions, and o, is
the magnetic flux in units of Pp

——ch/e; i.e. , P = nPp.
Ai and E2 are constants which depend on m* and q, and
are obtained by imposing continuity of the wave function
Q(qr) and its derivative at r = R.

For large distances, r, the wave function Q(qr) can be
written as

~'LQ7

lim Q (qr) = e'~* + f (q, 8) (5)

where f(q, 8) is the total scattering amplitude, given by

energy.
The eigenstates of the Harniltonian given by Eq. (3)

have the form y(r) = e' Q(qr), where

@(qr) = +i Jl —
I
(qr) + a2 Y

(3)

and for r ( R, Q(qr) is obtained from the equation

2 2-2
r +r +q r ——m —o. g(qr) =02d d 22 r

dT dT

OO n A

,~/4; g/2 +O' g - 2~P ~~& 'me
f(q, &) = -~2.. -"

= —(m —~m —a~) .
2

In the R ~ 0 limit, f(q, e) is periodic in a and the

scattering amplitude reduces to the Aharonov-Bohm
amplitude

Prom the total scattering amplitude it is possible to
calculate the T-matrix element between two plane waves
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of wave vector k and k', both with the same magnitude
k, and forming an angle 8 between them:

f(k, 8) = —
~ e ' ~4(k'lTlk)

In terms of this matrix element, the transition probability
from the state lk) to the state lk') is given by the golden
rule:

1—eEK~ g(k) = —) (Wki, g(k) [1 —g(k')]

—Wi, i,g(k') [1 —g(k)])
g(k) —gp(k)

(10)

Here E is the applied electric field, g(k) is the number
of electrons in the volume element dk about the point
k, and gp(k) is the equilibrium Fermi distribution. The
last term of Eq. (10) describes collisions with the usual
impurities, so that ~i is the relaxation time in the absence
of a magnetic field.

It may be shown that this equation is identical to
the Boltzmann equation in a uniform magnetic field and
a random impurity potential, with a total relaxation time
v of the form

1 hk

~(kR)
"'m*

2'
2 1

d8(1 —cos 8) l f (k, 8)
l

+ —,
7i

Wi„k =
~ « l(k'l&lk)l ~(&(k') —&(k)) .

Note that since the scattering is due to a magnetic field
f(q, 8) g f(q, —8), and therefore Wkk g Wi, k. The
Boltzmann equation, in the presence of an electric field
E, takes the form

following limits in Fig. 1: (a) FH ~ 0 when k~R —+ 0.
This happens because in this limit there is no magnetic
field. This behavior is precisely reproduced by our clas-
sical model below. (b) F~ —+ 1 when k~R —+ oo, co-
inciding with the semiclassical result. i However, for 20.
not precisely equal to an integer, we find FH may either
be suppressed or elevated from the semiclassical value.
Such behavior, we shall see, does not arise in the clas-
sical model, and appears to be a purely quantum effect.
Physically, this is a result of the Aharanov-Bohm effect,
for which there is a relative phase shift of electron paths
traversing either side of the flux tube, even without pass-
ing through it. Thus, the vector potential outside the flux
tube is capable of scattering electrons, an effect which
never arises classically.

In Fig. 2, we illustrate the variation of the dimension-
less quantity

d8(1 —cos 8) l f(k, 8) l

versus kFB for different values of the magnetic flux o..
This quantity is related with the inverse of the scattering
time due to the presence of vortices. From Eq. (11)
the value of this function in kFB=O is 2sinvro. . This
function develops a maximum at the values of kF R which
correspond to the first Landau levels of the magnetic field
in the disk. As n increases more structure is observed
because the Landau levels are more separated in energy.
In high mobility samples (mean free path around 104—10
A), and at magnetic field around 150 G, the scattering
time due to the vortices can be shorter than that due to
the usual impurities.

Finally, we now show that much of the behavior il-
lustrated in Fig. 1 may be understood from a purely
classical approach. We begin by noting

and an effective magnetic field B,rr = BFH(kR), where
the Hall factor FH(kR) is given by the expression ff(k 8)l'=

d8
(15)

l f(k, 8)l sin8d8

Note that both the Hall factor and the relaxation time
only depend on the dimensionless quantity kB. From
this, the Hall resistance p» is easily shown to be

where do/d8 is the differential cross section in two di-
mensions. Noting that the scattering angle t9 is a unique
function of the impact parameter 8, it is not difBcult to
show that do /d8 = ds/d8, so that

I3
p y

—— FH(kpR)
AqCC

FH(kpR) = kF
271 A

ds sin 8(s). (16)

The Hall resistance is linear in the applied magnetic field,
because the density of flux tubes is proportional to the
applied magnetic field, and in the dilute limit, the scat-
tering amplitude is independent of it. At higher mag-
netic fields the array of vortices is denser and multiple
scattering of the electron with the vortices should be in-
cluded in the calculations. This would modify the depen-
dence of the Hall resistance on B. In any case, at high
enough magnetic field the adjacent vortices strongly over-
lap, and we should obtain the Hall resistance of a 2DEG,
p y ——B/n ec.

We illustrate in Fig. 1 the Hall factor in the case of
vortices with magnetic flux a=0.5 and 2.5. Note the two

By integrating Newton's equation, one may explicitly
compute 8(s). We find the resulting form of F~ is a
universal function of the parameter k~R/oi, and plot it
in the inset of Fig. 1. One can thus see the suppression of
FH near small kFB, which in the classical case is simply
the statement that the cross section of an infinitely thin
solenoid is zero. For large kFB, the semiclassical result
is recovered. One can show that this arises whenever the
velocity of the electron is large compared to Rcu/„wh ree

~, is the cyclotron frequency for the magnetic field in-
side a flux tube, so that all the scattering occurs at small
angles. In this situation, to lowest order in 1/k~R, one
finds
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sin 9(s) = e
VF /Ill, C z

B(x, s)dx (17)

where v~ is the velocity of the electron, B(x, s) is
the magnetic-field profile along the incident direction of
the electron, and the points xi and x2 lie outside the
magnetic-flux tube. Using this in Eq. (16) shows that
FH depends only on the total magnetic flux in the vortex,
and is independent of its shape or magnetic-field profile.
One may thus imagine "spreading out" the flux of all the
tubes so that they fill space with a uniform magnetic
field; this should not affect the final result. The Hall fac-
tor for the uniform magnetic field is trivially 1, and this
agrees with our results for integral 2o, at large kurt, . It
is interesting to note that we do not recover the classical
result for nonintegral 2o. ; this is clearly a result of in-
terference effects, due to the vector potential, of electron
paths that do not actually traverse the flux tube.

In conclusion, we have studied the Hall effect and the

elastic-scattering time for a two-dimensional electron gas
scattered by random magnetic-flux tubes using a Boltz-
mann equation approach. Our results give reasonable
agreement with experiment for the suppression of the
Hall effect at low electron densities. We find resonances
in both the Hall and diagonal resistivities as a function
of k~B that correspond to Landau-level energies in the
flux tubes. At large kFB, the Hall resistivity takes the
value expected for a uniform magnetic field, provided the
number of flux quanta contained in each tube is integral
or half-integral. This result may be understood from a
purely classical approach. For other values of the flux in
a tube, one gets deviations from the classical result even
at large k~B, due to the Aharanov-Bohm effect.
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