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X-ray reflection from rough layered systems
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The specular and nonspecular x-ray reflectivity of a rough multilayer is calculated on the basis of
the distorted-wave Born approximation. The theory explains the existence of maxima in the angular
distribution of a nonspecularly reflected wave. The interface roughness has been characterized by
root-mean-square roughness, lateral correlation length, and the fractal dimension of the interface.
It has been demonstrated that these parameters can be obtained from nonspecular reflectivity mea-
surements. Calculations based on this theory compare well with data measured on rough layered
samples.

I. INTRODUCTION

X-ray specular reflectivity measurement is a powerful
method for investigating surfaces and multilayers. Ex-
perimental reHectivity curves can be analyzed using for-
mulas following from the Fresnel formalism of optical re-
Hection and refraction in a multilayer with smooth inter-
faces. This approach can yield thicknesses and refractive
indices of individual layers.

In order to study the quality of interfaces in a multi-
layer (interface roughness) a more sophisticated descrip-
tion of the reflection process should be applied. In a se-
ries of papers the inHuence of the interface roughness
on the Presnel reHection amplitude has been assumed in
the form of a multiplication term analogous to the static
Debye-Wailer factor known from the x-ray diffraction.
Two different forms of this term are used in the literature.
The first one2 can be derived by averaging all the phase
terms in the reflectivity of a multilayer with smooth in-
terfaces over random layer thicknesses. This averaging is
not legitimate from a general viewpoint of statistics; the
final formulas, however, agree with experimental results
quite well and they only fail for small incidence angles. 4

A modified form of the roughness term has been found
on the basis of general scattering theory 7 that fits the
experimental data for all incidence angles.

The specular wave reHected from a rough multilayer
represents the coherent component of the entire reflected
wave. This component can be described using the cohe-
rent approximation of the reflection process, which only
includes the point properties of the rough interface, i.e. ,
on its mean-square roughness. In order to investigate
the in-plane correlation in a rough interface a measure-
ment of the incoherent component of the reflected wave is
necessary. The incoherent contribution to the reflected
wave is represented by the nonspecular (diffuse) wave.
The angular distribution of the intensity reflected non-
specularly from a rough surface has been measured and
intensity maxima have been observed if the incidence an-

gle andior the angle between the surface and the dif-
fuse wave (the exit angle) equals the critical angle 8, of
total x-ray reflection. These maxima are known as
"Yoneda peaks. " Similar results have been obtained for
rough multilayers, &

Theoretical description of the nonspecular reflection
on a single rough surface has been developed using the
Born approximation (BA) and the distorted-wave Born
approximation (DWBA) known from the general scat-
tering theory. 3 ~4 In the Born approximation the reflec-
tion process is considered as a scattering from indepen-
dent scatterers (electrons) being irradiated by an inci-
dent plane wave. Within this approach the differential
cross section is calculated for the scattering from the in-
cident plane wave ~gi) into the final plane wave ~Q2).
The essence of DWBA consists in the assumption that
the undisturbed states ~Qi) and ~@2) correspond to two
different wave fields in an ideal system (i.e. , with smooth
surface). Then, the surface roughness acts as a distur-
bance and it causes the scattering from ~Qi) into i/2).

It has been demonstrated by numerical calculations
of both coherent and incoherent wavesi~ that the BA
approximation is suitable for greater incidence angles,
where the DWBA fails. On the other hand, for smaller
angles of incidence DWBA is suitable and BA is not ap-
plicable. Below the critical angle the BA diverges, since
it does not include the effect of total reflection. The for-
mula for the specular reflectivity of a single rough surface
following from the conventional formalism with the mod-
ified roughness term4 " coincides with that from DWBA
for small incidence angles and with that from BA for
greater angles. Moreover, the DWBA method succeeded
in the explanation of the nature of the Yoneda peaks, ~

where the BA fails. '

The DWBA approach has been used for studying the
structure of wet rough surfaces. The form of the Yoneda
peaks has been simulated and a good agreement with
experiments has been achieved.

The aim of this paper is to generalize the DWBA ap-
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proach for the case of a layered system with rough inter-
faces. We find explicit formulas for coherent refiectivity
and difFerential cross section of the nonspecular scatter-
ing for a multilayer with rough interfaces and demon-
strate that the angular distribution of the nonspecular
component is closely connected with the specular reBec-
tivity and with the fractal properties of the rough in-
terfaces. We show that in the case of a multilayer the
positions of the peaks of this distribution can easily be
explained. We compare the theoretical results with mea-
surements performed on layered samples and obtain an
estimate for the in-plane correlation length of the rough
interfaces.

II. THEORY

In this section we derive the basic equation for the
coherent reflectivity and the incoherent scattering cross
section for x-ray reflection on a random rough multi-
layer. We follow the calculation procedure of the DWBA
method and we generalize it for the case of a multilayer.

Let us start from the wave equation

(~+~')[~) = U( )i~) (1)
The scattering potential V is given by

V(r) = K [1 —n (r)], (2)

where K = 2vr jA is the vacuum wave-vector length and
n(r) is the refraction index of the system (assumed de-
pendent on the position r). We assume that the mea-
sured reflectivity signal does not depend on the actual
(microscopic) shape of the interfaces, i.e. , the mean cor-
relation length of the rough interfaces is much shorter
than the size of the sample irradiated area. Then, all the
measured quantities are averaged over the statistical en-
semble of all microscopic configurations of the interface
profiles.

The scattering potential can be split into two parts,

V(r) = V~ l (r) + Vi" (r),

where Vio& represents the undisturbed system and U&1& is
the perturbance due to the interface roughness. Within
the DWBA approximation the averaged differential
cross section of the light scattering from a random system
can be expressed as

dO. (i V12i2)

dA 167t.2

where U12 —U12 + V12 V12 ($2 l

V I y1) is the(0) (&) (0) (0)

scatering matrix element of the undisturbed system, and

V12 ——($2~Vi i ~$1) is that of the perturbation. ~g1) and

~@2) are two independent eigenstates of the undisturbed
system,

~P1) = exp(iK'"' . r)

describes the incident plane wave.
The difFerential cross section (3) is proportional to the

probability of scattering from the state ~Q1) into ~Q2)
The intensity of the waves scattered into a small solid

angle dA is then

dI = I~„, dA, (4)

where I;„, is the flux density of the primary wave given
in counts per area per time.

The undisturbed system is represented by a multilayer
with ideally smooth interfaces (see Fig. 1). The jth
layer lies between the (j —l)th and the jth interfaces, its
thickness is d~, and refractive index n~. The layer j = N
lies at the substrate, nq ——1 is the vacuum refractive
inde~, and n~+q is the refractive index of the substrate.
Similarly to the ease of a single rough surface we choose
the following undisturbed states:

$1(r) = T1(z) exp[iK1(z) r]

+R1(z) exp [iK'1(z) r],

$2(r) = &g(z) exp[iK2(z) r]
+A2 (z) exp [iK'2 (z) r].

R1 2 and T1 2 are the complex amplitudes of the transmit-
ted and the reflected beams, respectively, for the states
1 and 2. Kq q and K'q 2 are their wave vectors. For an
ideal multilayer system Rz 2, T&,2, Kz 2, and K'& z only
depend on the coordinate z perpendicular to the inter-
faces and they can be obtained using conventional x-ray
optics. The z axis is introduced according to Fig. 1, and

z~ is the z coordinate of the jth interface (z1 ——0). The
eigenstate ~Q2) is chosen so that it represents a time-
inverted state; the amplitude of the wave emitted by the
multilayer in the eigenstate ~Q2) is therefore Tq(0). The

angle of incidence of the primary wave ~@1) is 81, the
exit angle (i.e. , the angle between the free surface and
the emitted wave ~g2)) is 82.

The matrix element V&z of the undisturbed system
can be calculated directly. It is connected with the re-

flectivity R of the ideal system by the formula

v,'2'~' = st'sin'(e1) z, a(K2)) —K1~~),

where the vector components parallel to the interface are

~ 1

z Is,' Is ',

n]

n2 d2 Z2

Z j

, L I„-
n&+& substrate

FIG. 1. Sketch of an ideal multilayer with undisturbed
states ~g1) and ~Q2).
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denoted by II. This expression is valid if we assume the
irradiated surface area S is large enough and the Dirac
deltas in (6) express the specular nature of the scattering
from an ideal layer system (Hi ——82).

Now, let us consider a system with rough interfaces.
The actual profile of the jth interface is described by
a random displacement u~(2:, y) (see Fig. 2), where the
coordinates x, y are perpendicular to z, and the x axis lies
in the plane of incidence. We make a natural assumption
that each layer has always a nonzero thickness, i.e., the
neighboring interfaces do not intersect. The perturbation
Hamiltonian V~il(r) is then given by

N

V~'l(r) = Z') (n,
' —

n,'„)P,(r),

Vj
layer j

layer j + 1

FIG. 2. Schematic of a rough interface between the jth
and the (j+ 1)th layers.

Let us denote S~+ the part of the jth interface where
u~(2:, y) & 0 or ( 0. We introduce the random functions

where P~(r) is a random shape function of the jth inter-
face defined as follows:

'1, z c (z, , z, + u(x, y)) for u, (x, y) & 0
F+'(q) =

zj+uj (2:,y)
dz exp( —iq r)

P, (r) = ( —1, z C (z, +u, (x, y), z, ) for u, (x, y) (0
, 0 elsewhere.

and denote Tq 2, Bq 2, Kq 2, and K'q 2 the values of func-
tions T, R, K, and K' in the jth layer (K'"' = Kii).

The matrix element of the perturbation Hamiltonian
can be' written as follows:

N

(psIV~ lIpi) = K ) (n n + ) [T T2F+~(qo) +T2&i +(q2) + 2 i +(qi) + i 2 +(q3)

Tj+1T2+1F2 (
3'+1) + T3+1~2+1Fj (q j+i) + Tj+1+j+iF'j (qua+i)

+Ã+'Ã+'F' (q',")], (9)

where we have denoted

q =K —K, q, =K' —K,

q~z ——K~2 —K ~~, q 3 ——K'~ —K'q.I3

A. The specular (coherent) reflectivity

The differential cross section (3) can be split into the
coherent (specular) and the incoherent (nonspecular, dif-
fuse) parts

do. (do l (do. l
dA (dA) ~ qdA),

+

= 16, IVi'2'+ (Vi'~ )I'

+, , [(Iv'" I') —I(v'.")I'] (10)

The coherent part of the scattered wave represents the
specular scattering from I/i) into I@z). Thus Ki = K'2
and K y: K2 and the~efo~e, q, = q~ = 0 q3
—q o. Calculating the average (Vi2 ) we have to calculate(x)

the averages (F+~(q)) and (F+~(0)). In this calculation
we assume that the random shifts u~(z, y) represent a
stationary random process with the probability density

I

p~ (u) and zero mean. The random functions u~ (x, y) and
ut(x, y) are not correlated if j g t.

If the area S is large enough, the surface integrals

f& dx dy occurring in these averages can be approximated

by the Kronecker deltas and after some algebra we get

(F~~(0)) = S6q. Obq„pp~~,

(F~(q)) = S6',.06,„,0U~—(q.),
q,

where

du p, (u)u Y(+u),

U+(q. ) = ——,'+ dup, (u) exp( —iq, u)Y(+u),

and Y(x) is the Heaviside function [Y(2:) = 1 for x & 0
and Y(z) = 0 for z ( 0]. In the following we will as-
sume that the probability density is a symmetric func-
tion. Then, p~+ ——p~ = p~. Setting Eq. (11) into (9),
we obtain an explicit formula for (V&~z ). Comparing this
expression with (6), we find that in the coherent approxi-
mation the perturbation yields an additional term to the
ideal reflectivity. For the coherent reflectivity amplitude
of a rough multilayer system we obtain finally



47 X-RAY REFLECTION FROM ROUGH LAYERED SYSTEMS 15 899

N

Ro = Ri+, ) (,' —&,'+ )(((Ti)'U+(q!) —(R')'[U+(q. )l')/q!ql ~ 3
Z j ]

+((T +i) Ui (q
+

) —(Rj+i) [Ui (qj+ )]")/qj+ —2ipj(TjR~ + Ti+iRj+i) (12)

B. The diffuse (incoherent) scattering

Considering the difFuse scattering from a rough multilayer, both eigenstates l@i) and I/2) must be treated inde-
pendently. According to (10) the difFerential cross section of the incoherent scattering is

2 Cov(Viz, Vi2 ),
(d~ 1 (i) (i) (13)(dA I 16vr

where Cov(a, b) = (ab*) —(a)(b) is the covariance of two random quantities a and b.
Setting Eq. (9) into (13), we calculate the difFerential cross section. In the final formula the expressions

Cov(F~j(q ), F~j(q„))

Q' „= Cov( F~j( qj+')+ F'(q'+') Fj(q'+')+F'(q'+'))

(14)

occur for q = qo y 2 3. Similarly to the case of a single rough surface this calculation can substantially be
simPlified assuming that the eigenstates lgi 2) in the jth layer in Points r, where zj ( z ( zj + uj(x, y) (hatched
regions in Fig. 2), can be replaced by those of the (j+ 1)th layer. The validity of this assumption for the case of
a single surface has been discussed in Ref. 12, for the case of a multilayer, and that discussion will be presented in
Sec. IV. Then, instead of (14) we have to evaluate the covariance

This covariance can easily be expressed using the statistical dispersion o.
~

=
[the root-mean-square (rms) roughness] and its correlation function

C, (r —r') = (u, (x, y) u, (x', y') ),
if both points r and r' lie at the same interface. We obtain

(us) of the random roughness profile

.exp[-~,'((q".')'+ (q.".')')/2]
q'+.'(q'+. ')'

dxdyexp[ —i(q x+ q&y)](exp[qj+ (qj+ )'Qj(x, y)] —I),

where q, q„are common components of qo, qi, q2, and qs into the smooth layer surface and we have assumed the
normal distribution of random shifts uz. The final formula for the incoherent difFerential cross section is

~4 N

2).I» il (Qjoo(ITij+ T2+
I

+ IRji+ R2+
I )+Qii(IT2j+ R+

I
+ ITij+ R2+

I )
1 vr2

+2 Re[Q T + T + (R + T + )* + (Q R + R + )'T + R +

+Qj Tj+1Tj+1(Tj+lRj+i) + (Qj Rj+1Rj+i) Rj+1Tj+1

+Q& T~+'T'+'(Ã+'R'+')*+ Q' T'+'R'+'(T'+'R'+')*])

If we restrict ourselves to the case lqj+, o jl (( 1 after replacing the exp function in (15) by the first two terms of its
Taylor series we get the simpler expression

4 N

I „„I

= „.&. I j — j+iI'I( i"' '"+ i" 2")exp[-(~jqoj.")'/2]

+(T,'+ R~+ + T~~+ R',+ ) exp[ —(ajq~i+ ) /2]l Cj(q~, qy).
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Cz denotes a two-dimensional Fourier transform of the
correlation function C~'

~&(q*, q&) = dx dy Cz (x, y) exp[ —i(xq + yq&)].

where p = g(x —x') + (y —y')2 and A~ is the corre-
lation length of the jth interface. The coeKcient h is
connected with the fractal dimension Dz ——3 —6 of the
jth interface.

The terms occurring on the right-hand side of Eq. (17)
have a clear physical meaning; they describe several pro-
cesses contributing to the diffusely scattered wave. For
instance, the term

expresses the scattering from the transmitted wave with
amplitude Ti+ into the wave with amplitude T~~+ . The
change of the wave vector connected with this process
is q0+ ——K2+ —K&+ . The process corresponding to
the term T~+ R~z+ is a scattering from the transmitted
wave with amplitude Tz~+ into the reflected wave with
amplitude Rz+ . The corresponding wave vector change
is then g i

——K'2+ —Ki+ . The physical meaning of
the other terms is similar.

III. NUMERICAL AND EXPERIMENTAL
EXAMPLES

In this section we will demonstrate the theoretical re-
sults by numerical calculations of nonspecular intensity
reflected from layered systems and compare the theory
with experiments.

The nonspecular intensity component can be mea-
sured by means of a triple-axis x-ray diffractometer, the
first and second axes being connected with a crystal
monochromator and the sample, respectively. On the
third axis an angularly sensitive element is mounted (an
analyzing crystal or a multicrystal arrangement), so that
the entrance solid angle 0» of the detector is very narrow
in the incidence plane. In a simpler version the angular
sensitivity of the detector in the incidence plane can be
achieved by a narrow slit instead of the analyzing crys-
tal; the slit and the detector can rotate along the rotation
axis of the sample. The height of 0 ~ (perpendicular to
the incidence plane) is only limited by the height of the
detector aperture window.

Both the sample and the entrance angular aperture
A» can be rotated independently. The angular position
of the sample determines Oq., the exit angle 612 is controlled
by rotating 0 p.

There are two scanning modes known from the
literature. In the L92 mode only the analyzer rotates,

Formulas (12), (16), and (17) can be used for a direct
computation of the coherently and incoherently scattered
intensities. For the incoherent intensity, a suitable form
of the correlation function C(x —x', y —y') must be cho-
sen. We postulate the correlation function in the form
resulting from the fractal description of random rough
surfaces

2h

&~(x —x, y —y) =a exp —
I

&pl
qA, y

10

10

—3
0 1000 2000 5000

(ate sec)

FIG. 3. Calculated disuse differential cross sections in the
8& scan (28 = 4000 arc sec) for a Si layer (thickness 640 A)
on glass. The roughness parameters are aq = a2 = 5 A,
Aq = A2 = 1000 A, h = 0.2 (full line), 0.5 (dashed line), and
1.0 (dotted line); A = 1.54 A.

4000

so that the incidence angle 6Ii remains constant and the
exit angle 82 is changed. In the 8& mode only the sample
rotates, thus both the angles Oi 2 are changed and their
sum 28 = gi + 612 is kept constant.

Figure 3 presents the diffuse differential cross section in
the 8& scan calculated for a Si layer on glass for three vari-
ous values of the coefBcient h in Eq. (18). For Hq = 8, and
Hq = 28 —8, the Yoneda peaks are clearly visible, where 8,
is the critical incidence angle for the upper layer.
Moreover, the. dependence of the nonspecular intensity
on Oi exhibits subsidiary maxima; their forms and posi-
tions are similar to those of the dependence of the spec-
ular intensity on 8~. A more detailed numerical analysis
showed that the nonspecular component of the reflected
intensity has been created mainly by the contribution of
the upper interface, i.e. , the terms with j ) 1 in the sum
on the right-hand side of Eq. (16) can be neglected with
respect to the first term. A significant contribution of
deeper interfaces to the nonspecular intensity can only
be established in the case of very thin layers.

The slight asymmetry of the Yoneda peaks in Fig. 3 is
caused by the dependence of the irradiated sample area
8 on the angle of incidence Hq. The height of the peaks
grows with growing dispersions o~ and with growing h.
The dependence of this height on the correlation lengths
A~ is not simple; there is a maximum of the Yoneda peak
height for a certain value of A~.

The form of the curves in Fig. 3 substantially depends
on h. For h = 1 there is no maximum of the nonspecular
intensity near the specular peak [i.e. , near the point Hq =
Hs = (28)/2], while for h ( 0.5 a broad maximum appears
in that region.

Figure 4 shows the Oq scan calculated for a periodical
x-ray mirror with the structure according to Table I. The
form of the curve resembles that of the coherent reflec-
tivity 'R& = ~R&~, whose dependence on Hq is plotted in
Fig. 4 by the dashed line. This behavior can easily be
explained. The nonspecular component of the reflected
wave is produced by the scattering of the waves repre-
sented by the ideal eigenstate ~gq) into the eigenstate

~Qz). Therefore, the maximum of the nonspecular com-
ponent appears if the intensities of both the eigenstates
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10 0 (000
I

2000 3000
(atc sec)

1,2

2000 4000 6000
6 (a rc sec)

1

8000

FIG. 4. Calculated diffuse differential cross section in the
82 scan (full line, 8q = 2000 arc sec) and the coherent reflec-
tivity 'Rc (8&) (dashed line) of the x-ray mirror after Table I;
&=1.54 A.

FIG. 5. Measured (circles) and calculated (line) 8q scan
of sample A (see Tables II and III), 28 = 8640 arc sec. The
curve has been calculated assuming h = 1.

I (8y, 8g) = I;„, dA + F(8g, 82)'Rc
fdol.
(dAP r

where F(8q, 82) is an instrumental function given by the
convolution of the shape function of the primary beam
with 0 p The second term on the right-hand side of this
formula expresses the fact that for certain values of Hq 2
not only the diEuse component but also a certain part
of the specularly reBected wave penetrates the entrance
aperture 0 p. In the Hq scan this eKect can be observed
for 8, = 8, = (28)~2.

Figures 5 and 6 represent two examples of our exper-
imental results and their numerical treatment. The ex-
periments have been performed using the simpler version
of the experimental arrangement with a narrow slit in

exhibit a maximum. In the H2 scan the angle Hq and
the intensity of ~Qq) are constant; the diffuse component
only depends on the intensity of ~gq) as a function of
H2. Therefore, a maximum of the nonspecular compo-
nent appears if the intensity of the ideal wave field ~g2)
(and, thus, 7Z,c) exhibits a maximum at the free surface.
An extremely strong maximum should be observed, if
both Hp and H2 equal an angular position of the maxi-
mum of the coherent reflectivity 'Rc (8q). This effect has
been established experimentally by Kortright.

The intensity measured by the diKractometer can be
expressed as

front of the detector rotating along the sample rotation
axis. We used a conventional 2-kW Cu x-ray tube. The
divergence of the primary beam has been limited by a
crystal collimator, it was smaller than 20 arc sec. Two
samples denoted A and B have been investigated; their
structure is given in Table II. The geometrical parame-
ters of the experimental arrangement are summarized in
Table III.

Figure 5 shows the H~ scan of sample A; the narrow
peaks near Hq ——4000 arc sec are caused by the coherent
wave; both the Yoneda peaks are clearly visible. The
results of sample B (8q scan) are plotted in Fig. 6.

We tried to fit the Hy scans of both samples with the
theory assuming h = 1 (the full line in Fig. 5 and the
dotted line in Fig. 6). In the fit procedure we used the
o.

z values following from the fits of the coherent reflec-
tivities and we found the most probable values of Aq of
the free surface (Table II). The theory with h = I fits
the experimental results of sample A quite well, while it
fails for sample B. For that sample a better coincidence
was achieved assuming 6 free (full line in Fig. 6). The
surface structure of the gold layer in sample A can be

10

m inc

0 3

TABLE I. The structure of the x-ray mirror. The rms
roughnesses of all interfaces are a~ = 10 A; the lateral corre-
lation lengths are A~ = 1000 A.

10
0

4&
ya

Free surface

Si layer 65 A

Mo layer 25 A
substrate

repeated 10 times

0 1000 2000 3000 4000
(are sec)

1

FIG. 6. The same situation as in Fig. 5, sample B, 20 =
4030 arc sec. In the calculations we assumed h = 1 (dotted
line) and h = 0.036 (full lin" the best fit with the theory).
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TABLE II. Structure parameters of samples A and B from the fits of the experimental Oi

scans. The scans are not sensitive to the roughness parameters of the layer-substrate interface.
The nominal thickness values follow from the growth process; the values denoted with * have been
obtained from the fit of the coherent reflectivity.

Free surface

Layer

Substrate

az
6
Ai
6
Ag

material
thickness'
nominal value
material

Sample A

(ll +1) A
1 fixed

(270 + 60) A

gold
(1035 + 20) A.

1040 A

silicon

Sample B
(14+3) A

1 fixed
(1100+500) A

0.36 + 0.05
(2ooo+ 5oo) A

silicon
(640 + 30) A

64o A

glass

described by a Gaussian random process with Gaussian
lateral correlation function (h = 1, the fractal dimension
2). The surface of the silicon layer in sample B is likely
to be represented with a more jagged profile with higher
fractal dimension (h ( 1).is

IV. DISCUSSION

TABLE III. The geometrical parameters of the experi-
mental arrangement.

primary beam width
primary beam height
detector aperture width
detector aperture height
sample-detector distance

Sample A
0.2 mm
5.0 mm
0.5 mm
9.0 mm
64 mm

Sample B
0.1 mm
3.0 mm
0.5 mm
10.0 mm
290 mm

Deriving Eq. (16), we have replaced the actual wave
field in the hatched regions of the jth layer in Fig. 2 by
the wave field in the (j+1)th layer. Similar simplification
has been performed for the case of a single rough sur-
face. The applicability of this simplification can simply
be proved by calculating the diffusely scattered intensity
under the opposite simplification, i.e. , replacing the ac-
tual wave field in the (j + l)th layer in the "valleys" by
that in the jth layer. The numerical calculations proved
that the difference between both intensities grows with
growing roughness; for used values it can be neglected.
The check of the validity of this simplification, however,
should always be performed.

Measurements of the diffusely scattered intensity can
be used for investigating the statistical properties of
rough interfaces. Numerical analysis not shown here
demonstrated that a fitting procedure for three free pa-
rameters (cri, Ai, and h) cannot be successful since these
parameters are correlated if we fit the experimental and
the theoretical curves near the Yoneda peaks. Thus, it is
more hopeful to determine the rms roughnesses a~ from
the coherent refiectivity measurement and Ai and h from

the Yoneda peaks keeping o.
~ fixed. The A's of deeper in-

terfaces cannot be determined until the layers are very
thin.

The fractal nature of the interfaces is represented by
the parameter h. Its determination is complicated by the
circumstance that Oy scans are most sensitive to h near
8i = 82, where the form of the experimental scans is dis-
torted by the specular peak. Therefore, h could be stated
more precisely from the diffuse scattering measurement
if the width of the coherent peak in the experimental 8j
scan is as small as possible, i.e. , one needs a perfectly
collimated primary beam with angular divergence under
1C arc sec and a multiple crystal arrangement as an an-
gularly sensitive element instead of a detector slit.

In our theory we have assumed that the rough inter-
faces are not correlated so that the random functions
u~ (x, y) and ui (x, y) are statistically independent if j g t.
This assumption could be fulfilled for thicker layers. For
the case of thinner layers a certain degree of correlation
could occur. The influence of that correlation to the dif-
fusely scattered intensity will be the subject of our fur-
ther investigation.

V. CONCLUSIONS

We have applied the approach of the distorted-wave
Born approximation for calculating specular and non-
specular x-ray reflectivity of rough multilayers. We have
demonstrated that the angular distribution of the dif-
fusely reflected wave depends not only on basic rough-
ness parameters (rms roughness o and lateral correlation
length A) but also on the type of the roughness profile
characterized by the fractal dimension 3 —h. The cor-
respondence of h with the actual surface structure and
its preparation technology requires further investigations.
We have discussed the possibility of finding all these pa-
rameters from reflectivity measurement.

It is well known that the diffusely reflected wave ex-
hibits a maximum if the incidence angle and/or the
exit angle equal the critical angle of total reHection (the
Yoneda peaks), or if these angles coincide with positions
of specular reflectivity maxima of a layered system. The
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above theory explains this fact.
The coincidence of the theory with measurements of

the intensity diffusely reflected from metallic layers was
quite good. The discrepancy between the theory (if the

fractal dimension 2 has been assumed) and experimental
results in the case of silicon layers indicates the possibility
of investigating the fractal nature of rough interface by
means of x-ray reBection.
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